Для чего нужна защита сварочной ванны дуги и конца нагретого электрода
Сущность основных способов сварки плавлением
При электрической дуговой сварке энергия, необходимая для образования и поддержания дуги, поступает от источников питания постоянного или переменного тока.
В процессе электрической дуговой сварки основная часть теплоты, необходимая для нагрева и плавления металла, получается за счет дугового разряда (дуги), возникающего между свариваемым металлом и электродом. При сварке плавящимся электродом под воздействием теплоты дуги кромки свариваемых деталей и торец (конец) плавящегося электрода расплавляются и образуется сварочная ванна. При затвердевании расплавленного металла образуется сварной шов. В этом случае сварной шов получается за счет основного металла и металла электрода.
К плавящимся электродам относятся стальные, медные, алюминиевые; к неплавящимся – угольные, графитовые и вольфрамовые. При сварке неплавящимся электродом сварной шов получается только за счет расплавления основного металла и металла присадочного прутка.
При горении дуги и плавлении свариваемого и электродного металлов необходима защита сварочной ванны от воздействия атмосферных газов – кислорода, азота и водорода, так как они могут проникать в жидкий металл и ухудшать качество металла шва. По способу защиты сварочной ванны, самой дуги и конца нагреваемого электрода от воздействия атмосферных газов дуговая сварка разделяется на следующие виды: сварка покрытыми электродами, в защитном газе, под флюсом, самозащитной порошковой проволокой и со смешанной защитой.
Покрытый электрод представляет собой металлический стержень с нанесенной на его поверхность обмазкой. Сварка покрытыми электродами улучшает качество металла шва. Защита металла от воздействия атмосферных газов осуществляется за счет шлака и газов, образующихся при плавлении покрытия (обмазки). Покрытые электроды применяются для ручной дуговой сварки, в процессе которой необходимо подавать электрод в зону горения дуги по мере его расплавления и одновременно перемещать дугу по изделию с целью формирования шва (см. рис. 1).
При сварке под флюсом сварочная проволока и флюс одновременно подаются в зону горения дуги, под воздействием теплоты которой плавятся кромки основного металла, электродная проволока и част флюса. Вокруг дуги образуется газовый пузырь, заполненный парами металла и материалов флюса. По мере перемещения дуги расплавленный флюс всплывает на поверхность сварочной ванны, образуя шлак Расплавленный флюс защищает зону горения дуги от воздействия атмосферных газов и значительно улучшает качество металла шва Сварка под слоем флюса применяется для соединения средних и больших толщин металла на полуавтоматах и автоматах (см. рис. 3).
Сварку в среде защитных газов выполняют как плавящимся элек тродом, так и неплавящимся с подачей в зону горения дуги присадоч ного металла для формирования сварного шва.
Сварка может быть ручной, механизированной (полуавтоматом и автоматической. В качестве защитных газов применяют углекислый газ, аргон, гелий, иногда азот для сварки меди. Чаще применяются смеси газов: аргон + кислород, аргон + гелий, аргон + углекислый газ + ккислород и др. В процессе сварки защитные газы подаются в зон горения дуги через сварочную головку и оттесняют атмосферные газы от сварочной ванны (рис. 4). При электрошлаковой сварке тепло, идущее на расплавление металла изделия и электрода, выделяется под воздействием электрического тока, проходящего через шлак. Сварк осуществляется, как правило, при вертикальном расположении свариваемых деталей и с принудительным формированием металла шв (рис. 5). Свариваемые детали собираются с зазором. Для предотвращения вытекания жидкого металла из пространства зазора и формирования сварного шва по обе стороны зазора к свариваемым деталям прижимаются охлаждаемые водой медные пластины или ползуны. По мере охлаждения и формирования шва ползуны перемещаются снизу вверх.
Рис. 4. Схема сварки в среде защитных газов плавящимся (а) и неплавящимся (б) электродом. 1 – сопло сварочной головки; 2 – сварочная дуга; 3 – сварной шов; 4 – свариваемая деталь; 5 – сварочная проволока (плавящийся электрод); 6 – подающий механизм
Рис. 5. Схема электрошлаковой сварки:
1 – свариваемые детали; 2 – фиксирующие скобы; 3 – сварной шов; 4 – медные ползуны (пластины); 5 – шлаковая ванна; 6 – сварочная проволока; 7 – подающий механизм; 8 – токоподводящий направляющий мундштук; 9 – металлическая ванна; 10 – карман – полость для формирования начала шва, 11 – выводные планки
Обычно электрошлаковую сварку применяют для соединения деталей кожухов доменных печей, турбин и других изделий толщиной от 50 мм до нескольких метров. Электрошлаковый процесс применяют также для переплава стали из отходов и получения отливок.
