Для чего нужна электроэнергия
Суть электричества простыми словами. Почему и как работает электричество, его природа и принцип действия
С тех пор, как научились добывать и пользоваться электричеством, люди перестали задаваться вопросом как оно работает, откуда возникает, в чём его природная физическая суть? В наше время эта суть раскрывается в научных трудах ученых, их открытиях и новых достижениях техники. На бытовом уровне мы не можем себе представить нашу жизнь без электричества: оно дает нам тепло, свет, возможность использования технических приборов, музыку, телевидение, выход в интернет. Что же собой представляет это явление? Эта статья будет посвящена природной сути электричества.
Электрический ток
Согласно школьного курса физики – это упорядоченное движение заряженных частиц. Заряженными частицами, в зависимости от среды распространения, считаются электроны или ионы. Для металлов эти частицы – электроны, для некоторых газов или электролитов – ионы. Считается что именно их движение и являются электрическим током.
Как известно, в мире физики, объекты, обладающие разностью зарядов притягиваются, чтобы достигнуть равновесного состояния. Этот факт отлично подтверждает всем известный эксперимент с эбонитовой палочкой. Таким образом, электрический ток — это поток электронов или ионов, стремящихся воссоздать равновесие в мире электрических зарядов.
Не углубляясь в разновидности проводников, рассмотрим обыкновенные электрические провода и электроны, бегущие в них. Электроны заряжены отрицательно, значит их массовое скопление — это отрицательно заряженный объект. В то же время положительно заряженный объект — это место где имеется нехватка этих самых электронов, а значит скопление ионов (атомов с недостающими электронами). Так как природа стремится воссоздать равновесие, образуется поток электронов от минуса к плюсу.
Если природа стремится к равновесию, то отчего же образовались эти недостачи и излишки электронов?
Ответ довольно банален, за исключением некоторых природных явлений вроде молнии или статических разрядов. Люди их создают искусственно, чтобы пользоваться стремлением, или другими словами, силой природы прийти в равновесное состояние, в своих интересах. Как это происходит подробно рассказано в статье про источники тока.
Маленькая особенность: так как само явление электричества было открыто гораздо раньше его природы (упорядоченного движения электронов в металлах), а раньше люди думали, что движутся положительно заряженные частицы), то принято считать, что электрический ток течет от плюса к минусу, хотя сейчас уже ясно, что всё происходит наоборот. В консервативном мире науки решили ничего не менять и продолжают пользоваться веками укоренившейся схемой.
Поняв, как всё это движется, можно попробовать разобраться, что нам даёт этот самый электрический ток. Прохождение электронов по проводнику сопровождается массой удивительных физических явлений, от простого нагревания проводника, до электромагнитного поля вокруг него, но обо всём по порядку.
Как известно, электроны очень маленькие и понаблюдать за ними даже через самый мощный микроскоп не удастся. Поэтому для понимания и визуализации такого действа как электрический ток, придумали очень удобное сравнение — сравнение с водопроводной трубой.
Итак, представим себе водопроводную трубу, она является проводником или просто проводом, очень близко не так ли? В этой трубе течет вода – капли которой очень похожи на электроны, текущие в проводах. Эту воду что-то толкает и ей что-то мешает.
Поток воды можно описать присущими ему свойствами, такими как давление и скорость, а характеристики трубы можно описать такими понятиями как её пропускная способность и сопротивление потоку воды.
По аналогии поток электронов, то есть электрический ток, можно описать такими характеристиками как электрическое напряжение (давление для воды) и сила тока (объём потока воды). Электрический проводник по аналогии с трубой можно описать таким свойством как сопротивление электрическому току (сопротивление потоку воды).
К примеру, тонкая труба может пропустить лишь небольшой поток воды, точно также, тонкий провод способен пропустить поток электронов только с небольшой силой тока. Тонкая струйка, вылетающая из водного пистолета, имеет большую скорость, но очень маленький объем воды, также искра, вылетающая из пьезоэлемента зажигалки, имеет высокое напряжение, но очень маленькую силу тока.
