Для чего нужна препаровальная игла
Для чего нужна препаровальная игла
Устройство хирургических игл: прямые и изогнутые стальные стержни, заостренные с одного конца, имеющие на другом ушко особой конструкции для быстрого введения нити. В настоящее время широко используются и так называемые атравматические одноразовые иглы без ушка с впаянной в торец иглы нитью.
По форме сечения различаются иглы круглые — колющие, и трехгранные — режущие. Иглы различают также по длине и степени изгиба (рис. 2.13).
Рис. 2.13. Иглы хирургические. 1 — режущие; 2, 3 — колющие изогнутые и прямые; 4 — атрав-матические.
Минимальные размеры изогнутой хирургической иглы — 0,25 мм в диаметре и 8 мм в длину, максимальные — 2 мм в диаметре и 90 мм в длину.
Иглы классифицируются по номерам и типам, соответственно им подбирают шовный материал.
Режущие трехгранные хирургические иглы с кривизной различного радиуса кривизны применяются для прошивания относительно плотных тканей (кожа, фасция, мышца, апоневроз); колющие иглы, с круглым сечением, — для соединения стенок полых органов и паренхиматозных органов. В последнем случае использовать трехгранные иглы нельзя, так как острые боковые края такой иглы могут привести к дополнительному повреждению ткани.
Атравматические иглы используют, как правило, для наложения сосудистого или кишечного шва.
При работе без иглодержателя используют длинные прямые иглы.
Медсестра реанимации: катетеризация вен
Поделиться:
Одна из основных обязанностей медсестры реанимации — это организация венозного доступа у пациента или, проще говоря, катетеризация вены. Катетер ставят в разных случаях: чтобы брать кровь на анализ (иногда анализы берут несколько раз в сутки, и колоть каждый раз заново — болезненно и травматично для пациента) или чтобы вводить больному препараты и питательные растворы. От обычного укола постановка катетера почти не отличается — нужно только, чтобы вена была прямая на определенном участке.
Куда можно колоть, а куда нельзя
Для выбора вены нужно примерно оценить, для чего вообще ставится катетер. Экстренным пациентам с тяжелыми травмами, кровотечениями или тем, кого готовят к полостной операции, ставят катетер большого диаметра, соответственно выбирают крупную вену. Бабушке сильно элегантного возраста, диагноз которой не так уж и серьезен, подбирают катетер поменьше — вены в этом возрасте чаще всего уже не те.
Как выбирают место для укола? Медсестры начинают с дистальных вен, т. е. тех, что находятся «на периферии»: вены кисти, предплечья. Также работает принцип восхождения от кисти выше (плохие вены на кисти — переходим на предплечье).
Хорошо видны вены на локтевом сгибе, но это место для катетеризации не очень подходит. Человек сгибает и разгибает руку, иногда ненамеренно, и катетер может перегнуться или надломиться. Хотя если катетер ставить не надо, а ожидается всего один-два укола — локтевой сгиб это то, что нужно. Вена на нем достаточно толстая и всё это выдержит.
В другом месте вена может быть и не видна, но при наложенном жгуте хорошо ощущаться пальцами (пальпироваться). В этом случае опытная медсестра сможет сделать укол, даже не видя вены. У некоторых больных не видно срединной локтевой вены, но можно нащупать другую, которая чуть ближе к наружной стороне руки, — подкожную латеральную (глазами ее тоже не видно). У меня были случаи, когда я попадала в такие вены практически вслепую — такая особенность есть и у моих вен, поэтому я о ней хорошо знаю.
Читайте также:
Профессия: врач-лаборант
Не стоит использовать для катетеризации мелкие вены — в них сложнее попасть и проблем с ними потом может быть больше (например, может начаться воспаление). Также не колют в вены ног (за исключением центральных бедренных) из-за высокого риска осложнений в виде флебитов (воспаления стенок сосудов). Подколенная вена неудобна из-за ее расположения, а остальные вены ног слишком тонкие.
Как понять, все ли правильно идет
Если что-то идет не так — обычно это видно сразу. Если под кожей вырастает припухлость или наливается синяк — иглу убираем, заменяем ее сухой стерильной повязкой (тугой), переходим к другой вене. Жечь и щипать в месте укола не должно, если вы чувствуете жжение и, опять же, видите припухлость, значит, игла все-таки прошла мимо. Снова повязка, можно еще наложить компресс из водки или разбавленного водой спирта.
Перед тем как вводить вам какие-либо препараты, врач должен расспросить вас об аллергии и медикаментах, которые вы принимаете. Позже медсестра может задать такие же вопросы — не потому, что ей нечего делать, это подстраховка ради вашего же здоровья. Например, если вы принимаете антикоагулянты — вещества, разжижающие кровь, — простой ваткой на место укола дело не обойдется, нужна будет повязка, холод на место укола, а руку (если кололи в руку) нужно будет подержать повыше.
