Дефект фолатного цикла что это

Гены фолатного цикла. Где миф, а где реальность?

Дефект фолатного цикла что это. Смотреть фото Дефект фолатного цикла что это. Смотреть картинку Дефект фолатного цикла что это. Картинка про Дефект фолатного цикла что это. Фото Дефект фолатного цикла что это

Разбираемся, что такое фолатный цикл, зачем он нужен, какие в нем участвуют гены и почему о них можно не беспокоиться.

Фолатный цикл, или обмен витаминов В9 и В12, влияет на многие жизненно важные процессы, включая строительство ДНК и работу генов. Сбои в работе фолатного цикла связывают с целым рядом болезней: от инфаркта или инсульта до анемии и осложнений при беременности.

В этом сложном процессе участвует целый ряд ферментов, а также производные фолиевой кислоты или витамина В9. Гены, кодирующие эти ферменты, часто называют генами фолатного цикла. В них могут быть варианты, которые меняют активность и устойчивость ферментов. Анализ генов фолатного цикла может выявить эти варианты и указать на возможные проблемы. Однако связь между вариантами генов и развитием болезней до сих пор не доказана.

Содержание:

Эта статья носит исключительно образовательный и информационный характер и не может быть использована для диагностики или лечения, а также для замены профессиональных рекомендаций.

Зачем нужны гены фолатного цикла

Дефект фолатного цикла что это. Смотреть фото Дефект фолатного цикла что это. Смотреть картинку Дефект фолатного цикла что это. Картинка про Дефект фолатного цикла что это. Фото Дефект фолатного цикла что это
Что можно узнать из генетического теста

Эти ферменты участвуют на разных этапах реакции восстановления фолатов, к которым относятся, например, витамины В9 и В12. Главная цель этой реакции — получить от фолатов как можно больше СН3 метильных групп и обезвредить гомоцистеин.

Это промежуточный продукт обмена фолатов и метионина — исходного материала для реакций метилирования или переноса метильной группы (СН3). Этот процесс очень важен для работы организма: метилирование ДНК регулирует работу генов, а фолатный цикл как бы расставляет «выключатели» в нужных местах генома.

За счет этого генетическая информация сохраняется и считывается лучше, а разные клетки организма синтезируют не все белки подряд, а только те, которые нужны им сейчас. Например, клетки слизистой оболочки желудка синтезируют пищеварительные ферменты. А вот у меланоцитов в коже геном тот же, но гены пищеварительных ферментов выключены и вместо них синтезируется меланин, который дает нам загар.

Дефект фолатного цикла что это. Смотреть фото Дефект фолатного цикла что это. Смотреть картинку Дефект фолатного цикла что это. Картинка про Дефект фолатного цикла что это. Фото Дефект фолатного цикла что это

Основные функции трех генов фолатного цикла:

Название генаНазвание ферментаФункция
MTHFRМетилентетрагидрофо-латредуктазаУчаствует в подготовке кофактора — активной формы фолиевой кислоты В9 для синтеза метионина из гомоцистеина
MTRМетионин-синтазаУчаствует в реакции синтеза метионина из гомоцистеина с помощью В12
MTRRМетионин-синтаза-редуктазаПоддерживает активность метионин-синтазы и обеспечивает непрерывную утилизацию гомоцистеина

Откуда про эти гены столько мифов

Из-за нарушений в работе фолатного цикла в организме может накапливаться гомоцистеин — производное метионина. В концентрации сильно выше лабораторных норм гомоцистеин повреждает сосуды и нейроны. Его высокое содержание в крови связывают со многими патологиями: ишемической болезнью сердца, инфарктом, атеросклерозом, болезнью Альцгеймера, анемией, тромбозом.