Представим себе огромную трубу диаметром в целый метр и из неё течет, а лучше сказать «вываливается» огромное количество воды, при этом давление в ней довольно низкое (единицы атмосфер), но поток воды просто огромен (сотни литров в секунду). Та же история с толстым проводом точечной электросварки, напряжение там невысокое (несколько вольт), но сила тока просто огромная (сотни ампер), в месте контакта плавится металл. Предположим, что на краю трубы есть кран и он закрыт, вода внутри есть, но она никуда не течёт. Тоже самое с проводником, если цепь от плюса к минусу разорвана, а воздух для электрического тока настолько же труднопроходимая среда, как кран для воды, то ток тоже никуда не течёт. Но электроны из проводника, как и вода из трубы, никуда не делись и напряжение, как и давление в трубе тоже осталось, нет только потока электронов, а значит сила тока равна нулю.
Электрический ток – это..
направленный поток электронов, который имеет две основные характеристики, это сила тока и напряжение. Проводники электрического тока характеризуются электрическим сопротивлением.
Конечно же, проводники имеют массу других характеристик, вроде сечения провода и сопротивления изоляции. По аналогии с водопроводной трубой это сечение трубы и толщина её стенки, а сам ток бывает переменным или постоянным, а переменный ток имеет ещё и частоту этих самых перемен, об этом подробно написано в других статьях сайта:
Суть электричества, его открытие
Итак, суть электричества заключается в следующем: в составе атомов и молекул находятся так называемые элементарные частицы электроны и протоны. В центре атома находится ядро, состоящее из протонов и нейтронов.
Протоны — это частицы положительного заряда. Они по силе действия на другой заряд другой частицы могут отталкивать или притягивать её. Нейроны — это частицы нейтральные с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.
Суть электричества волновала человечество с античных времен. В VII веке до нашей эры) был такой философ Фалес Милетский, который впервые заметил некоторое электрическое явление. Если потереть о кусочек шерсти янтарь, то он начинает притягивать к себе имеющие небольшой вес предметы. Однако на этом развитие исследований в данной сфере почти на 2,5 тысячелетия остановилось. Продолжилось оно лишь в XVII веке. Сначала греческим философом был введен термин, затем начались активные изыскания по изучению природы электричества, возможностей его применения на благо человечества.
Наиболее значимые открытия и изобретения
Никола Тесла
На рубеже XIX – XX веков одним из самых известных и загадочных ученых, занимавшихся изучением того, что такое электричество, и создавшим множество изобретений был Никола Тесла. Он раскрыл суть электричества.
Никола Тесла – выдающийся ученый, внесший огромный вклад в изучение данного явления. Ему принадлежит более 1000 разнообразных изобретений, около 800 из которых он запатентовал. Наиболее значительными и важными изобретениями великого ученого являются:
А ещё Тесла был первым, кто разработал и выдвинул в практику правила техники безопасности при работе с электрическим током различной частоты и силы.
Электричество в природе
Природное электричество представлено следующими явлениями:
1.Атмосферное электричество (ветвистые и шаровые молнии); 2.Электрические импульсы в нервной системе живых организмов; 3.Электрические заряды, используемые некоторыми видами скатов и морских рыб для защиты от опасности и добычи пищи.
Дальнейшая суть электричества связана с самим движением этих электронов в различных средах.материалах и условиях. Например действие обычной батарейки. В ней находятся химические вещества, которые взаимодействуя друг с другом. Они из одного своего состояния переходят в другое. Это происходит посредством перераспределения электронов между изменяющимися веществами внутри. И так работает со множество электрических явлений, процессов и взаимодействий. В итоге и получаем всё то разнообразиевзаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, переходят в другое, а сопутствующим процессом будет перераспределение электронов внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. И эту самую силу используют в батарейке для питания различных электрических устройств.
Металлы — проводники электричества
Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.
Электромагнитные поля
Есть и другой пример, в котором проявляется суть электричества. Это взаимодействие электромагнитных полей. Вспомним, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, и оно воздействует на другие поля иных заряженных частиц. По такому принципу работает электродвигатель. Простыми словами — магнитные поля заставляют вращаться электрический мотор, а в этот момент по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.
Строение атома, положительный и отрицательный ионы
Итак, любое вещество, любого происхождения (вода, дерево, камень, стекло) состоит из более мелких элементов. Они называются молекулами. Взять хотя бы каплю воды. Она состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
В настоящее время известны всего лишь более ста различных атомов, однако это еще не предел. Атомы могут образовать миллионы разных молекул и соответственно столько же разных веществ.
Планетарная модель атома
Как всем известно еще со школьной программы, в центре атома находится наиболее тяжелый его элемент — ядро. Вокруг него на определенном расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон, как видно из самого названия, не проявляет свойств ни тех, ни других зарядов. Иначе говоря, он нейтрален.