Что такое «вен нет»
Иногда с уколом могут возникать проблемы из-за состояния вен пациента. Вена может лопнуть — это чаще происходит у пожилых людей с нарушениями обмена веществ. Колоть в такую вену уже нельзя — нужно наложить сухую стерильную повязку, а при гематоме — сделать компресс. После этого можно перейти к катетеризации вен на другой руке.
У онкологических пациентов, у тех, кто проходил длительные курсы лечения с внутривенными вливаниями, или у внутривенных наркоманов бывает так, что «вен нет». Руки покрыты так называемыми «дорожками», похожими на ожоги, и катетеризировать «сожженную» вену очень тяжело. Часто такие пациенты предлагают поставить катетер самостоятельно в подколенную вену, например, но это не вариант. Врач ставит им катетер в одну из центральных вен.
Как ставят катетер в центральную вену
Центральные вены — это «вены последней надежды». Постановка такого катетера — практически малая операция. Риск осложнений при катетеризации центральных вен довольно высок (сепсис, флебиты, кровь или воздух там, где их быть не должно), но сейчас катетер ставят в яремную вену под УЗИ-контролем — это безопаснее. Все это, конечно, делает только и исключительно врач, самим колоть в центральные вены категорически нельзя — это опасно для жизни.
Bio-Lessons
Образовательный сайт по биологии
Увеличительные приборы
Общий признак всех живых организмов
Клеточное строение, т. е. тела всех организмов состоят из клеток. Клетки достаточно микроскопичны. Для того чтобы рассмотреть мелкие предметы, невидимые невооруженным глазом, необходимы увеличительные приборы.
Самый распространенный увеличительный прибор — лупа — дает увеличение в 3-5 раз. С ее помощью рассматривают мелкие предметы, плохо различимые глазом. Ее основа — обычное увеличительное стекло. Для удобства в использовании оно вставляется в оправу с ручкой. Более сложные лупы снабжены штативом и предметным столиком из прозрачного стекла. Штативные лупы дают увеличение в 10-25 раз (рис. 1).
Рис.1 Ручная и штативная лупы
Устройство микроскопа
Микроскоп (от греч. микрос — малый, скопэ — смотрю) — сложный прибор, позволяющий получать увеличенное изображение очень мелких предметов (рис. 2). Обычный световой микроскоп дает увеличение до 1500 раз. Значительно большее увеличение дают электронные микроскопы.
Рис.2 Световой микроскоп
Основная часть микроскопа — тубус (от лат. тубус — труба) с увеличительными стеклами. В верхней части тубуса установлен окуляр (от лат. окулярис — глазной), в нижней части — объектив (от лат. объективус — предметный). С обеих сторон тубуса имеются винты настройки.
Тубус крепится к штативу. С помощью винта можно опускать и поднимать тубус. В центре предметного столика имеется маленькое отверстие, под которым установлено вращающееся зеркало для улавливания света. Мощный пучок света просвечивает исследуемые объекты насквозь, поэтому такие микроскопы называются световыми.
Чтобы узнать, во сколько раз увеличивается рассматриваемое изображение, необходимо умножить числа, указанные на объективе и окуляре. Например, если на окуляре число 15, на объективе — 40, то 15 х 40 = 600. Значит, предмет увеличивается в 600 раз.
Приготовление микропрепарата
Оборудование, необходимое для работы с микроскопом:
Прежде чем рассматривать микропрепарат под микроскопом, нужно его приготовить (рис. 3). Для этого берем предметное стекло, наносим на него пипеткой 1-2 капли воды и размещаем на нем снятую кожицу лука, расправляя ее в капле воды. Накрываем покровным стеклом, устанавливаем на предметный столик и рассматриваем.
Рис.3 Приготовление микропрепарата кожицы лука
При увеличении под микроскопом видны продолговатые клетки, плотно прилегающие друг к другу. Особенно хорошо видны оболочка, цитоплазма и ядро клетки. Если вместо воды капнуть слабый водный раствор йода, ядро приобретет темно-коричневый оттенок и будет более четко видно под микроскопом.
Правила работы с микроскопом:
1. С микроскопом работают только сидя на стуле. Микроскоп устанавливают на расстоянии 5-8 см от края стола. Перед работой его необходимо протереть сухой салфеткой и не передвигать до конца работы.
2. Препарат помещают на предметный столик.
3. На препарат направляют зеркалом свет (попадание света наблюдается через окуляр).
4. Пользуясь винтом настройки, плавно опускают и поднимают тубус, пока не появится четкое изображение предмета.
5. После работы микроскоп тщательно протирают и убирают в футляр.
6. Нельзя ставить микроскоп рядом с химическими реактивами. Он должен храниться в чистом шкафу отдельно.
