Датчик виганда что это
Датчики Виганда
Всё о датчиках Виганда: принцип действия, конструкция датчика, использование
Что собой представляет датчик Виганда?
Датчик Виганда представляет собой двухполюсник, реагирующий на магнитные поля и вырабатывающий сигналы до нескольких вольт при условии, что напряженность управляющего магнитного поля превышает величину напряженности порога зажигания.
Датчики Виганда не требуют какого-либо источника питания, их выходной сигнал практически не зависит от частоты изменения поля, и их можно использовать в широком диапазоне рабочих
температур (-196…+175 °С).
Конструкция простейшего датчика Виганда.
Датчик состоит из проволоки, изготовленной из ферромагнитного сплава типа викаллой (10% ванадия, 52% кобальта и железа), и обмотки. Точный состав материала проволоки, как правило, является секретом фирмы. Проволока Виганда представляет собой ферромагнитное тело, состоящее из магнитомягкой сердцевины и магнитотвердой внешней оболочки. Получать такие структуры удается за счет использования специальной технологии изготовления. Диаметр проволоки 0,2-0,3 мм, длина — 5 — 40 мм. Обмотка датчика обычно составляет 1000-2000 витков медного провода диаметром 0,05-0,1 мм.
Модульное исполнение датчика, состоящего из проволоки, обмотки и постоянного магнита, позволяет разрабатывать большое число вариантов датчиков перемещения.
Область их применения простирается от задач измерения и контроля до систем управления доступом, в которых они служат носителями информации в идентификационных картах.
Эффект Виганда
Принцип действия датчика основан на так называемом эффекте Виганда.
Этот эффект проявляется в том, что если ферромагнитную проволоку, имеющую специальный химический состав и физическую структуру, внести в магнитное поле, то произойдет спонтанное изменение ее магнитной поляризации, как только напряженность поля превысит некоторое пороговое значение.
Этот предел называется порогом зажигания. Изменение состояния проволоки можно регистрировать при помощи обмотки, намотанной вокруг проволоки или размещенной рядом с ней.
Пример использования такого датчика
Датчики Виганда находят широкое применение, однако в компасе мы датчик Виганда в качестве датчика угла вращения.
Пояснение
Проволока с обмоткой вокруг нее фиксируется, тогда как магнит насыщения и магнит гашения располагаются на вращающемся барабане, изготовленном из алюминия. Для датчика длиной 40 мм, установленном в промежутке от 1 до 2 мм между проволокой и вращающимся барабаном, используются два стержневых магнита с индукцией 80 и 30 мТл соответственно для генерации сигнала с амплитудой по 2 В при достаточной временной стабильности.
Для того чтобы исключить установку двух подвижных магнитов, магнит гашения (30 мТл) можно расположить очень близко к датчику. При фиксированном магните гашения в качестве подвижного магнита насыщения должен использоваться более «сильный» магнит, чтобы компенсировать поле магнита гашения. В этом заключается достоинство датчика, который всегда «видит» поле любого магнита и, следовательно, менее восприимчив к внешним полям. Если требуется получить более одного импульса за один оборот, можно воспользоваться другой конструкцией. Проволоки Виганда равномерно распределяют вокруг барабана из цветного металла и ориентируют параллельно его оси. Проволоки получаются подвижными и отделенными от обмотки датчика, которая вместе с двумя магнитами располагается в головке воспроизведения. Относительно датчика с вращающимися магнитами в этом случае изменяются параметры проволоки и магнита. Вследствие меньшего диаметра проволоки угловое разрешение этого датчика угла вращения может быть значительно увеличено. Стержневые магниты и обмотка датчика между ними ориентированы параллельно проволокам. Магниты имеют противоположную полярность, и их индукция соответственно равняется ±60 мТл.
При некотором изменении конструкции датчик может быть использован в качестве двухнаправленного прибора. При этом выходной сигнал примет вид:
Датчики вращательного движения можно легко превратить в датчики линейного перемещения. Если в качестве исходного материала взять описанные варианты датчиков вращательного движения, то проще всего вставить проволоки между полосками пластиковой или алюминиевой фольги. Эти полоски крепят к поверхностям с помощью клея, зажимных приспособлений или прессованием, соблюдая линии изгиба соответствующего радиуса. Подобные датчики используют совместно с одно- и двухнаправленными головками воспроизведения с разрешением 2 мм.
Производство таких датчиков экономично.