Электронно-лучевая сварка производится в специальной камере в глубоком вакууме (до 13-105 Па). Энергия, необходимая для нагрева и плавления металла, получается в результате интенсивной бомбардировки места сварки быстро движущимися в вакуумном пространстве электронами. Вольфрамовый или металлокерамический катод излучает поток электронов под воздействием тока низкого напряжения. Поток электронов фокусируется в узкий луч и направляется на место сварки деталей. Для ускорения движения электронов к катоду и аноду подводится постоянное напряжение до 100 кВ. Электронно-лучевая сварка широко применяется при сварке тугоплавких металлов, химически активных металлов, для получения узких и глубоких швов с высокой скоростью сварки и малыми остаточными деформациями (рис. 6).
Лазерная сварка – эта сварка плавлением, при которой для нагрева используется энергия излучения лазера. Термин «лазер» получил свое название по первым буквам английской фразы, которая в переводе означает: «усиление света посредством стимулированного излучения».
Современные промышленные лазеры и системы обработки материалов показали существенные преимущества лазерной технологии во многих специальных отраслях машиностроения. Промышленные СО2-лазеры и твердотельные снабжены микропроцессорной системой управления и применяются для сварки, резки, наплавки, поверхностной обработки, прошивки отверстий и других видов лазерной обработки различных конструкционных материалов. С помощью СО2-лазера производится резка как металлических материалов, так и неметаллических: слоистых пластиков, стеклотекстолита, гетинакса и др. Лазерная сварка и резка обеспечивают высокие показатели качества и производительности.
Рис. 6. Схема формирования пучка электронов при электронно—лучевой сварке: 1 – катодная спираль; 2 – фокусирующая головка; 3 – первый анод с отверстием; 4 – фокусирующая магнитная катушка для регулирования диаметра пятна нагрева на детали; 5 – магнитная система отклонения пучка; 6 – свариваемая деталь (анод); 7 – высоковольтный источник постоянного тока; 8 – сфокусированный пучок электронов; 9 – сварной шов
Контрольные вопросы:
1. Что такое сварочная ванна?
2. Из чего состоит металл сварного шва при сварке плавящимся и неплавящимся электродами?
3. Какие функции выполняют плавящиеся и неплавящиеся электроды?
4. Для чего необходима защита сварочной ванны, дуги и конца нагретого электрода?
5. На какие виды подразделяется электрическая сварка плавлением по способу защиты?
6. Расскажите, в чем сущность сварки покрытыми электродами?
7. За счет чего осуществляется защита зоны горения дуги при сварке под слоем флюса?
8. В чем сущность сварки в защитных газах?
9. Кратко охарактеризуйте электрошлаковую сварку.
10. Каковы достоинства электронно-лучевой и лазерной сварки?
Введение в дуговую сварку в защитных газах (TIG, MIG/MAG)
При сварке плавлением в защитных газах в качестве источника нагрева используется мощная электрическая дуга. В дуге электрическая энергия преобразуется в тепловую, плотность которой достаточна для локального плавления основного металла. В условиях атмосферы (21%О2+78%N2) зона сварки должна надежно защищаться от насыщения металла шва кислородом и азотом воздуха, которые ухудшают его свойства. Защитные газы, подаваемые через сопло, вытесняют воздух и таким образом защищают сварочную ванну и электрод. Для заполнения зазора между соединяемыми кромками деталей или разделки кромок и регулирования состава металла шва в зону плавления подают присадочный металл или электродную проволоку. В зависимости от физического состояния электрода различают дуговую сварку неплавящимся (см. Сварка в инертных газах вольфрамовым электродом (TIG)) и плавящимся (см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) электродами.
Защитные газы и их влияние на технологические свойства дуги
В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.
Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.
Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.
К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.
Классификация способов сварки в защитных газах приведена на схеме ниже.
Свойства защитных газов
В таблице ниже приведены физические свойства защитных газов.
Краткая характеристика защитных газов
Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.
Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.
При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.
Активные газы
Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.
Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.
При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.
В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.
Смеси защитных газов
Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.
Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.
В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.