Чтобы уяснить суть электричества, поближе познакомимся со строением атомов. Для упрощения некоторых процессов применяется планетарная модель атома. Как в нашей солнечной системе вокруг солнца (ядра) движутся планеты по своей траектории, так и в атоме вокруг ядра движутся электроны. Электрон представляет собой не плотную частичку материи.Это размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
Рассмотрим периодическую систему химических элементов, известную всем, как таблица Менделеева. В этих элементах все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны. Нейтроны также имею массу, но поскольку они не обладают выраженным электрическим зарядом, не будет заострять на них внимание.
Как работает электричество, электризация
Положительный и отрицательный ионы
Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.
Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Электризация трением
А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?
Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Действие электрического тока, некоторые факты об электричестве
Как правило, электрический переменный ток, наиболее распространенный в быту, оказывает на человеческий организм негативное влияние. Степень которого зависит от значения такой его характеристики, как сила тока:
Простые факты, как вырабатывается электричество
Чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода. И два конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того, чтобы сделать источник питания для лампы накаливания на 220 В, нужно использовать более мощные и крупные магниты, толстые медные провода большого сечения. Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.
Интересный опыт проводили при дворе короля Людовика. Для того чтобы показать, как вырабатывается и протекает электричество, сделали взаимосвязь с Лейденской банкой и строем солдат. Взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь; Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами; В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря таким станциям, в этих государствах очень низкий уровень загрязнения атмосферы.
Заключение
Мы познали суть электричества, выяснили как это работает, по крайней мере, в общих чертах. Для людей с творческим мышлением, далеким от физики, можно мысленно представить, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Основой любого вещества является ядро. Если есть разница потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Таким образом вырабатывается электрический ток.
Основы электропитания. Зачем человеку электрическая энергия
Зачем нужна энергия?
Но, поскольку бананы сами в рот не падают и их нужно где-то добывать, то человеку, для того, чтобы выжить, приходится работать. Очевидно, что это противоречит его желаниям, поэтому с момента своего появления большинство людей стремится к тому, чтобы вместо них работал кто-то другой. Вначале это были другие люди (рабы или слуги), потом животные. И лишь пару веков назад человек наконец-то разобрался в законах природы и смог заставить ее работать вместо себя. Очевидно, что природа намного надежней и покладистей людей и животных и при правильном применении ее законов может быть совершенно безобидной.
Рисунок 1. | Пример выполнения одной и той же работы за разное время. |
Но одну и ту же работу A можно выполнить за разное количество времени t (Рисунок 1). Например, человеку необходимо выкопать яму и он определил, что эта работа оценивается в 144 миллиона джоулей (A = 144 МДж). Если человек будет ее копать вручную, то на это у него уйдет около 80 часов (t = 80 ч). Однако человек не для того изучал законы природы, чтобы тратить свое драгоценное время на столь рутинное занятие. Существуют экскаваторы, способные вырыть эту яму приблизительно за час. Таким образом, в обоих случаях мы имеем одинаковое количество работы (одинаковый результат), в виде ямы одинаковых размеров, но выполненное за разное количество времени. Очевидно, что экскаватор может за единицу времени выполнить больше работы, чем человек с лопатой. Вот и появляется второй важный термин, с которым все, без исключения, люди сталкиваются в реальной жизни – количество работы, выполняемое за единицу времени, называемое «мощностью» (Power). Мощность обычно обозначается буквой P и определяется по формуле:
(1) |
Единицей измерения мощности является ватт (Вт) (watt, W). Один ватт равен работе, равной один джоуль, выполненной за одну секунду:
Самое интересное, что Джеймс Уатт (James Watt), в честь которого и названа единица измерения «ватт», в качестве единицы измерения мощности использовал «лошадиную силу» (л.с.) – среднее количество работы, которую может выполнить среднестатистическая лошадь в течение продолжительного времени. Но, поскольку все лошади разные и их работоспособность зависит от множества факторов, в том числе от погоды и настроения «водителя», то точно определить количество работы, которую может выполнить конкретная лошадь, не представляется возможным. Более того, в разных регионах связь между лошадиной силой и ваттом различна. Например, в европейских государствах 1 л.с. ≈ 736 Вт, в то время как в США и Великобритании лошадей, видимо, лучше кормили, поэтому в этих странах лошадиная сила на 10 ватт больше (1 л.с. ≈ 746 Вт). На сегодняшний день, лошадиная сила является устаревшей единицей измерения мощности, не рекомендуемой для практического использования, поэтому больше мы про нее вспоминать не будем.