Строение растительной клетки
Шовный материал в хирургии: классификация, свойства и современные требования
История
Еще за 2000 лет до нашей эры в китайском трактате о медицине был описан кишечный шов с использованием нитей растительного происхождения. В папирусе Эдвина Смита, возраст которого оценивается в 4000 лет, описано применение древними египтянами льняных хирургических швов. Они уже давно, как правило, не применяются в современной медицине.
С древних времен и по сей день используются только 2 вида натуральных хирургических нитей: кетгут и шелк. Кетгут в качестве шовного материала впервые использовал Гален в 175 году до н. э., получив его из подслизистого слоя коровьего кишечника. Использование шелка в хирургии зафиксировано в 1050 году до н. э.
Использование синтетических нерассасывающихся хирургических нитей началось с 1927 года, после того как американский химик Уоллес Хьюм Каротерс создал волокно нейлона. В 1930-ых годах на западе создали капрон на основе полиамидов и лавсан на основе полиэфиров. А в 1956 году получили полипропилен и начали использовать его в медицине.
Первые саморассасывающиеся нити создали в 1971 году. Сейчас это нити кетгут, капроаг и ПДА и прочие.
Наука не стоит на месте, время от времени ученым удается получать новые синтетические материалы, с лучшими свойствами. Со временем их начинают использовать и в медицине, в виде шовных материалов.
Классификация шовных материалов
Хирургические нити можно классифицировать по следующим свойствам:
По материалу
1. Натуральные. Это нити из натуральных природных материалов.
1.1. Органические. Созданы из тканей животного происхождения. К органическим шовным материалам относятся:
1.2. Неорганические. Созданы из неорганических природных материалов. К неорганическим шовным материалам относится проволока:
2. Синтетические. Это нити из искусственных материалов, полученных на производстве.
2.1. Производные полидиоксанона. Полидиоксанон лишен антигенных или пирогенных свойств и в процессе рассасывания вызывает лишь легкую тканевую реакцию. Это нити ПДО. Полидиоксаноновая нить длительно сохраняет прочность. К 6 неделям ПДО сохраняет до 40-60 % исходной прочности. Полная потеря прочности происходит на 180-210 день.
2.2. Производные полигликолевой кислоты. Рассасывающиеся прочные нити для среднесрочной поддержки раны, хорошо держащие узел. Не являются коллагенами, не антигенны, не аллергичны, и не токсичны.
2.3. Полиолефины: полипропилен, пролен (prolene), полиэтилен, суржипро (sirgipro) и суржилен (surgilene). Нерассасывающийся материал, не теряющих своих свойств даже после долгих лет нахождения в организме. Надежный, прочный на разрыв и эластичный.
2.4. Полиэфиры: лавсан (lavsan), мерсилен (mersilene), этифлекс, полиэстер, суржидак (surgidac), дагрофил (dagrofil), этибонд (ethibond), астрален (astralene), тикрон(ti-cron), дакрон (dacron) и терилен (terylene). Нерассасывающийся шовный материал. Гибкий и прочный, хорошо держит узел. Обладает высокими манипуляционными свойствами.
2.5. Полибутестеры. Нерассасывающийся материал, обладающий превосходной прочностью узла, минимальной травматичностью, устойчив к разволокнению, не вызывающий воспалительную реакцию. Из него сделаны нити новафил (novafil).
2.6. Фторполимерные материалы: фторэст (ftorest), фторлин, фторэкс, фторлон и гортекс (gore-tex). Нерассасывающийся шовный материал, обладающий высокой прочностью, биологической инертностью и хорошими манипуляционными свойствами.
По структуре
2.1. Крученая. Волокна таких нитей скручены по оси. Капрон, лен и крученый шелк относятся к этому виду шовных материалов.
2.2. Плетеная. Волокна таких нитей сплетены. У ним относятся мерсилен, лавсан, нуролон, мерсилк и прочие.
Многоволоконные нити прочнее одноволоконных, а значит их манипуляционные свойства выше, используя многоволоконные нити требуется делать меньше услов, а значит меньше травмировать ткани. Полинити лучше держат узел, но у них есть один недостаток, который заключается в том, что их поверхность неоднородна и шероховата. Из-за этого они могут травмировать и резать ткани подобно пиле. Помимо этого, между волокнами полинитей могут скапливаться инфекция, когда нить проходить в инфицированных тканях и передаваться на здоровую ткань. Это называется фитильный эффект. Для того чтобы исключить “эффект пилы” и “фитильный эффект” многоволоконные хирургические нити покрывают специальным покрытием, которое делает их поверхность гладкой и добавляет антимикробный эффект. Такие многоволоконные нити называют комбинированными.
По способности к биодеструкции
1. Рассасывающиеся. Нити, способные в течение определенного времени полностью рассасываться в тканях человека.
