Доказать что последовательность сходится
Критерий Коши сходимости последовательности.
Фундаментальная последовательность.
Последовательность \(\
Для того чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она была фундаментальной.
Необходимость. Пусть последовательность \(\
$$
\forall\varepsilon>0 \displaystyle \exists N_<\varepsilon>:\forall p\geq N_<\varepsilon>\rightarrow|x_
-a| 0 \ \exists n_\varepsilon:\forall n\geq n_\varepsilon \ \forall m\geq n_\varepsilon\rightarrow|x_n-x_m| 0 \ \exists k_\varepsilon:\quad \forall k\geq k_\varepsilon\rightarrow Пример.
Доказать, что последовательность \(\
$$
x_
$$
расходится.
\(\triangle\) Последовательность \(\
$$
\exists \varepsilon_0>0: \ \forall k\in\mathbb
$$
Таким образом, условие \eqref
Предел последовательности
п.1. Определение последовательности
С понятием «последовательность» мы уже познакомились, когда изучали прогрессии (см. §24 справочника для 9 класса). По определению:
Т.е., числовая последовательность – это некий набор чисел с присвоенными им порядковыми номерами. Это набор можно задать формулой, описанием или просто перечислением.
Например:
1) Формула \(y_n=\frac1n,\ n\in\mathbb
2) Формула \(y_n=(-1)^n,\ n\in\mathbb
3) Рекуррентная формула \(y_1=1,\ y_2=1,\ y_(n+2)=y_(n+1)+y_n\) задает бесконечную последовательность чисел Фибоначчи:
4) Описание «число π точностью до \(10^<-n>\)» задает бесконечную последовательность все более «подробных» значений числа π:
Этот ряд можно также задать формулой \(y_n=\frac<[\pi\cdot 10^n]><10^n>\), где квадратные скобки обозначают целую часть от числа.
п.2. Предел последовательности
Поведение последовательности «на длинных дистанциях» может быть неочевидным. Чтобы лучше понять, возрастает или убывает заданный ряд чисел, ограничен ли он какой-либо величиной или уходит на бесконечность, проще всего построить график.
1) \(y_n=\frac1n\) Последовательность сходится к 0 |
2) \(y_n=(-1)^n\) Последовательность ни к чему не сходится |
3) числа Фибоначчи \(y_1=1,\ y_2=1,\ y_ Последовательность уходит на бесконечность |
4) приближения числа π Последовательность сходится к π |
п.3. Как доказать сходимость последовательности к пределу?
\(\varepsilon\) | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 7 | 97 | 997 | 9997 | 99997 | 999997 |
\(\lg \varepsilon\) | -1 | -2 | -3 | -4 | -5 | -6 |
\(\lg N_<\varepsilon>\) | 0,845 | 1,987 | 2,999 | 4,000 | 5,000 | 6,000 |
И построим график (в логарифмическом масштабе):
Мы видим, что чем меньше ε, тем больше \(N_<\varepsilon>\). Но главное – мы всегда можем его указать.
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно малого \(\varepsilon\gt 0\) мы можем указать такой номер \(N_<\varepsilon>=\left[\frac1\varepsilon-4\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_<\varepsilon>\) разность \(\left|\frac<1>
Построенный график интересен еще и тем, что показывает одно из важных практических применений логарифмов: если разбросы по шкалам очень велики, отличаются на порядки, то графики удобней строить в десятичных логарифмах.
Такие графики часто можно увидеть у физиков-ядерщиков, копающих вглубь, от нанометров до планковских длин; или у астрономов, всматривающихся вдаль, от тысяч километров до гигапарсек.
п.4. Ограниченные и неограниченные последовательности
п.5. Как доказать неограниченность последовательности?
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=[\sqrt
п.6. Примеры
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 15 | 128 | 1253 | 12503 | 125003 | 1250003 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac12\left(\frac<5><2\varepsilon>+3\right)\right]+1\), начиная с которого
\(\left|\frac
Что и требовалось доказать.