Толщина металла | Вид переноса | Рекомендуемый защитный газ | Достоинства |
---|---|---|---|
Углеродистые стали | |||
До 2 мм. | С короткими замыканиями | Ar + СО2 | Легкое управление ванной при сварке во всех пространственных положениях. Хорошее проплавление. |
2 – 3 мм | Ar + (8…25)% СО2 | ||
Ar + 25% СО2 | Подходит для больших токов и высоких скоростей сварки | ||
Ar + 50% СО2 | Применяется при сварке во всех пространственных положениях. Обеспечивает глубокое проплавление. Допускает высокие скорости сварки. | ||
СО2 | Глубокое проплавление и высокая скорость сварки (однако, возможны прожоги). | ||
Струйный | Ar + (1…8)% СО2 | Высокая стабильность дуги. Хорошее сплавление, внешний вид и форма шва. Легкое управление ванной. | |
Более 2 мм | Импульсный | Ar + (2…8)% О2 | Стабильный управляемый мелкокапельный перенос. |
Низко- и высоколегированные стали | |||
До 2,5 мм | С короткими замыканиями | Ar + (8…20)% СО2 | Высокая стабильность дуги. Хорошее сплавление, внешний вид и форма шва. Легкое управление ванной. |
Более 2,5 мм | Струйный | Ar + 2% О2 | Снижение вероятности подрезов. Глубокое проплавление и хорошие механические свойства шва. |
Импульсный | Ar + 2% О2 | Стабильный управляемый мелкокапельный перенос. | |
Нержавеющая сталь, никель, никелевые сплавы | |||
До 2 мм | С короткими замыканиями | Ar + (2…5)% СО2 | Легкое управление ванной. Предупреждает возникновения прожогов. |
Более 2 мм | Ar + (2…5)% СО2 | Низкое содержание СО2 в смеси уменьшает науглероживание, которое может способствовать возникновению межкристаллитной коррозии в некоторых сплавах. Применяется для всех положений сварки. | |
Струйный | Ar + (1…2)% О2 | Хорошая стабильность дуги. Низкая вероятность подрезов. | |
Более 2 мм | Импульсный | Ar + (1…2)% О2 | Стабильный управляемый перенос в широком диапазоне режимов сварки. |
Медь, медно-никелевые сплавы | |||
До 3 мм | С короткими замыканиями | He + 10% Ar | Хорошая стабильность дуги и легко управляемая сварочная ванна. |
Более 3 мм | Струйный | He + Ar | Высокое тепловложение. Сварка в чистом гелии применяется для больших толщин. |
Импульсный | He или Ar | Стабильный управляемый мелкокапельный перенос. | |
Алюминий | |||
До 12 мм | Струйный, | Ar | Стабильная дуга и перенос металла. Разбрызгивание незначительное или отсутствует. |
Более 12 мм | He + (20…50)% Ar | Высокое тепловложение. Хорошее проплавление. Минимальная пористость. | |
Магний, титан и другие, химически активные металлы | |||
Весь диапазон толщин | Струйный | Ar | Обеспечивается более стабильная дуга, чем в смесях, где преобладает гелий |
Ar + (20…70)% He | Более высокое тепловложение и сниженная вероятность возникновения пористости. |
Присадочные материалы для сварки сталей
Сварка ТИГ и МИГ/МАГ выполняется с использованием сварочной проволоки сплошного сечения, которая в зависимости от марки проволоки изготавливается из стали, химический состав которой (по сертификату о качестве) должен находится в пределах, приведенных в ГОСТ 2246-70. Для сварки ТИГ, как правило, используют сварочные проволоки диаметром от 1,5 до 4 мм (сплошного сечения), а для МИГ/МАГ – от 0,8 до 1,6 мм.
По назначению проволоки можно разделить на те, которые применяются для:
— сварки (наплавки) в качестве электродной плавящейся проволоки (для сварки МИГ/МАГ) или присадочной проволоки (для сварки ТИГ);
— изготовления покрытых электродов (условное обозначение – Э).