1.2. Синтетические. Нить искуственного происхождения из полиглекапрона, полигликоливой кислоты и полидиаксонона.
1.2.1. Короткого срока рассасывания. Нити из производных полигликолевой кислоты. Биологическая прочность составляет 7-10 дней, а срок полного рассасывания 40-45 дней. Хорошо подходят для всех операций, при которых для формирования рубца достаточно 7 дней, хороший вариант, например, для внутрикожных косметических швов.
1.2.2. Среднего срока рассасывания. Биологическая прочность плетеных нитей составляет 21-28 дней, а срок полного рассасывания 60-90 дней. У мононитей биологическая прочность составляет 18-21 день, а срок полного рассасывания 90-120 дней. Хирургические нити среднего срока рассасывания чаще всего используются в хирургии.
1.2.3. Длительного срока рассасывания. Изготавливаются из полигликоната или полидиоксанона. Это монофиламентные нити из 1-ого волокна. Биологическая прочность плетеных нитей составляет 40-50 дней, а срок полного рассасывания 180-210 дней. Применяются для сшивания сухожилий, хрящевой ткани и фасций. Чаще используются в травматологии, челюстно-лицевой хирургии и торакальной хирургии.
2. Условно рассасывающиеся. К таким нитям относятся капрон, шелк и полиуретаны.
3. Нерассасывающиеся. Нити, которые вообще не рассасываются в тканях организма.
По толщине
Диаметр большинства нитей для хирургии находится в пределах от 0,1 до 0,9 миллиметров. Для обозначения толщины шовного материала используется показатель метрический размер (EP), который определяется как умножение реального диаметра нити в миллиметрах на 10. Например, для нити диаметром 0,1 метрический размер будет равен 1.
По способу соединения с иглой
Свойства шовного материала
Современные требования к хирургическому шовному материалу
В России действует ГОСТ 31620-2012 Материалы хирургические шовные, описывающий требования к современному хирургическому шовному материалу.
Применение хирургических нитей
Наиболее распространенное применение шовного материала по областям медицины:
Возможные осложнения при использовании шовного материала
Осложнения при использовании шовного материала могут возникнуть при:
Возможные осложнения:
Для того чтобы исключить возможные осложнения хирург должен использовать только качественный шовный материал и только того типа, который подходит для для конкретного хирургического случая.
Классификация игл
Хирургические иглы по прокалывающим способностям разделяют на:
Хирургические иглы по степени изогнутости бывают:
Изогнутые иглы можно разделить на:
Чаще всего используются иглы 1/2 и 3/8 окружности.
По способу крепления нити:
Для чего нужна препаровальная игла
Флегонтова Елена Александровна
Кандидат медицинских наук, дерматокосметолог, физиотерапевт, генетический консультант, руководитель обучающих программ в ООО «КИТ Мед», преподаватель и куратор программ в Global Academy
Одним из наиболее перспективных трендов малоинвазивной эстетической медицины является радиочастотная технология. Радиочастотный (radiofrequency, RF) ток стал незаменимым инструментом почти во всех областях медицины, включая дерматологию, пластическую хирургию и косметологию. Тканевые эффекты, достигаемые с помощью радиочастотной энергии, зависят от приложенной плотности энергии (табл. 1) [1].
Таблица 1. Термические эффекты радиочастотного тока на тканевом уровне [1]
Эффект
Характеристика изменений в тканях и область применения
Этот эффект основан на термическом испарении ткани и обычно используется для ее разрезания или удаления. Абляция требует очень высокой плотности энергии, позволяющей преобразовать ткань из твердого состояния в пар с минимальным термическим повреждением окружающей ткани. Новое применение RF-абляции — прижигание опухолей
Коагуляция кровеносных сосудов обеспечивает гемостаз для остановки кровотечения во время операции. Тот же механизм эффективен при лечении сосудистых поражений. Коагуляция также может применяться к мягким тканям, чтобы вызвать некроз, когда немедленное удаление ткани не требуется или нецелесообразно
Нагрев коллагеновых волокон приводит к преобразованию их третичной структуры, что позволяет изменять форму ткани в медицинских и косметических целях. Немедленное сокращение коллагена происходит при температуре 60–80 °C однако для неинвазивных косметологических процедур этот эффект достигается при более низких температурах во избежание некроза кожи. Из-за более низких температур результат часто менее длительный, по этой причине требуется несколько процедур и больше времени на одну процедуру для получения результатов
Нагрев тканей до сверхфизиологических температур широко применяется для стимуляции естественных процессов и, как следствие, — коррекции эстетических дефектов кожи и уменьшения толщины подкожно-жирового слоя. Подобный нагрев не сопровождается коагуляцией и способен стимулировать синтез коллагена фибробластами и изменение метаболизм адипоцитов в сторону липолиза
Одна из модификаций радиочастотной технологии — радиочастотный микронидлинг (radiofrequency microneedling, RFMN). Игольчатые электроды вводятся непосредственно в кожу, таким образом удается снять «ограничение», связанное с роговым слоем, и более интенсивно прогревать глубокие ткани, не опасаясь возникновения ожогов.