Но работа сама по себе выполняться не будет. Человеку или животному для того, чтобы что-то сделать, вначале нужно покушать, а экскаватору залить топлива в бак. И здесь наблюдается прямая зависимость – чем больше нужно сделать работы, тем больше нужно еды или топлива. Получается, что еда и топливо содержат в себе некую «спрятанную» работу, которую, при необходимости, можно использовать для конкретных дел. Эту потенциальную (скрытую, непроявленную) работу человек назвал «энергией» (Energy). Таким образом, для того, чтобы выполнить любую работу, вначале нужно где-то найти энергию – работу, существующую в «спрятанном» виде.
На сегодняшний день, человек относительно неплохо изучил следующие виды энергии:
Существуют и другие виды энергии, например, энергия вакуума или гипотетическая «темная» энергия, но пока человек еще толком не разобрался, что это такое и как ее можно использовать на практике. Но зато человек уже давно понял, что общее количество энергии является постоянной величиной, независимо от того, в каком виде она хранится и назвал это «Принципом (или Законом) сохранения энергии». Согласно этому принципу, процесс выполнения работы является всего лишь переходом энергии из одного вида в другой с сохранением постоянным ее общего количества.
Таким образом, для того, чтобы выполнить какую-либо работу, например, выкопать рассмотренную выше яму, не обязательно самому хвататься за лопату. Можно, например, взять немного молекул бензина и кислорода, разобрать их на составные части, потом собрать полученные атомы другим способом – так, чтобы вместо бензина и кислорода получились углекислый газ и вода – а остаток энергии, образовавшийся после такой переделки, использовать для движения лопаты с помощью соответствующего механизма. А если механизм, способный это осуществить, еще и будет сам определять, где и как ему копать (например, смарт-экскаватор под управлением искусственного интеллекта), то можно один раз нажать на кнопку, а затем просто лежать и наслаждаться процессом.
Работа и энергия имеют одинаковые единицы измерения – «джоуль», что очень удобно – не нужно делать лишние перерасчеты. Поэтому формулу (1) можно записать в виде:
(2) |
где Е – количество энергии.
Однако единица измерения «джоуль», оказалась не очень удобной. Согласитесь, что слова «мощность», «энергия» и «киловатт» (одна тысяча ватт) вы не раз слышали, а вот «джоуль» доводилось слышать, наверное, только на уроках физики. Это связано с тем, что на практике более удобным оказалось использование другой единицы измерения количества энергии (и работы) – «киловатт-часа».
Происхождение этой единицы измерения можно проследить из формулы (2), записав ее немного в другом виде:
(3) |
Из формулы (3), следует, что количество энергии, необходимое для выполнения какой-либо работы, равно произведению мощности (скорости, с какой эта работа будет выполняться) и времени (в течение которого эта работа будет выполняться), поэтому:
Единицы измерения «джоуль» и «ватт-секунда» (Вт∙с) количественно одинаковы. Но одна «ватт-секунда», с точки зрения обычного человека, содержит настолько малое количество энергии, что в повседневной жизни ее использовать не очень удобно. Поэтому придумали более крупную единицу измерения – «киловатт-час» (кВт∙ч), равную работе, выполняемой со скоростью один киловатт (1000 ватт) в течение часа (3600 секунд):
Киловатт-час является очень удобной единицей измерения, например, если нужно выполнить работу, количество которой равно 100 кВт∙ч, то при использовании оборудования мощностью 100 кВт на ее выполнение уйдет 1 час, а вот если мощность «лопаты» всего 1 кВт, тогда придется потратить уже 100 часов. Поскольку мощность является параметром любого оборудования, то определение количества времени на выполнение работы не требует значительных умственных сил. А вот если энергию измерять в джоулях (100 кВт∙ч = 360 МДж), что полностью одинаково с точки зрения физики, то эта связь уже будет не такой очевидной.
