ТИПЫ ДИСКОВЫХ НАКОПИТЕЛЕЙ ■ Жесткие диски – HDD (Hard Disk Drive) ■ Твердотельные накопители – SSD (Solid State Disk) ■ Гибридные жесткие диски – H-HDD (Hybrid Hard Disk Drive)
НА ЗАМЕТКУ ■ Распространено ошибочное мнение о том, что внутри корпуса жесткого диска – вакуум. Это абсолютно неверно, поскольку в этом случае диск просто не сможет работать: не будут возникать те воздушные потоки, которые способны поднять считывающие головки. На самом деле внутри гермозоны – очищенный сухой воздух или специальный газ. Корпус диска обычно имеет мембрану или окошко, закрытое фильтром, для выравнивания внутреннего и внешнего давления.
НА ЗАМЕТКУ ■ Каждый трек имеет некоторый запас резервных секторов, которые задействуются в случае повреждения уже используемых для хранения информации. Этот факт дал повод для легенд о том, что с помощью неких манипуляций можно увеличить доступную емкость жесткого диска. Но даже если найдется способ использовать эти резервные секторы, делать этого не стоит: в результате снизится надежность HDD.
НА ЗАМЕТКУ ■ После появления твердотельных накопителей много говорилось об их недостаточной надежности: утверждалось, что время жизни SSD невелико, поскольку ячейки флэш-памяти выдерживают ограниченное количество операций перезаписи. Но практика показывает, что подобные опасения напрасны: производители гарантируют, что каждая ячейка MLC может выдержать 10 000, а SLC – 100 000 циклов перезаписи. Более того, разработаны хитроумные способы, позволяющие выровнять «износ» ячеек памяти. Для этого контролллер отслеживает количество циклов перезаписи каждой из ячеек и старается поровну распределить между ними нагрузку.
СОВЕТ ■ Если вы выяснили, что материнская плата вашего ПК поддерживает только интерефейс SATA версии 1.х, то не стоит гнаться за новыми возможностями и впрок, с расчетом на будущий апгрейд, покупать дисковый накопитель SATA II. Хотя эти интерфейсы и поддерживают обратную совместимость, известны случаи нестабильной работы SATA II-дисков с контроллерами SATA.
Далее: Продолжение советов по выбору жесткого диска и советы по правильному уходу за ним
В последнее время пользователи стали предъявлять все более жесткие требования к уровню шума своих десктопов и ноутбуков. Большую популярность приобрели малошумные и бесшумные ПК. Хорошим подспорьем в создании подобных систем стали SSD: в силу своей природы эти устройства абсолютно бесшумны, а их низкое энергопотребление и тепловыделение позволяют обойтись без дополнительного охлаждения.
Следуя общей тенденции, производители HDD также выпустили ряд моделей с пониженным уровнем шума и уменьшенным энергопотреблением: у компании Samsung линейка таких дисков получила название EcoGreen F1, у Seagate – Barracuda LP, у Wester Digital – Caviar Green. В моделях этих серий разработчики вернулись к использованию низкой скорости вращения шпинделя 5400 об./мин. (у Barracuda LP – 5900 об./мин.). Эти диски работают практически бесшумно и, в отличие от SSD, дешевы, а их емкость достигает 2 Тб.
Итог: если вы планируете собрать бесшумный ПК, то лучшим выбором для такой системы станет SSD. Для этой же цели вполне подойдут и жесткие диски специальных «экологичных» серий с низкой скоростью вращения шпинделя.
Контрольная работа: Дисковые устройства ПК. Форматирование ячеек.
Название: Дисковые устройства ПК. Форматирование ячеек. Раздел: Рефераты по информатике, программированию Тип: контрольная работа Добавлен 19:10:57 23 января 2008 Похожие работы Просмотров: 250 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Вопрос 1: Дисковые устройства ПК. Виды и характеристика. 2
1.1 Дисковые устройства. 2
1.2 Виды и характеристика дисковых устройств. 2
Таблица 1. Сравнительные характеристики дисковых накопителей. 3
1.2.1. Накопители на жестких магнитных дисках. 3
1.2.2. Накопители на гибких магнитных дисках. 4
Таблица 2. Основные характеристики НГМД.. 4
1.2.3. Дисковые массивы RAID. 4
1.2.4. Накопители на оптических дисках. 5
Вопрос 2: EXCEL. Форматирование ячеек. Применение условного форматирования. 7
2.1. Форматирование ячеек. 7
2.1.1. Выравнивание текста. 8
2.1.4. Шрифты и форматирование текста. 9
2.1.5. Форматирование числовых данных в ячейках. 9
2.2. Применение условного форматирования. 10
Список используемой литературы. 12
Введение.