Хранение информации
Вследствие остаточной намагниченности проволока Виганда остается в намагниченном состоянии до тех пор, пока поле возбуждения, достаточно сильное для того, чтобы преодолеть коэрцитивную силу проволоки, не переключит ее в противоположное состояние.
Это свойство может быть использовано для хранения информации так, как это происходит в устройствах памяти на магнитных сердечниках.
Способность датчика к хранению информации остается стабильной до тех пор, пока не будет уменьшена в результате воздействия сильных внешних полей. Поскольку хранение информации не требует какой-либо электрической энергии, ключи на основе эффекта Виганда очень удобны для ввода данных с циклическим опросом. Вследствие запоминания данных скорость опроса может быть значительно снижена. В случае отключения питания подключенной схемы опроса ни одно действие ключа не будет потеряно.
Способность проволоки Виганда хранить данные очень успешно используется в считываемых идентификационных картах. Они состоят из двух рядов коротких кусков проволоки, представляющих 0 и 1 (максимальная емкость 56 бит), которые вставлены в пластиковые карты точно установленного размера, Перед тем как карта поступит на устройство считывания, все проволоки должны быть насыщены в одном и том же направлении магнитного насыщения. Следовательно, информация станет полностью независимой от воздействия внешних полей, которые могут изменять магнитное состояние проволок перед считыванием. Информация основана только на геометрической конфигурации проволок и поэтому не изменяется.
Принцип действия датчиков магнитного поля
Для определения параметров магнитного поля применяются датчики магнитного поля. Принцип их действия строиться на основе четырех физических явлений. В статье описаны устройство различных типов детекторов магнитного поля. Преимущества и недостатки каждой реализации.
Вы также можете посмотреть другие статьи. Например, «Принцип работы твердомеров по Бринеллю, Виккерсу и Роквеллу» или «Что такое неразрушающий контроль, где и как он применяется».
Широкая область применения таких датчиков требует использования различных свойств магнитного поля для их реализации. В данной работе рассмотрены принципы работы, которые заложены в датчики магнитного поля:
Датчики Виганда
Момент изменения поляризации проволоки можно наблюдать с помощью катушки индуктивности, расположенной рядом с проволокой. Индукционный импульс напряжения на ее выводах при этом достигает нескольких вольт. При изменении направления магнитного поля полярность индуктируемых импульсов изменяется. В настоящее время эффект объясняют различной скоростью переориентации элементарных магнитов в магнитомягкой сердцевине и магнитотвердой оболочке проволоки.
Конструкция датчиков Виганда содержит катушку индуктивности и проволоку Виганда. При смене полярицации проволоки, катушка, намотанная на неё, фиксирует это изменение.
Чувствительные элементы Виганда применяются в расходомерах, датчиках скорости, угла поворота и положения. Кроме того, одно из наиболее частых применений этого элемента – системы считывания идентификационных карт, которыми все мы пользуемся ежедневно. При прикладывании намагниченной карты меняется напряженность поля, на что реагирует датчик Виганда.
К достоинствам датчика Виганда следует отнести независимость от влияния внешних электрических и магнитных полей, широкий температурный диапазон работы (-80° … +260°C), работу без источника питания.
Магниторезистивные датчики магнитного поля
Магниторезистивные датчики магнитного поля в качестве чувствительного элемента содержат магниторезистор. Принцип действия датчика заключается в эффекте изменения оммического сопротивления материала в зоне действия магнитного поля. Наиболее сильно этот эффект проявляется в полупроводниковых материалах. Изменение их сопротивления может быть на несколько порядков больше чем у металлов.
Физическая суть эффекта заключается в следующем. При нахождении полупроводникового элемента с протекающим током в магнитном поле, на электроны действуют силы Лоренца. Эти силы вызывают отклонение движения носителей заряда от прямолинейного, искривляют его и, следовательно, удлиняют его. А удлинение пути между выводами полупроводникового элемента равносильно изменению его сопротивления.
В магнитном поле изменение длины «пути следования» электронов обусловлено взаимным положением векторов намагниченности этого поля и поля протекающего тока. При изменении угла между векторами поля и тока пропорционально изменяется и сопротивление.
Таким образом, зная величину сопротивления датчика можно судить о количественной характеристике магнитного поля.
Магнитосопротивление сильно зависит от конструкции магниторезистора. Конструктивно датчик магнитного поля представляет магниторезистор, состоящий из подложки с расположенной на ней полупроводниковой полоской. На полоску нанесены выводы.
Датчики этого типа, благодаря высокой чувствительности, могут измерять незначительные изменения состояния магнитного поля и его направление. Они применяются в системах навигации, магнитометрии, распознавания образов и определения положения объектов.