Необходимо отметить, что многие люди, в том числе и работающие на руководящих должностях в энергетических компаниях, часто неправильно пишут и произносят эту единицу измерения. В большинстве случаев путают «киловатты» (единицы измерения мощности) и «киловатт-часы» (единицы измерения энергии) – это разные физические величины и их смешивать нельзя, хотя в рабочем общении, когда вокруг одни специалисты, точно понимающие о чем речь, это допустимо, ведь если часто повторять «киловатт-час», то можно сломать язык. Но более грубой ошибкой является использование единицы измерения «киловатт в час» или «киловатт за час» (кВт/ч). С точки зрения физики подобная единица измерения обозначает «скорость изменения скорости выполнения работы», что эквивалентно «ускорению выполнения работы». В философии, экономике или менеджменте такой параметр может когда-нибудь и найдет практическое применение, но в технике, особенно в системах электропитания, в нем пока не было необходимости.
Еще хуже обстоит дело с киловатт-часом в Украине. Корректным сокращением украинского слова «година» (час) является «год», поэтому в украинском языке киловатт-час в сокращенном виде должен писаться как «кВт∙год». Однако очень часто технически неграмотные писатели и переводчики по аналогии с другими языками, например, английским, используют «кВт∙г». Однако «г» – это сокращение единицы измерения массы «грам» (грамм). Вот и получается, что в Украине, к очень большому сожалению, некоторые люди измеряют энергию в «киловатт-граммах» (Рисунок 2).
Рисунок 2. | Табличка с уровнем энергетической эффективности стиральной машины, предназначенной для продажи в Украине, где среднее количество энергии, потребляемой за год (173 кВт∙ч), измеряется в «киловатт-граммах» (кВт∙г вместо кВт∙год) |
Человек начал исследовать энергетические процессы задолго до открытия Принципа сохранения энергии и введения единой единицы измерения «джоуль», поэтому в некоторых случаях используются иные единицы измерения энергии (Таблица 1). В их число входят «калория» (кал) – количество энергии, необходимое для подогрева одного грамма воды на один градус Цельсия (или Кельвина) и «электронвольт» (Эв) – количество энергии, необходимое для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов в один вольт. Калория до сих пор активно используется в тепловых расчетах и для измерения энергетической ценности пищевых продуктов, а электронвольт «полюбили» люди, работающие с атомами и молекулами, для которых один джоуль является просто огромным количеством энергии. В энергетике и электронике, в том числе и в системах электропитания, для измерения энергии обычно используют киловатт-часы (реже ватт-часы), а для измерения мощности – ватты и киловатты, поэтому эти единицы измерения в дальнейшем и будут для нас основными.
Таблица 1. | Основные единицы измерения энергии | |||||||||||||||||||||||||||||||||||
|
Зачем человеку электричество?
Внимательный читатель, наверное, уже обратил внимание, что в предыдущей части, когда разбирались такие понятия как «энергия» и «мощность», еще не было ни слова сказано об электричестве. Хотя у многих людей слова «киловатт» и «киловатт-час» прочно ассоциируются именно с электрическими системами. Ошибки здесь нет никакой, поскольку эти слова, действительно, имеют прямое отношение к энергетике, для которой электричество является одним из ключевых физических явлений. Однако понятия «энергия» и «мощность» относятся к любому роду деятельности человека, а не только к электричеству. Более того, они позволяют связать электрические системы с реальной жизнью, ведь само по себе электричество человеку не нужно.
Во-первых, электрический ток легко передается на большие расстояния – для этого необходимо иметь, как минимум, два электрически изолированных провода. Электрический ток распространяется самостоятельно, для его протекания не нужно строить насосы, компрессорные станции или мощные тягачи, как, например, для передачи нефти, газа или угля, а также не нужно тратить дополнительную энергию. Конечно, при протекании электрического тока возникают неизбежные потери, однако они являются управляемыми и, теоретически, могут быть уменьшены до нуля. Линии электропередач намного проще и дешевле в строительстве и обслуживании, чем линии для перевозки всех остальных видов энергоресурсов. Более того, электрическая энергия распространяется с очень большой скоростью – практически со скоростью света (≈300,000 км/с). Например, передать ее вокруг Земли, длина экватора которой равна приблизительно 40,000 км, можно всего за 0.13 секунды. Таким образом, электрическая энергия является наиболее удобным видом энергии с точки зрения транспортировки.
