Доказать что число иррациональное log3 p
math4school.ru
Рациональные и иррациональные числа
Немного теории
Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.
Если действительное число не является рациональным, то оно иррациональное число. Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.
Действительное число называется алгебраическим, если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным.
Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).
Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.
Все рациональные числа являются алгебраическими (обратное утверждение – неверное).
Каждое вещественное трансцендентное число является иррациональным.
Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).
Множество иррациональных чисел несчётно.
При решении задач бывает удобно вместе с иррациональным числом a + b √ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b √ c : его сумма и произведение с исходным – рациональные числа. Так что a + b √ c и a – b √ c являются корнями квадратного уравнения с целыми коэффициентами.
Задачи с решениями
Итак, предположение ложно, значит, число √ 7 иррациональное.
Итак, предположение ложно, значит, число lg 80 иррациональное.
в) Обозначим данное число через х.
Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению
х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.
Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.
Итак, данное число √ 2 + 3 √ 3 является иррациональным.
( √ a – √ b )·( √ a + √ b ) = a – b.
½ ( √ a + √ b ) + ½ ( √ a – √ b ) = √ a
– число рациональное, их разность,
тоже рациональное число, что и требовалось доказать.
3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.
4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству
где n – натуральное число?
Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:
Но 5 – 4 √ 2 (a – b √ 2 ) 2n + (c – d √ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.
Ответ: не существуют.
Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт
Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.
6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314. (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.
9. Докажите элементарным путём, что положительный корень уравнения
Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).
Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:
откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).
Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.
10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.
а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2 )/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.
б) Пусть (a1; b1), (a2; b2) и (a3; b3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:
Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.
в) Такая сфера существует. Например, сфера с уравнением
(x – √ 2 ) 2 + y 2 + z 2 = 2.
Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.
Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :
x 2 – 2 √ 2 x + 2 + y 2 + z 2 = 2
√ 2 = (x 2 + y 2 + z 2 )/(2x),
Задачи без решений
1. Докажите, что число
3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?
5. Докажите, что при любом натуральном n уравнение (х + у √ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).
Логарифмы
Определение логарифма
Понятие логарифма и основного логарифмичесгого тождества
Понятие логарифма и основного логарифмическое тождества состоят в тесной зависимости, т.к. определение логарифма в математической записи и является основным логарифмическим тождеством.
Основное логарифмическое тождество вытекает из определения логарифма:
Логарифмом называют показатель степени n, при возведении в которую числа а получают число b.
Показательное уравнение a^n=b при a > 0, a ne 1 не имеет решений при неположительном b и имеет единственный корень при положительном b. Этот корень называется логарифмом числа b по основанию а и записывают:
Основное логарифмическое тождество
4 log2 7 =2 2 log2 7 = (2 log2 7 ) 2 = 7 2 = 49
2 1 + log2 7 = 2 · 2 log2 7 = 2 · 7 = 14
Что такое логарифм и как его посчитать
Логарифм имеет следующий вид:

b – это аргумент логарифма
Чтобы узнать значение логарифма приравняем его к X. 

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!
Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:

Два очевидных следствия определения логарифма
log a 1 = 0 ( a > 0, a ≠ 1 )
Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень – единицу.
Логарифм. Свойства логарифма (корень логарифма, смена основания).
Использование свойств логарифмов при решении логарифмических уравнений и неравенств
Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.
Например, если при решении уравнения или неравенства требуется преобразовать выражение
следует применять формулу
поскольку в противном случае можно потерять корни.
По той же причине при преобразовании выражений
loga ( f (x) g (x)) и
следует использовать формулы:
Степень можно выносить за знак логарифма
И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:
log a ( f ( x ) 2 = 2 log a f ( x )
Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.
Логарифмы со специальным обозначением
Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.
Виды логарифмов
loga b – логарифм числа b по основанию a ( a > 0, a ≠ 1, b > 0)
lg b – десятичный логарифм (логарифм по основанию 10, a = 10).
Сумма логарифмов. Разница логарифмов
Логарифмы с одинаковыми основаниями можно складывать: 



Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!
Вынесение показателя степени из логарифма
Вынесение показателя степени из логарифма:



Переход к новому основанию

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.
Разберем на примере.
Необходимо найти значение такого выражения
Теперь применим переход к новому основанию для второго логарифма: 
Десятичные и натуральные логарифмы
Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например,
lg ( x y ) = lg x + lg y ( x > 0, y > 0 )
Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e – иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам:
log a b = lg b lg a = ln b ln a ( a > 0, a ≠ 1, b > 0 )
Вычисление логарифма равносильно решению показательного уравнения
при условии a > 0, a ≠ 1; b > 0, где
при условии a > 0, a ≠ 1; b > 0, где
Найти логарифм: log 4 8
Обозначим log4 8 через x :
Перейдем к показательному уравнению:
Сведем показательное уравнение к основе 2 и решим его:
Найти x если : log x 125 = 3 2
За определением логарифма имеем:
x = (5 3 ) 2/3 = 5 3·2/3 = 5 2 = 25
Формулировки и доказательства свойств
Покажем примеры использования свойства логарифма произведения: log5(2·3)=log52+log53 и 
Приведем пример использования этого свойства логарифма: 
Вот пример использования этого свойства: 
Покажем пару примеров применения этого свойства логарифмов: 

Также часто используется формула 




Осталось доказать свойства сравнения логарифмов.
Область допустимых значений (ОДЗ) логарифма
Теперь поговорим об ограничениях (ОДЗ – область допустимых значений переменных).
Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:
Поэтому и отрицательные основания проще выбросить, чем возиться с ними.
Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).
В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:
Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?
– это явно неверно, так как основание не может быть отрицательным, то есть корень – «сторонний».
Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:
10 примеров логарифмов с решением
1. Найти значение выражения 















10. Найти значение выражения 

Надеюсь, теперь вы разобрались, что такое логарифм.



