Индукционные датчики магнитного поля
Датчики этого типа относятся к генераторному типу датчиков. Конструкции и назначения таких датчиков различна. Они могут использоваться для определения параметров переменных и стационарных магнитных полей. В данном обзоре рассмотрен принцип работы датчика, работающего в постоянном магнитном поле.
Принцип работы индукционных датчиков базируется на способности переменного магнитного поля индуцировать в проводнике электрический ток. При этом ЭДС индукции, появляющаяся в проводнике, пропорциональна скорости изменения магнитного потока через него.
Но в стационарном поле магнитный поток не изменяется. Поэтому для измерения параметров стационарного магнитного поля применяются датчики с катушкой индуктивности, вращающейся с постоянной скоростью. В этом случае магнитный поток будет изменяться с определенной периодичностью. Напряжение на зажимах катушки будет определяться скоростью изменения потока (числом оборотов катушки) и количеством витков катушки.
По известным данным легко вычисляется величина магнитной индукции однородного магнитного поля.
Конструкция датчика показана на рисунке. Он состоит из проводника в качестве которого может выступать катушка индуктивности, расположенной на валу электродвигателя. Съем напряжения с вращающейся катушки осуществляется с помощью щеток. Выходное напряжение на выводах катушки представляет переменное напряжение, величина которого тем больше, чем больше частота вращения катушки индуктивности и чем больше магнитная индукция поля.
Датчики магнитного поля на эффекте Холла
Датчики магнитного поля на эффекте Холла используют явление взаимодействия перемещающихся электрических зарядов с магнитным полем.
Суть эффекта поясняется рисунком. Через полупроводниковую пластину пластину протекает ток от внешнего источника.
Пластина находится в магнитном поле, пронизывающем ее в направлении перпендикулярном движению тока. В магнитном поле под действием силы Лоренца электроны отклоняются от прямолинейного движения. Эта сила сдвигает их в направлении перпендикулярном направлению магнитного поля и направлению тока.
В данном случае у верхнего края пластины электронов будет больше, чем у нижнего, т.е. возникает разность потенциалов. Эта разность потенциалов и обуславливает появление выходного напряжения – напряжения Холла. Напряжение Холла пропорционально току и индукции магнитного поля. При постоянном значении тока через пластину оно определяется только значением индукции магнитного поля (рисунок слева).
Чувствительные элементы для датчиков изготовляются из тонких полупроводниковых пластинок или пленок. Эти элементы наклеиваются или напыляются на подложки и снабжаются выводами для внешних подключений.
Датчики магнитного поля с такими чувствительными элементами отличаются высокой чувствительностью и линейным выходным сигналом. Они широко применяются в системах автоматики, в бытовой технике и системах оптимизации работы различных агрегатов.
Если вам понравилась статья нажмите на одну из кнопок ниже
Сравнение различных типов энкодеров
Энкодеры широко используются в промышленности для управления движением, контроля положения и скорости электродвигателей. Полученная информация может использоваться электроникой управления движением для определения скорости вращения электродвигателя и рабочего органа, их местоположения, а также для выполнения корректировок в случае отклонения от заданных параметров.
Вот сравнение шести наиболее часто используемых типов энкодеров.
Оптические энкодеры
Оптические энкодеры используют наличие или отсутствие света для определения положения вала. Говоря простым языком — есть диск с прорезями в нем, который вращается вместе с валом. Когда диск проходит между источником света и фотоэлектрическим датчиком, отверстия регулярно пропускают свет к датчику или блокируют свет. Самые точные оптические энкодеры используют диски из стекла с черными линиями, чтобы блокировать свет, созданный точными методами фотолитографии. В датчиках положения с низким разрешением используются металлические диски со штампованными или протравленными отверстиями.
Стандартные оптические энкодеры имеют два или более фотодатчиков, смещенных на шаг 1/2 слота, что увеличивает разрешение с помощью технологии, называемой «квадратурное декодирование», которая встроена в большинство микроконтроллеров. Квадратура также позволяет устройству определять направление вращения вала. Квадратурное декодирование не добавляет задержки и обычно включает цифровой фильтр от электрических помех.
Разрешение энкодера обычно указывается изготовителем в строках на оборот или в ppr (импульсов на оборот). Это разрешение необработанных сигналов A и B, которые подаются в квадратурный декодер для определения количества импульсов / оборотов, а количество импульсов / оборотов такое же, как 4X линий / оборот.