Во-вторых, электрическую энергию можно эффективно преобразовать в другой вид энергии – тот, который действительно необходим человеку. Например:
Кроме того, существуют и другие вещи и явления, связанные уже непосредственно со спецификой электричества. Например, с его помощью можно высушить стены здания (используется явление электроосмоса), а железную ручку чайника для предотвращения коррозии покрыть тончайшим слоем никеля или золота (используется технология гальванического осаждения металлов). Однако основное практическое использование электричества заключается в доставке энергии в нужное место с последующим преобразованием ее в тот вид, который непосредственно необходим человеку.
Рассмотрим это на примере (Рисунок 3). Пусть вам необходимо просверлить отверстие. Для этого необходимо несколько раз провернуть сверло, то есть, нужна механическая энергия. Источником механической энергии может служить, например, ветер. Значит, можно поставить на крыше большой пропеллер, который будет вращаться, отбирая механическую энергию у движущегося воздуха. Но ветряная турбина должна располагаться, в лучшем случае, на крыше здания, а отверстие нужно просверлить внутри, и как тогда передать механическую энергию в нужное место? Представьте себе эту систему ремней, цепей, редукторов и шестеренок – это будет очень сложное, громоздкое и дорогое сооружение, а самое главное – одноразовое, поскольку вам нужно просверлить всего одно отверстие.
Рисунок 3. | Пример использования электричества в качестве промежуточного звена для передачи энергии. |
Таким образом, человек использует электричество в качестве промежуточного звена, позволяющего передавать энергию (способность выполнять работу) в места, где не дует ветер, не светит солнце, не текут реки и не могут находиться люди или животные. Удобство передачи и преобразования электричества позволяет создавать специальные объекты – энергетические станции, генерирующие мощные (вы уже знаете что «мощный» – способный создавать много энергии в единицу времени) потоки энергии. И такие станции могут располагаться где угодно, например, на реках (гидроэлектростанции, ГЭС), в местах, где дуют сильные ветры (ветряные электростанции, ВЭС) или ярко светит солнце (солнечные электростанции, СЭС). А если удобных природных источников поблизости нет, тогда энергию можно брать, сжигая органическое топливо (тепловые электростанции, ТЭС) или разрушая атомы радиоактивных элементов (атомные электростанции, АЭС).
Но обратите внимание, все объекты, генерирующие энергию, имеют в названии слово «электро». Вряд ли вы слышали об «механостанциях» (источниках механической энергии) или «светостанциях» (источниках световой энергии). Существуют, правда, тепловые станции (котельные, ТЭЦ), но энергия, создаваемая этими объектами, используется только для обогрева помещений, передается на относительно небольшие расстояния и с относительно большими потерями, а преобразовать ее в другие виды, например свет, весьма затруднительно.
Заключение
Вот и получается, что, несмотря на то, что человек не требует для своего физического существования электричества, без него он прожить уже фактически не может. Точнее, может, но тогда ему снова придется ужинать при свечах, много физически работать, кататься на лошадях, забыть за Интернет, телевизор и радио, а информацию передавать по старинке – с помощью бумаги и быстрых гонцов.
В этом месте можно много рассуждать, хорошо это или плохо, однако ясно одно – на сегодняшний день системы электропитания существуют в каждом доме, а источники электрической энергии, например, батарейки, можно купить во многих магазинах. И можно на этот факт упрямо не обращать внимания, надеясь, что все обойдется и использование электричества будет только приятным и безопасным, однако, как показывает практика, так бывает далеко не всегда.
Сноски
1) На самом деле разница есть, например, из-за того, что на экваторе сила, с которой Земля притягивает предметы, меньше, чем на полюсе, а один и тот же объем воды при разной температуре имеет разную массу. Однако, в нашем случае, на эти подробности можно не обращать внимания.
2) Центральная нервная система человека управляет всеми внутренними органами с помощью электрических сигналов, при этом нервы, фактически, выполняют функцию электрических проводов. Анализ и синтез подобных сигналов дает возможность создавать бионические протезы, например, рук, провода которых электрически соединяются с нервами, что позволяет мозгу управлять протезом как «родным» органом. Точно так же как видеокамера или микрофон могут передавать сигналы, непосредственно в зрительный или слуховой нерв, что позволяет восстанавливать зрение или слух.
3) Точно по такому принципу работают транспортные средства с электрической трансмиссией, например, некоторые типы гибридных электромобилей, карьерные самосвалы и даже тепловозы.
4) Известны шуточные эксперименты, в которых почтовые голуби переносили информацию, записанную на небольших твердотельных носителях, быстрее, чем она передавалась через сеть Интернет.