RF-ток течет от кончиков положительно заряженных игольчатых электродов к поверхностным отрицательно заряженным электродам, что позволяет оказывать термическое воздействие на целевые слои кожи посредством трех путей теплопередачи:
Вокруг игольчатых электродов происходит абляция — локальное удаление ткани с формированием кратера, вокруг кратера располагается зона коагуляции, а далее — зона гипертермии, в которой происходит термическая стимуляция фибробластов (рис. 1). После формирования локальных зон повреждения в коже запускается процесс регенерации и ремоделирования [3].
Существует последовательность реакции ткани на повышение температуры. 37–44 °C — ускорение обмена веществ и других естественных процессов. 44–45 °C — конформационные изменения белков, включая коллаген, гипертермическая гибель клеток. 60–70 °C — денатурация белков, коагуляция коллагена, мембран клеток, гемоглобина, сокращение коллагеновых волокон. 90–100 °C — образование внеклеточных вакуолей, испарение жидкостей. Свыше 100 °C — термическая абляция, карбонизация [1].
Поскольку различные анатомические зоны имеют характерные структурные и функциональные особенности, при использовании такого мощного метода коррекции, как радиочастотный микронидлинг залогом эффективности и безопасности может служить индивидуальный выбор параметров воздействия.
Аппараты для RF-микронидлинга по своему устройству различаются типом, количеством и длиной игольчатых электродов, а также плотностью их расположения. Выбор конкретного типа игольчатых электродов и плотности их расположения зависит от степени солнечного эластоза, профиля морщин и намеченного эффекта лифтинга и уплотнения.
Изолированные и неизолированные микроиглы — конкуренты или коллеги?
Существуют 2 типа игольчатых электродов для RF-приборов:
Таблица 2. Характеристика изолированных и неизолированных игольчатых электродов [4]
Неизолированные микроиглы
Изолированные микроиглы
Игольчатые электроды без покрытия приводят к выраженной эпидермальной термической абляции с формированием кратера.
Ремоделирование повреждения по продолжительности и исходу аналогично таковому после воздействия СО2-лазера
Микроиглы, проксимальная часть которых имеет силиконовое покрытие, позволяют создать входной канал через эпидермис без термического повреждения и уже непосредственно воздействовать на сосочковый и ретикулярный слои дермы аблятивной фракционной энергией, вызывая сокращение дермы.
Покрытие проксимальной части электрода защищает эпидермально-дермальное соединение от термического повреждения и обеспечивает агрессивное повреждение и ремоделирование глубоких слоев дермы без риска поверхностных ожогов, гипопигментации и рубцевания.
Таким образом, изолированные микроиглы характеризуются «слабовыраженным эпидермальным воздействием», благодаря чему они служат инструментом для глубокого уплотнения тканей и коррекции глубоких морщин и рубцов
Wootten S. и соавт. исследовали термические эффекты RF-тока на гистологическом уровне при частотах 1 и 2 МГц и использовании изолированных и неизолированных игольчатых электродов [2]. Оценка электрокоагуляционного эффекта проводилась на свиньях на коже в области спины, которая была разделена на отдельные зоны и обработана при помощи RF-аппарата с разными параметрами воздействия: изолированные или неизолированные микроиглы, уровни мощности, глубина проникновения (длина игл), частота 1 или 2 МГц. Через час после обработки осуществлялась пункционная биопсия 3–5 мм ткани из каждой зоны. Также были взяты контрольные образцы интактной ткани.
Гистологическая картина свидетельствовала о термическом повреждении ткани в месте введения иглы во всех случаях, вместе с тем сам характер повреждения отличался у изолированных и неизолированных игл. При использовании неизолированных игольчатых электродов область электрокоагуляции в целом была больше, чем у изолированных, в том числе было более заметным поверхностное термическое повреждение на уровне эпидермиса. Данный эффект можно объяснить рассеиванием энергии по всей длине неизолированной иглы, в то время как у изолированной зона термического повреждения локализовалась вблизи «открытого» конца. При этом форма области электрокоагуляции возле конца изолированной иглы варьировала при разных частотах: при частоте 2 МГц зона коагуляции была более узкой и имела столбчатую форму, а при 1 мГц — более широкой и шарообразной.