Оптические энкодеры обычно имеют разрешение от 128 до 20000 импульсов / оборот. Некоторые улучшенные модели имеют более высокое разрешение. Средняя точность составляет ± 0,1 градуса.
Когда энкодеры любого типа используются в качестве устройств обратной связи в электроприводах на основе шагового двигателя, разрешение является важным, поскольку большое число полюсов шагового двигателя приводит к короткому электрическому циклу. Например, шаговый двигатель на 1,8 град. имеет 50 электрических циклов на один механический оборот, а разница между полным крутящим моментом и отсутствием крутящего момента составляет 1,8 градуса. 4 000 импульсов / оборот обеспечивает 20 дискретных отсчетов свыше 1,8 град., которого достаточно, чтобы сделать возможным обнаружение сваливания, предотвращение сваливания и поддержания текущего положения. Для сервопривода в режиме реального времени 20 000 импульсов на оборот — гораздо лучший выбор.
При применении к трехфазным бесколлекторным (бесщеточным) двигателям датчики часто включают в себя три дополнительных коммутационных сигнала (названных U, V и W), которые сообщают драйверу, когда следует переключать ток в обмотках статора.
Оптические энкодеры выдают мгновенный сигнал без задержки, поэтому вал электрической машины реально находится там, где сигнализирует датчик положения. Время задержки важно при использовании датчика для измерения скорости и для сервоуправления в реальном времени.
Магнитные энкодеры
Магнитные энкодеры стоят намного дешевле оптических и более компактны. Большинство из них используют аналоговые устройства на основе эффекта Холла, установленные на печатной плате. Датчики Холла приводятся в действие двухполюсным магнитом, установленным на конце вала. Датчики Холла выдают два сигнала переменного тока в противофазе с одним циклом на оборот вала. Эти сигналы интерполируются для создания 65 536 отсчетов на оборот. Однако эта интерполяция подвержена множеству ошибок, таких как электрические шумы в схемах, несовершенное намагничивание, биение вала, а также радиальное и осевое смещение магнита. Большинство магнитных энкодеров включают различные способы калибровки для компенсации как можно большего количества ошибок.
Поскольку магнитные энкодеры имеют один цикл на оборот вала, они, по сути, измеряют абсолютное положение в пределах одного оборота вала.
Магнитным энкодерам всегда нужно время для интерполяции сигналов. Ранние магнитные энкодеры имели переменную (недетерминированную) задержку преобразования, что делало их непригодными для отслеживания скорости и положения в реальном времени на машинах с большим числом полюсов, таких как шаговые двигатели. Новые, более современные модели, имеют предсказуемые задержки преобразования. Зная это, центральный процессор может автоматически корректировать показания положения и скорости для компенсации задержки.
Сравнение оптических и магнитных энкодеров
Первый энкодер — это широко используемая ранняя 12-битная модель, которая зарекомендовала себя как надежная, недорогая и достаточно точная. Он включает квадратурный интерфейс ABZ, обеспечивающий 4096 импульсов на оборот, что упрощает работу с модулями интерфейса квадратурного энкодера (QEI), которые используются в микроконтроллерах и процессорах цифровых сигналов.
12-битный энкодер был сочтен неподходящим для некоторых приложений, потому что его низкое разрешение не дает достаточно информации для правильного регулирования скорости на низких скоростях.
Второй — 16-битный магнитный энкодер, использующий датчики Холла. Разрешение намного выше, чем у 12-битной модели (65 536 импульсов на оборот против 4096), но ее точность заметно хуже. Это связано с несколькими факторами. Во-первых, методика калибровки производителя не дает достаточно малой погрешности. Во-вторых, его интерполяция сигналов эффекта Холла по своей природе неточна. И в-третьих, отношение сигнал / шум заставляет счетчик изменяться по крайней мере на два бита, даже когда он не движется, что может создавать дизеринг и производный шум в сервоконтуре. При оценке такого типа датчика важно учитывать разрешение и точность. Никогда не основывайтесь на гипотезе — чем выше разрешение, тем выше точность.
В третьем магнитном энкодере используется магниторезистивная технология, которая по своей природе более точна и менее чувствительна к внешним воздействиям, чем модели с эффектом Холла. Внешние магнитные поля, в том числе поля самого двигателя, могут влиять на работу магнитных энкодеров.