В своей работе я хочу разобрать два вопроса. Первый вопрос на тему, виды и характеристика дисковых устройств ПК. Дисковые устройства относятся к внешним запоминающим устройствам ПК. Внешние запоминающие устройства можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д. Во втором вопросе – тема форматирование ячеек и применение условного форматирования в Excel. Программа MicrosoftExcel предназначена для работы с таблицами данных, преимущественно числовых. При форматировании таблицы выполняют ввод, редактирование и форматирование текстовых и числовых данных, а также формул.
Вопрос 1: Дисковые устройства ПК. Виды и характеристика.
1.1 Дисковые устройства.
Диски относятся к машинным носителям информации с прямым доступом. Носитель – материальный объект, способный хранить информацию. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/ чтения накопителя.
1.2 Виды и характеристика дисковых устройств
Накопители на дисках весьма разнообразны (табл.1):
· накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах;
· накопители на жестких магнитных дисках (НЖМД) типа «винчестер»;
· накопители на сменных, жестких магнитных дисках, использующие эффект Бернулли;
· накопители на флоптических дисках, иначе, floptical-накопители;
· накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM)
· накопители на магнитооптических дисках (НМОД) и др.
Тип накопителя
Емкость, Мбайт
Время доступа, мс
Трансфер, Кбайт/с
Вид доступа
НГМД
1,2; 1,44
65-100
150
Чтение/ запись
Винчестер
250-4000
8-20
500-3000
Чтение/ запись
Бернулли
20-230
20
500-2000
Чтение/ запись
Floptical
20,8
65
100-300
Чтение/ запись
VHD
120-240
65
200-600
Чтение/ запись
CD-ROM
250-1500
15-300
150-1500
Только чтение
CC WORM
120-1000
15-150
150-1500
Чтение/ однократная запись
НМОД
128-1300
15-150
300-2000
Чтение/ запись
1.2.1. Накопители на жестких магнитных дисках.
В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/ записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает несколько тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД. Максимальные значения на 1995 год:
НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5″ (89 мм), но есть и другие, в частности 5,25″ (133 мм) и 1,8″ (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм – у машин-серверов, 12 мм – у портативных ПК и др. В персональном компьютере имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MSDOS (MicrosoftDiskOperationSystem – дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько “ логических” дисков; тем самым имитируется несколько НМД на одном накопителе.
1.2.2. Накопители на гибких магнитных дисках.
На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25″ и 3,5″. Емкость ГМД колеблется в пределах от 180 Кбайт до 2,88 Мбайт. ГМД диаметром 5,25 дюйма помещается в плотный гибкий конверт, диаметром 3,5 дюйма – пластмассовую кассету для защиты от пыли и механических повреждений. Каждую новую дискету, в начале работы с ней, следует отформатировать. Форматирование дискеты – это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации. Основные характеристики некоторых типов НГМД приведены в таблице 2.
Параметр
Тип дискеты
133 мм (5,25″)
89 мм (3,5″)
Полная емкость, Кбайт
500
1000
1600
1000
1600
Рабочая емкость, Кбайт (после форматирования)
360
720
1200
720
1440
Плотность записи, бит/мм
231
233
380
343
558
Плотность дорожек, дорожек/мм
1,9
3,8
3,8
5,3
5,3
Плотность дорожек на одной поверхности диска
40
80
80
80
80
Число поверхностей (сторон)
2
2
2
2
2
Среднее время доступа мс
80
100
100
65
65
Скорость передачи Кбайт/с
50
50
80
80
150
Скорость вращения, об./мин
3000
3000
3600
7200
7200
Число секторов
9
9
15
9
18
Емкость сектора дорожки байт
512
512
512
512
512
1.2.3. Дисковые массивы RAID.
В машинах-серверах баз данных и суперЭВМ часто применяются дисковые массивы RAID (RedundantArrayofIndependentDisks – матрица с резервируемыми независимыми дисками). В которых несколько накопителей на жестких дисках объединены в один большой логический диск. При этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель режиме PlugandPlay (вставляй и работай) замещается исправным).
Существует несколько уровней базовой компоновки массивов RAID:
1-й уровень включает два диска, второй из которых является точной копией первого;
2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;
3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;
4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.
Среднее время наработки на отказ в дисковых массивах RAID – сотни тысяч часов, при 2-м уровне компоновки – до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID – от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта = 5500 Гбайт).
1.2.4. Накопители на оптических дисках.
В последние годы все большее распространение получают накопители на оптических дисках (НОД). Благодаря маленьким размерам (используются компакт-диски диаметром 3,5″ и 5,25″), большой емкости и надежности эти накопители становятся все более популярными.