Авторы исследования выявили еще несколько практически ценных закономерностей, которые свидетельствуют о необходимости оптимизации параметров (частота, мощность) для каждого типа игольчатых электродов, в частности:
· область термического повреждения, формирующаяся у конца неизолированной иглы, зависит от мощности, при этом на частоте 1 МГц данная область будет больше, чем при частоте 2 МГц;
· изолированная игла при частоте 2 МГц вызывает гистологические изменения, сопоставимые с теми, что вызывает неизолированная игла при частоте 1 МГц.Данное исследование также продемонстрировало, что радиочастотное тепло рассеивается не сразу, а через несколько секунд после воздействия. Это говорит о необходимости делать достаточные временные перерывы между подачей на аппликатор энергии и об осторожности в случае перекрывания полей обработки, чтобы предотвратить объемный нагрев.
Таким образом, в зависимости от поставленной терапевтической цели выбор параметров воздействия позволяет использовать изолированные и неизолированные игольчатые электроды как эффективные и взаимодополняющие инструменты коррекции.
Длина и плотность расположения игольчатых электродов как детерминанты клинических эффектов RF-микронидлинга
Наибольшая толщина эпидермиса, дермы и кожи в целом характерна для верхней губы, а также нижней боковой поверхности носа, наименьшая толщина эпидермиса — для кожи задней поверхности ушной раковины, наименьшая толщина дермы и наименьшая общая толщина кожи — для медиальной области верхнего века (рис. 2) [8].
Zheng Z. и соавт. продемонстрировали зависимость термических эффектов радиочастотного тока на тканевом уровне от длины игольчатых электродов. Авторы осуществили процедуру RF-микронидлинга на коже свиньи in vivo с глубиной проникновения 0,5, 1,0, 1,5, 2,0, 2,5 и 3,5 мм, продолжительностью RF-воздействия 20, 50, 100 и 1000 мс и уровнем энергии 5,0, 10,0, 20,0, 25,0, 37,5 и 50,0 В [5]. Согласно полученным результатам, длина игольчатых электродов оказала значимое влияние на высоту столбиков коагуляции и объем коагулированной ткани (рис. 3). Важным параметром, определявшим объем коагулированной ткани и степень деструкции, являлось время проведения RF-тока. На рис. 4 представлен гистологический образец, полученный после осуществления RF-микронидлинга при использовании микроигл с разной длиной: для зоны введения игольчатого электрода с большей длиной характерна бо́льшая площадь коагуляции ткани на уровне дермы.
Согласно выводам авторов, зависимость объема термического повреждения от длины игольчатых электродов является результатом различных значений импеданса дермальных структур. В предшествовавших исследованиях были продемонстрированы значительные различия в импедансе и диэлектрической проводимости между сосочковым и ретикулярным слоем дермы, а также подкожно-жировой клетчаткой [6]. Как правило, более низкий импеданс и более высокая диэлектрическая проницаемость поверхностного сосочкового слоя дермы обусловливают меньшую по размеру, но более концентрированную зону термического повреждения, вызванного радиочастотным током, по сравнению с ретикулярной дермой и подкожно-жировым слоем [6, 7].
Термические эффекты также зависят от плотности ткани. Более плотная ткань у молодых людей лучше прогревается, чем более рыхлая ткань у пожилых. Поэтому при выборе оптимальной длины игл и мощности надо ориентироваться не только на толщину кожи в данной зоне, но и на ее плотность.
Устройства, которые допускают изменение длины иглы, имеют преимущество, поскольку для работы с различными областями лица и тела может потребоваться различная глубина проникновения игл: в себорейных зонах с выраженной жировой тканью необходимо обеспечить воздействие на более глубоком уровне по сравнению с областью лба или периокулярной областью.
Важным фактором, определяющим термические изменения тканей, является также плотность расположения микроигл аппликатора. Меньшая плотность игл используется для ремоделирования и омоложения кожи при начальных и умеренных возрастных изменениях. Бо́льшая плотность игл обеспечивает высокую плотность потока энергии и предназначена для работы с пациентами, имеющими выраженный поверхностный солнечный эластоз и мимические морщины [4].
Радиочастотный дизайн мягких тканей от Fractora и Morpheus 8
Для эффективной и безопасной коррекции эстетических дефектов и омоложения кожи необходимо учесть индивидуальные особенности пациента, морфофункциональные характеристики области предстоящей коррекции, а также выраженность и глубину расположения патологических изменений.
Радиочастотная технология легла в основу создания аппаратов, конструктивные особенности которых позволяют охватить широкий спектр показаний благодаря возможности выбора параметров воздействия в соответствии с клинической картиной.
Компания InMode Aesthetic Solution (Израиль) продолжает быть инноватором в направлении RF и выпустила игольчатые насадки последнего поколения для фракционного RF-воздействия — Fractora и Morpheus 8.
Система ремоделирования дермы Fractora
Fractora представляет собой фракционную RF-систему дермального ремоделирования. Аппликатор оснащен насадками с различной плотностью расположения, длиной и различным типом игольчатых электродов — позолоченных игл из нержавеющей стали.
