Доказать что число иррациональное log3 p
math4school.ru
Рациональные и иррациональные числа
Немного теории
Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.
Если действительное число не является рациональным, то оно иррациональное число. Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.
Действительное число называется алгебраическим, если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным.
Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).
Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.
Все рациональные числа являются алгебраическими (обратное утверждение – неверное).
Каждое вещественное трансцендентное число является иррациональным.
Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).
Множество иррациональных чисел несчётно.
При решении задач бывает удобно вместе с иррациональным числом a + b √ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b √ c : его сумма и произведение с исходным – рациональные числа. Так что a + b √ c и a – b √ c являются корнями квадратного уравнения с целыми коэффициентами.
Задачи с решениями
Итак, предположение ложно, значит, число √ 7 иррациональное.
Итак, предположение ложно, значит, число lg 80 иррациональное.
в) Обозначим данное число через х.
Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению
х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.
Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.
Итак, данное число √ 2 + 3 √ 3 является иррациональным.
( √ a – √ b )·( √ a + √ b ) = a – b.
½ ( √ a + √ b ) + ½ ( √ a – √ b ) = √ a
– число рациональное, их разность,
тоже рациональное число, что и требовалось доказать.
3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.
4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству
где n – натуральное число?
Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:
Но 5 – 4 √ 2 (a – b √ 2 ) 2n + (c – d √ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.
Ответ: не существуют.
Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт
Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.
6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314. (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.
9. Докажите элементарным путём, что положительный корень уравнения
Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).
Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:
откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).
Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.
10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.
а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2 )/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.
б) Пусть (a1; b1), (a2; b2) и (a3; b3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:
Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.
в) Такая сфера существует. Например, сфера с уравнением
(x – √ 2 ) 2 + y 2 + z 2 = 2.
Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.
Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :
x 2 – 2 √ 2 x + 2 + y 2 + z 2 = 2
√ 2 = (x 2 + y 2 + z 2 )/(2x),
Задачи без решений
1. Докажите, что число
3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?
5. Докажите, что при любом натуральном n уравнение (х + у √ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).
Логарифмы
Определение логарифма
Понятие логарифма и основного логарифмичесгого тождества
Понятие логарифма и основного логарифмическое тождества состоят в тесной зависимости, т.к. определение логарифма в математической записи и является основным логарифмическим тождеством.
Основное логарифмическое тождество вытекает из определения логарифма:
Логарифмом называют показатель степени n, при возведении в которую числа а получают число b.
Показательное уравнение a^n=b при a > 0, a ne 1 не имеет решений при неположительном b и имеет единственный корень при положительном b. Этот корень называется логарифмом числа b по основанию а и записывают:
Основное логарифмическое тождество
4 log2 7 =2 2 log2 7 = (2 log2 7 ) 2 = 7 2 = 49
2 1 + log2 7 = 2 · 2 log2 7 = 2 · 7 = 14
Что такое логарифм и как его посчитать
Логарифм имеет следующий вид:
где a – это основание логарифма,
b – это аргумент логарифма
Чтобы узнать значение логарифма приравняем его к X. и преобразовываем в
и преобразовываем в Запомните, что именно основание (оно выделено красным) возводится в степень.
Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!
Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:
Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.
Два очевидных следствия определения логарифма
log a 1 = 0 ( a > 0, a ≠ 1 )
Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень – единицу.
Логарифм. Свойства логарифма (корень логарифма, смена основания).
Использование свойств логарифмов при решении логарифмических уравнений и неравенств
Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.
Например, если при решении уравнения или неравенства требуется преобразовать выражение
следует применять формулу
поскольку в противном случае можно потерять корни.
По той же причине при преобразовании выражений
loga ( f (x) g (x)) и
следует использовать формулы:
Степень можно выносить за знак логарифма
И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:
log a ( f ( x ) 2 = 2 log a f ( x )
Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.
Логарифмы со специальным обозначением
Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.
Виды логарифмов
loga b – логарифм числа b по основанию a ( a > 0, a ≠ 1, b > 0)
lg b – десятичный логарифм (логарифм по основанию 10, a = 10).
Сумма логарифмов. Разница логарифмов
Логарифмы с одинаковыми основаниями можно складывать:
Логарифмы с одинаковыми основаниями можно вычитать:
Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!
Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!
Вынесение показателя степени из логарифма
Вынесение показателя степени из логарифма:
Переход к новому основанию
Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.
Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.
Разберем на примере.
Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:
Теперь применим переход к новому основанию для второго логарифма: Подставим полученные результаты в исходное выражение:
Десятичные и натуральные логарифмы
Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например,
lg ( x y ) = lg x + lg y ( x > 0, y > 0 )
Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e – иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам:
log a b = lg b lg a = ln b ln a ( a > 0, a ≠ 1, b > 0 )
Вычисление логарифма равносильно решению показательного уравнения
при условии a > 0, a ≠ 1; b > 0, где
при условии a > 0, a ≠ 1; b > 0, где
Найти логарифм: log 4 8
Обозначим log4 8 через x :
Перейдем к показательному уравнению:
Сведем показательное уравнение к основе 2 и решим его:
Найти x если : log x 125 = 3 2
За определением логарифма имеем:
x = (5 3 ) 2/3 = 5 3·2/3 = 5 2 = 25
Формулировки и доказательства свойств
Покажем примеры использования свойства логарифма произведения: log5(2·3)=log52+log53 и .
Приведем пример использования этого свойства логарифма: .
Вот пример использования этого свойства: .
Покажем пару примеров применения этого свойства логарифмов: и
.
Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида
. Имеем
. Для доказательства формулы
достаточно воспользоваться формулой перехода к новому основанию логарифма a :
.
Осталось доказать свойства сравнения логарифмов.
Область допустимых значений (ОДЗ) логарифма
Теперь поговорим об ограничениях (ОДЗ – область допустимых значений переменных).
Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:
Поэтому и отрицательные основания проще выбросить, чем возиться с ними.
Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).
В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:
Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?
– это явно неверно, так как основание не может быть отрицательным, то есть корень – «сторонний».
Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:
10 примеров логарифмов с решением
1. Найти значение выражения 2. Найти значение выражения
3. Найти значение выражения
3. Найти значение выражения 4. Найти значение выражения
5. Найти значение выражения
5. Найти значение выражения 6. Найти значение выражения
Сначала найдем значение
Сначала найдем значение Для этого приравняем его к Х:
Тогда изначальное выражение принимает вид:
7. Найти значение выражения
7. Найти значение выражения Преобразуем наше выражение:
Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим:
8. Найти значение выражения
8. Найти значение выражения Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:
9. Найти значение выражения
9. Найти значение выражения Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:
Подставляем полученные значения в исходное выражение:
10. Найти значение выражения Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Надеюсь, теперь вы разобрались, что такое логарифм.