Неперезаписываемые лазерно-оптическиедиски обычно называют компакт-дисками ПЗУ – CompactDiskCD-ROM. Эти диски поставляются фирмой-изготовителем с уже записанной на них информацией (в частности, с программным обеспечением). Запись информации на них возможна только вне ПК, в лабораторных условиях, лазерным лучом большой мощности, который оставляет на активном слое CD след – дорожку с микроскопическими впадинами. В оптическом дисководе ПК эта дорожка читается лазерным лучом существенно меньшей мощности. CD-ROM ввиду чрезвычайно плотной записи информации имеют емкость от 250 Мбайт до 1,5 Гбайт, время доступа в разных оптических дисках также колеблется от 30 до 300 мс, скорость считывания информации от 150 до 1500 Кбайт/с.
Перезаписываемые лазерно-оптические диски с однократной (CD-R) и многократной (CD-E). На этих CD лазерный луч непосредственно в дисководе компьютера при записи прожигает микроскопические углубления на поверхности диска под защитным слоем; чтение записи выполняется лазерным лучом так же, как и у CD-ROM.
Перезаписываемые магнитооптические диски (CC-E) используют лазерный луч для местного разогрева поверхности диска при записи информации магнитной головкой. Считывание информации выполняется лазерным лучом меньшей мощности.
Магнитооптические диски с однократной записью (CC-WORM) аналогичны обычным магнитооптическим накопителям с той разницей, что в них на контрольные дорожки дисков наносятся специальные метки, предотвращающие стирание и повторную запись на диск. В магнитооптических носителях запись информации обычно осуществляется за два прохода, поэтому скорость записи значительно меньше скорости считывания. Емкость современных магнитооптических дисков доходит до 2,6 Гбайт, (CC-E до 5,2 Гбайт), время доступа от 15 до 150 мс, скорость считывания до 2000 Кбайт/с.
В ПК используются также диски с высокой плотностью записи, на поверхности которых для более точного позиционирования магнитной головки используется лазерный луч. Среди накопителей, использующих такие диски, следует назвать:
· накопители на флоптических дисках – выполняют обычную магнитную запись информации, но со значительно большей плотностью размещения дорожек на поверхности диска. Стандартная емкость флоптического диска 20,8 Мбайт;
· накопители сверхвысокой плотности записи (VHD) – используют кроме лазерного позиционирования еще и специальные дисководы, обеспечивающие иную технологию записи/считывания: «перпендикулярного» способа записи вместо обычного «продольного». Емкость VHD-дисков до 10800 Мбайт.
1.2.5. Флэш-диски.
Это современное устройство хранения данных на основе энергонезависимой флэш-памяти. Устройство имеет минимальные размеры и допускает «горячее» подключение в разъем USB, после чего распознается как жесткий диск, причем не требует установки драйвера. Объем флэш-дисков может составлять от 32 Мбайт до 8 Гбайт.
Вопрос 2: EXCEL. Форматирование ячеек. Применение условного форматирования.
2.1. Форматирование ячеек.
2.1.1. Выравнивание текста.
— По левому краю. Выравнивает текст по левому краю ячейки. Если текст шире, чем ячейка он будет выходить за ее правую границу. Если ячейка справа не пуста, то текст усекается и будет виден не полностью.
— По центру. Центрирует текст в ячейке. Если текст шире, чем ячейка, он будет выходить в соседние слева и справа ячейки при условии, что они пусты. Если соседние ячейки не пусты, текст усекается и будет виден не полностью.
— По правому краю. Выравнивает текст по правому краю ячейки. Если текст шире, чем ячейка, он переходит в ячейку, находящуюся слева. Если ячейка слева не пуста, текст усекается и будет виден не полностью.
— Объединить и поместить в центре. Центрирует текст в выбранных ячейках, а также выполняет их слияние в одну ячейку.
2.1.2. Границы.
2.1.3. Цвета.
ИнструментЦвет заливкипозволяет изменить цвет фона выделенных ячеек, а инструмент Цвет шрифта— цвет символов текста в этих ячейках. Принципы работы этих инструментов и инструмента Границы аналогичны, и их палитры также можно перетащить в другое место экрана.
2.1.4. Шрифты и форматирование текста.
Шрифт по умолчанию в Excel – Arial. Это не моноширинный шрифт, в нем символы «ттт» имеют ширину отличную от «ооо». В моноширенном шрифте все печатные символы, включая пробелы и знаки препинания, одинаковы по ширине. Шрифты Courier и CourierNewCyr – примеры таких шрифтов. Чтобы сделать стандартным шрифт, отличный от Arial, нужно выбрать меню Сервис ► Параметры, щелкнуть по вкладке Общие и выбрать нужный стандартный шрифт.