Показанный приём с усилением неравенства часто применяется в математическом анализе. Найденное \(N_<\varepsilon>\) немного больше «точного» значения, которое следует из исходной дроби \(\frac
Если найденный номер будет немного больше исходного – не страшно; главное, чтобы он 1) был обоснован; 2) гарантировал размещение всех последующих \(y_n,\ n\geq N_<\varepsilon>\) в ε окрестности предела b.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac<1><3\sqrt<\varepsilon>>\right]\), начиная с которого \(\left|\frac
Что и требовалось доказать.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[-\log_3\varepsilon\right]\), начиная с которого \(\left|\frac<3^n+1><3^n>-1\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 2 | 362 | 39602 | 3996002 | 4·10 8 | 4·10 10 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\left(\frac<1><5\varepsilon>-1\right)^2\right]\), начиная с которого \(\left|\frac<\sqrt
Что и требовалось доказать.
Пример 2. Используя определения неограниченной последовательности, докажите, что:
a) \( \lim_
По условию: \(y_n=2^n\)
Записываем неравенство \(|y_n|\gt M\):
\begin
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[\log_2M\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=2^n\gt M\).
Что и требовалось доказать.
M | 10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 |
NM | 100 | 10 000 | 1 000 000 | 10 8 | 10 10 | 10 12 |
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[M^2\right]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=\sqrt
Что и требовалось доказать.
Сходящиеся последовательности
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность
Некоторые свойства сходящихся последовательностей:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть
ТЕОРЕМА: Сумма сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Разность сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Произведение сходящихся последовательностей <х n >и
ЛЕММА: Если последовательность , которая является ограниченной.
ТЕОРЕМА: Частное двух сходящихся последовательностей
.
Так как последовательность ограничена, а последовательность
бесконечно мала, то последовательность
бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА: Если элементы сходящейся последовательности
Элементы сходящейся последовательности .
.
.
Следствие 2: Если все элементы сходящейся последовательности
Это выполняется, так как а£ x n£ b, то a£ c£ b.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.
, и того, что
.
(m, n = 1, 2, 3, … ),
,…
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
,
тогда существует конечный предел
,
(n = 1, 2, 3, … ).
(*)
сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом:
запишем целое число n по двоичной системе:
.
Применяя теорему (1) для данных:
s 0 =0, s 1 =, s m-1 =
, s m =
, …, p n0 =0, p n1 =
, …, p n, m-1 =
,
, p n, m+1 =0, …,
заключаем, что . Наконец, в силу (*) имеем:
.
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
Разобьем числовую прямую на l интервалов точками
.
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
, …
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
Числовая последовательность, стремящаяся к , имеет наименьший член.
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
Пусть числовые последовательности
обладают тем свойством, что
,
.
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
l n s n >l n-1 s n-1, l n s n >l n-2 s n-2, … l n s n >l 1 s 1,
Будем называть l m “выступающим” членом последовательности, если l m больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут:
,…
,
(*)
отсюда заключаем, что
Если числовая последовательность ,… стремится к
и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n³ 1, что n отношений
все не больше А, а бесконечное множество отношений
,…
Имеем . Пусть минимум последовательности
u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А.
.
.
,
Пусть, далее, l 1 >A>0. Тогда существует такой номер n, n ³ 1, что одновременно выполняются все неравенства
.
Если А® 0, то также n® 0.
Тогда . Последовательность
все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, L n ) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.
Определение предела последовательности. Свойства сходящихся последовательностей.
Числовые последовательности.
Если каждому натуральному числу n сопоставлено в соответствие некое число xn, то говорят, что задана числовая последовательность
Как мы видим, xn — это функция, множеством определения которой является множество N всех натуральных чисел, а множество значенией этой функции, то есть значение всех xn, n∈N, называют множеством значений последовательности.
Множество значений последовательности может быть как конечным, так и бесконечным, но множество ее элементов всегда бесконечно, так как любые два разных элемента последовательности отличаются своими номерами.
Последовательность может быть задана формулой, которая позволяет вычислить каждый член последовательности по ее номеру. Например, если \(x_n=\frac<\left(-1\right)^n+1>2\), то каждый нечетный член последовательности будет равен 0, а каждый четный член равен 1.
Зачастую используют реккурентный способ записи формулы последовательности, когда каждый следующий член последовательности можно найти по известным предыдущим.
Определение предела последовательности.