Данный тип датчика предлагает выбор интерфейса ABZ или SPI (высокоскоростной синхронный последовательный). Интерфейс SPI является обычным для DSP и микроконтроллеров и предпочтительнее ABZ. Но использование SPI предотвращает отправку квадратурного сигнала ABZ на другое устройство (например, контроллер движения), поскольку два интерфейса используют одни и те же выводы интегральной микросхемы.
Емкостные энкодеры
Емкостные энкодеры измеряют положение, отслеживая изменение емкости в цепи при вращении вала двигателя. Они невосприимчивы к внешним магнитным полям, а также к пыли и мусору. Емкостные энкодеры имеют разрешение до 16 384 импульсов / оборот (14 бит) и точность ±0,2 градуса.
Емкостные энкодеры выдают стандартный квадратурный сигнал AB, подходящий для использования в реальном времени с большинством микроконтроллеров и большинством стандартных драйверов, которые включают опцию обратной связи энкодера.
Емкостные энкодеры более устойчивы к электромагнитным помехам, чем магнитные энкодеры, и допускают большее загрязнение, чем оптические.
Многооборотные энкодеры
Многооборотные энкодеры полезны для отслеживания положения вала при выключенном контроллере или электроприводе. Например, если предприятие или технические специалисты не хотят возвращать систему в исходное состояние при каждом включении, необходимы абсолютные многооборотные энкодеры. (Если необходимо отслеживать положение только при включенном драйвере, драйвер отслеживает положение, и абсолютный многооборотный энкодер не нужен.)
Есть три распространенных типа:
Многооборотные энкодеры с питанием от батареи используют батарею, чтобы поддерживать в рабочем состоянии необходимые электрические схемы во время отключения питания для отслеживания положение энкодера через несколько оборотов. Обратной стороной является то, что информация о местоположении будет потеряна, когда батарея разрядится. Резервный аккумулятор может значительно увеличить габариты датчика положения.
Энкодеры с редуктором используют вторичный энкодер, который перемещается на один или несколько отсчетов каждый раз, когда первичный энкодер совершает один оборот. Энкодеры с редуктором не требуют батареи, но являются сложными и дорогостоящими, а шестерни могут со временем изнашиваться.
Энкодеры с накоплением энергии Wiegand используют эффект Виганда, чтобы генерировать электрический импульс каждый раз, когда датчик завершает оборот. Эта энергия постоянна независимо от того, насколько медленно вал вращается, когда он проходит магнитный переход, поэтому этот импульс можно надежно использовать для питания небольшой цепи и подсчета оборотов.
В датчиках положения на основе эффекта Виганда используется первичный магнитный энкодер, обеспечивающий 131072 отсчета на оборот (также называемый 17-битным, потому что 217 = 131 072). Счетчик оборотов — 16 бит, поэтому он может отслеживать 216 = 65 536 оборотов вала. Точность ± 0,1 град.
Интерфейс для энкодеров Weigand часто BISS-C. Некоторые микроконтроллеры имеют собственный интерфейс BISS-C, поэтому для преобразования сигнала используется внешнее устройство FPGA.
Энкодеры широко используются в приложениях управления движением с обратной связью. Выбор лучшего датчика положения для вашего приложения требует опыта, который часто можно найти у поставщиков.
Эффект Виганда
Эффект Виганда — это нелинейный магнитный эффект, названный в честь его первооткрывателя Джона Р. Виганда. Данное явление происходит в специально отожженной и закаленной проволоке, называемой проволокой Виганда.
Проволока Виганда изготавливается из низкоуглеродистого викаллоя, ферромагнитного сплава кобальта, железа и ванадия. Вначале проволока отжигается. Она притягивается к магнитам, и силовые линии магнитного поля «втягиваются» в провод. Но проволока сохраняет лишь очень небольшое остаточное магнитное поле, когда внешнее поле снимается.
Затем проволоку скручивают и раскручивают для холодной обработки внешней оболочки, пока сердечник остается мягким. Затем проволока выдерживается. Это делает магнитную коэрцитивную силу внешней оболочки намного выше, чем у внутреннего сердечника. Высокая коэрцитивность оболочки позволяет ей сохранять внешнее магнитное поле, даже когда первоначальный источник поля удален.
Теперь на проводе будет наблюдаться большой магнитный гистерезис: если к проводу поднести магнит, внешняя оболочка с высокой коэрцитивной силой удерживает магнитное поле от внутреннего мягкого сердечника. Но если магнитное поле превышает заданный порог, весь провод — как внешняя оболочка, так и внутренний сердечник — быстро меняет полярность намагничивания. Это переключение (эффект Виганда) происходит за несколько микросекунд.