2.1.5. Форматирование числовых данных в ячейках.
Можно использовать различные форматы представления числовых данных в рамках одной и той же электронной таблицы. Наиболее распространенные форматы представления числовых данных.
Основной формат используется по умолчанию, обеспечивая запись числовых данных в ячейках в том же виде, как они вводятся или вычисляются.
Процентный формат обеспечивает представление введенных данных в формате процентов со знаком % (в соответствии с установленным количеством десятичных знаков). Например, если установлена точность в один десятичный знак, то при вводе 0.123 на экране появится 12.3%, а при вводе 123 – 12300.0%.
Денежный формат обеспечивает такое представление чисел, где каждые три разряда разделены запятой. При этом пользователем может быть установлена определенная точность представления (с округлением до целого числа или два десятичных знака). Например, введенное число 12345 будет записано в ячейке как 12,345 (с округлением до целого числа) и 12.345.00 (с точностью до двух десятичных знаков).
Научный формат, используемый для представления очень больших или очень маленьких чисел, обеспечивает представление вводимых чисел в виде двух компонентов:
мантиссы, имеющей один десятичный разряд слева от десятичной точки, и некоторого (определяемого точностью, заданной пользователем) количества десятичных знаков справа от нее;
2.2. Применение условного форматирования.
Можно изменить настройки так, чтобы число в ячейке отображалось зеленым цветом, если оно положительное, и красным – если отрицательное. Для этого нужно настроить формат ячейки как дополнительный и написать:
Условное форматирование действует подобно будильнику. Оно позволяет применять форматы к конкретным ячейкам, которые остаются «спящими», пока значения в этих ячейках не достигнут некоторых контрольных значений.
Заключение.
Дисковые устройства являются незаменимой частью в персональном компьютере. Они необходимы когда на вычислительной системе обрабатывается больше данных, чем можно разместить на базовом жестком диске, а также тогда когда данные имеют повышенную ценность и необходимо выполнять регулярное резервное копирование на внешнее устройство (копирование данных в пределах того же жесткого диска не является резервным и только создает иллюзию безопасности.
Что же насчет условного форматирования, то его способы достаточно просто изучить. Они помогают представлять информацию в таблице удобным и практичным способом. Условное форматирование действительно достойно применения в таблицах. Оно делает отображение данных наглядными при объединении с возможностью автоматической проверки данных Excel. Более того, оно значительно облегчает пользование таблицей.
Список используемой литературы.
· Информатика: Учебник. – 3-е перераб. изд. /Под ред. Н.В. Макаровой. – И74 М.: Финансы и статистика, 2007 г. – 768 стр.
· Информатика. Базовый курс. 2-е издание /Под ред. С.В. Симоновича. – СПб.: Питер, 2007 г. – 640 стр.
· MicrosoftExcel 2003, 2002 и 2000: сборник готовых решений и приемов для уверенной работы в программе / Л. Абдулезер, Д. Уолкенбах; пер. с англ. Позняков Д.А. – М. :НТ Пресс, 2007 г. – 416 стр.
Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!
Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.
You spin me right round, baby
Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.
Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.
В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.
Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.
Основную массу жёсткого диска составляет литой металл. Силы внутри устройства при активном использовании могут быть довольно серьёзными, поэтому толстый металл препятствует изгибанию и вибрациям корпуса. Даже в крошечных 1,8-дюймовых HDD в качестве материала корпуса используются металл, однако обычно они делаются не из стали, а из алюминия, потому что должны быть как можно более лёгкими.
Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.
Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.
В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.
Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).
Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.
Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.
Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.
Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.
Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:
Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…
Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.
Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).
Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.
Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.
Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).
Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!
Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.
Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.
Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.
В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.
То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).
Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:
В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.
Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.
Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.
В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.
На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.
И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.
Однако мы можем разобрать отдельные части. Серый блок — это специально изготовленная деталь под названием «слайдер»: когда диск вращается под ним, поток воздуха создаёт подъёмную силу, поднимая головку от поверхности. И когда мы говорим «поднимает», то имеем в виду зазор шириной всего 0,0000002 дюйма или меньше 5 нм.
Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.
Крошечный металлический «шест» на конце головки помогает с общей аэродинамикой. Однако чтобы увидеть части, выполняющие чтение и запись, нам нужна фотография получше.
На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночнойиндуктивности (thin film induction, TFI), а чтение — туннельныммагнеторезистивным устройством (tunneling magnetoresistive device, TMR).
Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.
Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.
Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.
Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5″ 5400 RPM 2 TB:
В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.
В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.