Записать с помощью логических символов отрицания следующих утверждений:
Пользуясь определением: найти предел последовательности \(\
Пусть \(\displaystyle \lim_
$$
x_<1>,\ y_<1>,\ x_<2>,\ y_<2>\ldots,\ x_
$$
сходится и ее предел также равен a.
\(\triangle\) По определению предела для любого \(\varepsilon > 0\) существуют \(N_1=N_1(\varepsilon)\) и \(N_<2>=N_<2>(\varepsilon)\) такие, что для всех \(n\geq N_<1>\) выполняется неравенство \(|x_
Таким образом, а—предел последовательности \(\left\
С помощью логических символов данное определение можно записать следующим образом
Доказать, что последовательность \(\left\
Единственность предела последовательности.
Числовая последовательность может иметь только один предел.
Предположим, что \(\left\Рис. 4.2
Выберем ε > 0 таким, чтобы ε—окрестности точек a и b не пересекались, то есть не имели общих точек. Возьмем, например, ε = (b − a)/3. Так как число a—предел последовательности <xn>, то по заданному ε > 0 можно найти номер N такой, что \(x_n\in U_\varepsilon(a)\) для всех n > N. поэтому вне интервала \(U_\varepsilon(a)\) может оказаться лишь конечное число членов последовательности. В частности, интервал \(U_\varepsilon(b)\) может содержать лишь конечное число членов последовательности. Но это противоречит тому, что b—предел последовательности, так как согласно определению предела, любая окрестность точки b должна содержать бесконечное число членов последовательности. Данное противоречие показывает, что последовательность не может иметь два различных предела. Итак, сходящаяся последовательность имеет только один предел.
Ограниченность сходящейся последовательности.
Последовательность \(\left\
Последовательность \(\left\
Последовательность, ограниченная как сверху, так и снизу, называется ограниченной, то есть последовательность \(\left\
$$ \exists \ C_1 \ \exists \ C_2: \ \forall n \ \in\mathbb
Заметим, что условие \eqref
$$ \exists \ C > 0: \ \forall n\in\mathbb
Геометрически ограниченность последовательности означает, что все члены последовательности содержатся в С-окрестности точки нуль.
Если последовательность имеет предел, то она ограничена.
В силу теоремы 2 всякая сходящаяся последовательность является ограниченной. Обратное неверно: не всякая ограниченная последовательность является сходящейся. Например, последовательность \(\left\<\left(-1\right)^n\right\>\) ограничена, но не является сходящейся.
Доказать, что последовательность \(\left\<<\textstyle\frac1
Теорема о трех последовательностях или теорема о пределе «зажатой» последовательности.
Если последовательности \(\
$$x_n\leq y_n\leq z_n \ для \ всех \ n\geq N_0,\label
то последовательность \(\
По определению предела для любого \(\varepsilon > 0\) найдутся номера \(N_1=N_1(\varepsilon) \ и \ N_2=N_2(\varepsilon)\) такие, что \(x_n\in U_\varepsilon(a)\) при всех \(n\geq N_1\) и \(z_n\in U_\varepsilon(a)\) при всех \(n\geq N_2\).
Рис. 4.3
Отсюда и из условия \eqref
\(\triangle\,\)Заметим, что \(\sqrt[n]n-1=\alpha_n > 0\), при \(n > 1\), откуда \(n=(1+\alpha_n)^n > C_n^2\alpha_n^2,\) где\(\displaystyle C_n^2=\frac
Если \(a > 1\), то \(a=1+\alpha\), где \(\alpha > 0\), откуда \(a^n=\displaystyle \left(1+\alpha\right)^n > C_n^
\alpha^
\), при \(n > p\).
Пусть \(n > 2p\), тогда \(\displaystyle C_n^
=\frac
Если \(\displaystyle \lim_
\(\circ\) Предположим, что неравенство \eqref
В частности, если для сходящейся последовательности \(\
В следствии 2 утверждается, что если соответствующие члены двух сходящихся последовательностей связаны знаком нестрогого неравенства, то такое же неравенство справедливо и для пределов этих последовательностей. Короче: предельный переход сохраняет знак нестрогого неравенства. Однако знак строгого неравенства, вообще говоря, не сохраняется, то есть если \(x_n > у_n\) при \(n\geq N_0\) и последовательности \(\