Условное обозначение стальной сварочной проволоки состоит из:
— цифры, означающие диаметр проволоки в мм;
— буквенного индекса «Св» (сварочная);
— цифры, следующие за индексом «Св», указывают среднее содержание углерода в сотых долях процента;
— затем идут буквенные обозначения химических элементов, которые содержатся в металле проволоки:
Цифры, следующие за буквенным обозначением химического элемента, указывают на среднее содержание элемента в процентах. В конце пишется номер стандарта. Если после буквы цифра отсутствует, то количество данного элемента не превышает 1%. Буква «А» или «АА» конце маркировки свидетельствует о пониженном содержании серы и фосфора, а значит о высоких механических свойствах. Буква «Ш», «ВД» или «ВИ» означают, что проволока изготовлена из стали, выполненной электрошлаковым или вакуумно-дуговым переплавом или вакуумно-индукционных печах. Пример условного обозначения сварочной проволоки диаметром 3 мм марки Св-08А с неомедненной поверхностью из стали, полученной электрошлаковым переплавом показан на этом рисунке:
Условия поставки
— каждый моток (бухта, катушка, кассета) проволоки должен быть плотно перевязан мягкой проволокой не менее чем в трех местах, равномерно расположенных по периметру мотка;
— мотки проволоки одной партии допускается связывать в бухты (масса одной бухты или мотка не должна превышать 80 кг);
— на каждый моток (бухта, катушка, кассета) проволоки крепят металлическую бирку на которой должны быть указаны:
* наименование или товарный знак предприятия-изготовителя;
* условное обозначение проволоки;
* номер партии;
* клеймо технического контроля, удостоверяющее соответствие проволоки требованиям стандарта.
— сварочная проволока поставляется в сопровождении соответствующих сертификатов, удостоверяющих соответствие проволоки требованиям стандарта. В сертификате указывают:
* товарный знак предприятия-изготовителя;
* условное обозначение проволоки;
* номер партии и плавки;
* состояние проволоки;
* химический состав в процентах;
* содержание α-фазы в пробе в процентах;
* результаты испытаний на растяжение;
* массу проволоки нетто в килограммах.
При утере сертификата проволока может быть использована только после определения ее химического состава.
Катушки со сварочной проволокой
Хранение проволоки
Проволока должна храниться в сухом закрытом помещении, защищающем ее от воздействия атмосферных осадков и почвенной влаги. Условия хранения должны исключать коррозию, загрязнения и механические повреждения.
Подготовка проволоки к работе
При необходимости стальную проволоку очищают пескоструйным аппаратом или травлением в 5%-ном растворе соляной кислоты. Для устранения маслянистых загрязнений применяют растворители – ацетон, уайт-спирит и д.р. также стальную проволоку можно очищать, пропуская ее через специальные механические устройства, а также шлифовальной бумагой до металлического блеска. Непосредственно перед очисткой бухту проволоки рекомендуется отжечь при температуре 150-200°С в течение 1,5-2 часов.
Присадочная проволока для сварки алюминия и его сплавов
Условия поставки
Поверхность проволоки диаметром 4 мм и менее подвергают химической обработке. После обработки проволока должна иметь блестящую поверхность с параметрами шероховатости Ra≤2,5 мкм по ГОСТ 2789-73. Проволоку с химически обработанной поверхностью наматывают на катушки механическим способом рядами без перегибов и зазоров.
Хранение проволоки
Катушки с проволокой помещают в полиэтиленовый мешок вместе с контрольным пакетом порошка обезвоженного селикагеля-индикатора и герметизируют при относительной влажности воздуха менее 20% в течение 30 мин после химической обработки. Герметичность упаковки оценивают визуально по цвету селикагеля-индикатора. Герметичность следует считать нарушенной, если порошок селикагеля-индикатора имеет розовый цвет.
Герметизированные полиэтиленовый мешки с катушками упаковывают в катонные, пластмассовые или деревянные ящики.
Условное обозначение и области применения сварочной проволоки
В условном обозначении проволоки указывают диаметр проволоки, марку сплава и обозначение стандарта. Пример условного обозначения сварочной проволоки диаметром 2 мм из алюминиевого сплава марки АМц: 2-СвАМц ГОСТ 7871-75
Области применения сварочных материалов при сварке алюминия и его сплавов
Подготовка проволоки к работе
Алюминиевую сварочную проволоку перед сваркой необходимо обрабатывать. Сначала ее обезжиривают, а затем подвергают травлению в 15%-ном растворе едкого натра в течение 5-10 мин при температуре 60-70°С. После этого промывают в холодной воде и сушат 10-30 мин при температуре 300°С.
Подготовленные к сварке материалы сохраняют свои свойства в течение 3-4 дней. Затем на поверхности вновь образуется окисная пленка.