Выбор конкретного наконечника для процедуры зависит от степени эластоза, выраженности морщин и намеченного эффекта лифтинга и уплотнения. Можно классифицировать наконечники семейства Fractora в зависимости от наличия покрытия у игл (с покрытием и без покрытия), а также по длине игл (средние дермальные и трансдермальные иглы) (табл. 5; рис. 5, 6) [4]. Наконечники Fractora можно менять в ходе процедуры с учетом конкретных дефектов кожи пациента.
Таблица 5. Характеристика насадок Fractora [4]
Количество микроигл
Длина микроигл, мкм
Наличие покрытия
Механизм и назначение
Универсальное устройство для ремоделирования и омоложения при начальных и умеренных возрастных изменениях кожи. Насадка предназначена для обработки больших участков и обеспечивает бóльшую площадь повреждения поверхности с минимальной глубиной абляции
Радиочастотная энергия подается по всей длине электродов и распределяется по эпидермису и дермальному слою. Трансдермальная абляция обеспечивает выраженное уплотнение кожи и устранение морщин
С силиконовым покрытием
Ремоделирование глубоких слоев дермы без риска чрезмерных поверхностных аблятивных повреждений, нарушений пигментации и рубцевания. Предназначена для коррекции глубоких рубцов от угревой сыпи, глубоких мимических морщин, таких как периоральные линии курильщиков («штрих-коды»), морщин и дряблости нижнего века, а также малярных мешков
Все вышеупомянутые наконечники с 24 и 60 иглами без покрытия оказывают тепловое воздействие на эпидермис. При правильном выборе настроек эпидермально-дермальная абляция может привести к выраженному улучшению текстуры, уменьшению морщин и уплотнению кожи [4].
Morpheus 8 — инструмент ремоделирования дермы и подкожно-жирового слоя
Инновационная технология Morpheus предоставляет широкие возможности для лифтинга, уплотнения, формирования контуров мягких тканей лица и тела.
В отличие от Fractora аппликатор Morpheus действует на более глубоком уровне и обеспечивает лифтинг кожи, в том числе за счет сокращения и уплотнения подкожно-жирового слоя.
Morpheus представляет собой комплекс из 24 игольчатых электродов на одноразовом наконечнике. Каждая микроигла окружена возвратным электродом, что обеспечивает равномерное прогревание в зоне обработки.
Игольчатые электроды на 80% проксимально покрыты силиконом, а дистальный испускающий RF-ток кончик не имеет покрытия. Одна и та же насадка обладает разной глубиной проникновения игольчатых электродов в кожу. Глубина пенетрации может быть установлена на 2 мм (периокулярная область), 3 мм (лицо) и 4 мм (тело), количество испускаемой с кончика микроигольчатого электрода RF-энергии лежит в пределах 10–62 мДж на микроиглу.
Для индукции субдермального и дермального ремоделирования больших зон тела, таких как живот, ягодицы и бедра, была специально разработана новая насадка Morpheus 8 Body. Это первая интеллектуальная программируемая фракционная технология коррекции любой области тела, обеспечивающая клинически подтвержденную передачу радиочастотной энергии на глубину до 8 мм (глубина проникновения игольчатого электрода 7 мм + дополнительная зона термического воздействия 1 мм) при помощи матрицы из 40 игольчатых электродов с золотым покрытием, что предотвращает окисление металлического проводника, а также уменьшает налипание на него органических веществ — продуктов коагуляции.
Morpheus 8 Body является первой и единственной одобренной FDA технологией, позволяющей проникать на субдермальный уровень с глубиной термического воздействия до 8 мм. Меньшая плотность расположения микроигл снижает механическое повреждение и усиливает термический эффект: на один игольчатый электрод приходится в 5 раз больше энергии.
Во время процедуры микроиглы вводятся на заданную глубину и достигают уровня гиподермы. Затем к жировой ткани подается RF-ток, который нагревает жировую ткань до 70 °С (рис. 7). Под воздействием RF-энергии между молекулами коллагеновых волокон соединительнотканных перегородок (септ) жировой ткани образуются поперечные связи. В результате происходит укорочение горизонтальных, косых, вертикальных соединительнотканных волокон фибросептальной сети (ФСС), которые определяют степень натяжения кожи (рис. 8). Это приводит к уплотнению и сокращению ФСС и всего комплекса кожи с подкожно-жировым слоем. Воздействие радиочастотного тока на ФСС напоминает процесс вулканизации — нагрева и обработки натурального каучука, в ходе которого происходит сшивание длинноцепочечных молекул и улучшение подобным образом его физических свойств, таких как эластичность, твердость и прочность. За это сходство воздействие радиочастотной энергии на ФСС также стало обозначаться термином «вулканизация», а технология была запатентована компанией InMode как технология радиочастотной вулканизации Burst. Сокращение ФСС обеспечивает значительное уплотнение мягких тканей и устранение вышележащих морщин, неровного рельефа кожи, пор, даже растяжек и рубцов постакне.
