Доказать что через три данные точки лежащие на прямой проходит плоскость
Через три точки можно провести плоскость
Гипермаркет знаний>>Математика>>Математика 10 класс>>Математика:Существование плоскости, проходящей через три данные точки
Существование плоскости, проходящей через три данные точки
Теорема 15.3. Через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну.
Доказательство. Пусть А, В, С — три данные точки, не лежащие на одной прямой (рис. 317). Проведем прямые АВ и АС; они различны, так как точки А, В, С не лежат на одной прямой. По аксиоме Сз через прямые АВ и АС можно провести плоскость . Эта плоскость содержит точки А, В, С.
Докажем, что плоскость а, проходящая через точки А, В, С, единственна. Действительно, плоскость, проходящая через точки А, В, С, по теореме 15.2 содержит прямые АВ и АС. А по аксиоме Сз такая плоскость единственна.
Задача (13). Можно ли провести плоскость через три точки, если они лежат на одной прямой? Объясните ответ.
Решение. Пусть А, В, С — три точки, лежащие на прямой . Возьмем точку D, не лежащую на прямой
(аксиома I). Через точки А, В, D можно провести плоскость (теорема 15.3). Эта плоскость содержит две точки прямой
— точки A и В, а значит, содержит и точку С этой прямой (теорема 15.2).
Следовательно, через три точки, лежащие на одной прямой, всегда можно провести плоскость.
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.
сколько плоскостей можно провести через
две различные точки
три различные точки
четыре точки никакие три из которых не лежат на одной прямой.
В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.
Как найти уравнение плоскости, которая проходит через 3 заданные точки
Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:
Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.
Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.
Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.
Из этого мы и будем исходить в дальнейшем.
n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1
На схеме это будет выглядеть так:
Запишем полученное уравнение в координатной форме:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0
От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.
В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.
Примеры задач на составление уравнения плоскости, проходящих через 3 точки
Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.
Решение
Используем поочередно оба способа.
Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:
n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = – 5 · i → + 30 · j → + 2 · k →
Это и есть нужное нам уравнение плоскости, которая проходит через три точки.
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = x – ( – 3 ) y – 2 z – ( – 1 ) – 1 – ( – 3 ) 2 – 2 4 – ( – 1 ) 3 – ( – 3 ) 3 – 2 – 1 – ( – 1 ) = = x + 3 y – 2 z + 1 2 0 5 6 1 0 = – 5 x + 30 y + 2 z – 73
Мы получили нужное нам уравнение.
А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.
Решение
Векторное произведение будет равно:
M 1 M 2 → × M 1 M 3 → = i → j → k → – 4 6 2 – 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →
Если мы используем второй способ, у нас получится:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0 ⇔ x – 5 y – ( – 8 ) z – ( – 2 ) 1 – 5 – 2 – ( – 8 ) 0 – ( – 2 ) – 1 – 5 1 – ( – 8 ) 1 – ( – 2 ) = 0 ⇔ ⇔ x – 5 y + 8 z + 2 – 4 6 2 – 6 9 3 = 0 ⇔ 0 ≡ 0
Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:
Лекция по математике на тему «Аксиомы стереометрии»
Аксиома – это утверждение не требующее доказательства.
Аксиомы стереометрии – утверждения о свойствах геометрических тел, принимаемые в качестве исходных положений, на основе которых доказываются все теоремы и вообще строится вся геометрия.
Аксиома А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиома А1 состоит из двух частей.
Первая часть утверждает, что через три точки проходит плоскость, т.е. существует хотя бы одна плоскость.
А вторая часть аксиомы говорит, что такая плоскость только одна.
Символ
читается как существует.
По этой аксиоме, три точки, не лежащие на одной прямой, однозначно определяют плоскость.
Поэтому плоскости иногда обозначают тремя большими буквами, используя любые три точки плоскости, не лежащие на одной прямой.
У нас на экране плоскость обозначена как α. Эту же плоскость можно обозначить как ABC
Аксиома 1 (существование плоскости)
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
, причем α – единственная.
Аксиома А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
В этом случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую.
Эта аксиома устанавливает взаимосвязь между прямой и плоскостью, то есть тот факт, что плоскость действительно плоская и прямая ее не «протыкает», а целиком содержится в ней.
Из аксиомы A 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки.
Если прямая и плоскость имеют только одну общую точку, то говорят, что они пересекаются.
Если две точки прямой лежат в плоскости, то все точки этой прямой лежат в этой плоскости.
В этом случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую.
Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В этом случае говорят, что плоскости пересекаются по прямой, проходящей через эту точку..
Эта аксиома очень важная. Она утверждает, что две плоскости не могут пересекаться по одной единственной точке.
Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
Говорят, что плоскости пересекаются по прямой, проходящей через эту точку.
Справедливость фактов планиметрии
Мы с вами познакомились с тремя аксиомами стереометрии.
Возникает вопрос: «Можем ли мы пользоваться теми фактами, которые справедливы на плоскости: теорема Пифагора, формулы площади треугольников, параллелограмма? Или все эти формулы, теоремы для нас уже не имеют значения?»
В планиметрии мы имели дело с одной плоскостью, на которой располагались все рассматриваемые нами фигуры. В стереометрии много плоскостей.
И в каждой из плоскостей, справедливы все факты планиметрии. В любой из плоскостей выполняется теорема Пифагора для прямоугольного треугольника, верны формулы длины окружности, верны формулы для площади.
Все что мы изучали, мы теперь можем применять смело в каждой из рассматриваемых плоскостей.
Аксиомы стереометрии не противоречат аксиомам планиметрии.
В стереометрии принимаются все факты планиметрии для каждой плоскости.
Переходим к решению задач
Задача 1. По рисунку назовите:
По рисунку назовите:
Аналогично:
Аналогично:
.
Аналогично:
Могут ли какие-то три из них лежать на одной прямой?
Найти: Могут ли 3 из них лежать на одной прямой?
Две точки A и С прямой m принадлежат в плоскости
, значит и точка B этой прямой принадлежит этой плоскости.
Получается, что в одной плоскости лежат все четыре точки, что противоречит условию задачи. Значит предположение неверно, никакие три точки не лежат на одной прямой.
лежать на одной прямой.
Могут ли какие-то три из них лежать на одной прямой?
Найти: Могут ли 3 из них лежать на одной прямой?
Пусть:
(аксиома А1)
(аксиома А2)
. Получили противоречие, по условию задачи точки не лежат в одной плоскости.
Предположение неверно, никакие три точки не лежат на одной прямой.
Задача 3. Докажите, что через три данные точки, лежащие на одной прямой, проходит плоскость. Сколько существует таких плоскостей?
Найти :Количество плоскостей
Так как две точки A и C прямой m принадлежат плоскости α, то и точка B прямой m принадлежит этой плоскости.
Все три точки принадлежат плоскости.
Значит плоскость α – искомая плоскость.
Ответ: Через три данные точки, лежащие на одной прямой, может проходить
бесконечное множество плоскостей.
Доказать:
Найти: Количество плоскостей
Пусть
.
(аксиома A 1).
(аксиома A 2).
Плоскость α – искомая плоскость.
Т. к D – произвольная точка, то таких плоскостей бесконечное множество.
Ответ: бесконечное множество.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-025570
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России планируют создавать пространства для подростков
Время чтения: 2 минуты
В России будут создавать школьные театры
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Создана Ассоциация руководителей школ России и Беларуси
Время чтения: 1 минута
Минпросвещения сформирует новый федеральный перечень учебников
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.