RF-поток далее идет обратно — вверх по игольчатому электроду к отрицательно заряженному внешнему ромбовидному электроду, нагревая дерму и кожу, что является сигналом для запуска процессов неоколлагеногенеза и неоэластогенеза.
Оптимального укорочения ФСС и объемной коагуляции жировой ткани можно достичь благодаря введению игольчатых электродов на разные уровни поверхностной, субдермальной жировой ткани за несколько проходов (рис. 9).
Проникновение игольчатого электрода через эпидермис и дерму в жировую ткань представляет собой нетермическое фракционное повреждение, не требующее продолжительного восстановительного периода в сравнении со световой фракционной абляцией, что делает Morpheus 8 более безопасным при работе с темными фототипами кожи.
Сила приложения RF-энергии Morpheus 8 направлена в большей степени на сокращение ФСС и жировой ткани с деликатным воздействием на область эпидермально-дермального сочленения, что делает это устройство более эффективным для уплотнения дряблой кожи и позволяет избежать многих осложнений термических фракционных технологий.
Сила приложения RF-энергии Morpheus 8 направлена в большей степени на сокращение фибросептальной сети и жировой ткани с деликатным воздействием на область эпидермально-дермального сочленения, что делает это устройство более эффективным для уплотнения дряблой кожи и позволяет избежать многих осложнений термических фракционных технологий.
В рамках нехирургического лифтинга Morpheus 8 может быть применен в области шеи, лица, бровей, верхних и нижних век, а также на участках тела с выраженной дряблостью кожи.
Профиль безопасности
При любой медицинской процедуре всегда есть риск нежелательных явлений или осложнений, однако высокотехнологичная внутренняя термическая обратная связь аппликаторов Morpheus 8 и Fractora, а также наличие силиконового покрытия минимизируют риск термического повреждения, тем не менее для эффективного и безопасного применения технологии необходим адекватный выбор параметров воздействия в соответствии с клинической картиной.
На участках с очень тонкой кожей, например на шее, после процедуры может наблюдаться «гусиная кожа» в течение нескольких дней. Этот эффект объясняется формированием кратеров, заполненных продуктами абляции тканей. Для рассасывания кратеров требуется время, но они полностью исчезают без следа.
Иногда, особенно на тонкой коже скуловой дуги или на области лба, может происходить поверхностный, не затрагивающий все слои кожи ожог. Подобный частичный ожог совпадает с пространственным расположением одного из широко разнесенных отрицательных электродов. Это происходит при использовании потока энергии плотностью 25–55 мДж на игольчатый электрод на тонких и плотных участках кожи и, вероятно, при недостаточном внимании к правильному перекрытию зон коррекции [4]. Чтобы избежать частичного ожога на данных участках, следует обеспечить плотное прилегание электродов.
Рекомендуемая глубина пенетрации игольчатых электродов для различных зон лица приведена на рис. 10.
Основное преимущество использования радиочастотной энергии в эстетической медицине — это низкая или незначительная реакция нервов на высокочастотный переменный ток по сравнению с более низкими частотами [1].
Основное преимущество использования радиочастотной энергии в эстетической медицине — это низкая или незначительная реакция нервов на высокочастотный переменный ток по сравнению с более низкими частотами [1]. Хотя у отдельных пациентов при проведении процедуры может наблюдаться легкое подергивание мышц, это скорее связано с реакцией нервных окончаний, иннервирующих мышцы, на боль.
Касательно вопроса инфекционных осложнений, насадки аппликаторов индивидуальные, после процедуры их выбрасывают, однако в ходе обработки на игольчатые электроды налипают продукты абляции тканей, поэтому их нужно периодически очищать. Для этого подойдет ватная палочка, смоченная хлоргексидином.
Заключение
Любой, даже самый совершенный инструмент, требует умелого обращения. Радиочастотный микронидлинг является высокоинтенсивным методом воздействия и позволяет корректировать широкий спектр патологических изменений кожи, однако для реализации его терапевтического потенциала необходимы глубокие знания основ технологии и индивидуальный подход к выбору параметров воздействия.
Такие характеристики игольчатых электродов, как длина, наличие изоляционного силиконового покрытия, количество и плотность расположения, во многом определяют биологические эффекты радиочастотного тока в тканях и, как следствие, — клинический эффект и риск нежелательных явлений.
В аппаратах Morpheus 8 и Fractora реализован весь накопленный опыт применения радиочастотного тока в эстетической медицине — возможность выбора глубины воздействия и ткани-мишени в зависимости от типа игольчатого электрода является неоспоримым преимуществом, превращающим процедуру коррекции в настоящее искусство.