Дефект фолатного цикла что это. Смотреть фото Дефект фолатного цикла что это. Смотреть картинку Дефект фолатного цикла что это. Картинка про Дефект фолатного цикла что это. Фото Дефект фолатного цикла что это

Дефект фолатного цикла что это. Смотреть фото Дефект фолатного цикла что это. Смотреть картинку Дефект фолатного цикла что это. Картинка про Дефект фолатного цикла что это. Фото Дефект фолатного цикла что это
Как генетическое тестирование помогает при планировании семьи

Первые данные о влиянии гомоцистеина на здоровье появились в 1962 году, когда было описано редкое наследственное заболевание гомоцистинурия. Для этого состояния характерен высокий уровень гомоцистеина, который вызывает серьезную задержку в психическом развитии из-за неправильной работы гена СВS. Впервые повышение уровня гомоцистеина и развитие тромбоза в детстве было связано со сбоями в работе фермента MTHFR в 1991 году. А в 1995 были обнаружены варианты в гене MTHFR, которые влияют на активность фермента.

В итоге родилась теория о том, что варианты генов фолатного цикла могут приводить к высокому уровню гомоцистеина из-за нарушений в работе ферментов. Следовательно, наличие таких вариантов могло оказаться ценным маркером для диагностики и предотвращения различных заболеваний: от бесплодия до рака.

Сотни ученых искали взаимосвязь между патологиями и разными вариантами генов, и такая корреляция была найдена. Без достаточных доказательств клинического значения, на основании этой взаимосвязи анализ генов фолатного цикла стали предлагать пациентам.

Правда о генах фолатного цикла

Анализ генов фолатного цикла не входит в рекомендации большинства мировых генетических сообществ и клинических организаций. А если внимательно присмотреться к его научной базе, оказывается, что доказательств связи между вариантами этих генов и заболеваниями недостаточно.

Основная проблема в том, что полиморфизмы или варианты генов — далеко не единственная причина повышения уровня гомоцистеина в крови. Это справедливо только для редких случаев гомоцистинурии, а в остальном нельзя не учитывать диету, образ жизни и целый ряд других показателей обмена веществ.

Комплексных исследований, доказывающих связь болезней помимо гомоцистинурии с мутациями, пока нет. А опубликованные результаты не всегда согласуются друг с другом.

В 2018 году вышел большой критический обзор исследований, посвященных гену MTHFR. Авторы обзора пришли к выводу, что клинического значения мутаций генов фолатного цикла недостаточно, чтобы руководствоваться этим при ведении серьезных заболеваний. Сравнивая различные статьи по этой теме, ученые обнаружили методологические ошибки и нестыковки в данных.

Например, большинство исследований рассматривает небольшие выборки жителей Азии. При этом в других популяциях похожие связи не прослеживаются. Кроме того, публикаций с опровержением этого мифа может быть мало из-за академической предвзятости к негативным результатам исследований. Похожая ситуация и с другими двумя генами: MTRR и MTR.

Рекомендации

Профессиональные ассоциации генетиков и ключевые клинические организации в мире советуют обходиться без тестирования генов фолатного цикла при постановке диагноза и выборе лечения.

ОрганизацияРекомендацииДокумент
American Heart AssociationГомоцистеин не следует использовать в оценке риска сердечно-сосудистых заболеваний.Greenland et al. (2010).
American Congress of Obstetricians and GynecologistsИз-за недостаточной связи между C677T полиморфизмом в гене MTHFR и любыми осложнениями беременности, включая риск венозной тромбоэмболии, скрининг мутаций MTHFR не рекомендуется.American Congress of Obstetricians and Gynecologists (2013).
American College of Medical GeneticsГенетический анализ MTHFR не следует включать в клиническую оценку риска тромбоза или рецидивирующей потери беременности.Hickey et al. (2013).

Анализ генов фолатного цикла не помогает вылечить или предотвратить сердечно-сосудистые заболевания, психические расстройства и осложнения при беременности.

С Генетическим тестом Атлас можно узнать, какие из ваших генов действительно влияют на предрасположенность к заболеваниям. Анализ вариантов в гене MTHFR или других генах “фолатного цикла” (MTR, MTRR) намеренно не включен в интерпретацию результатов генетического теста.

Источник

Фолатный цикл: анализ

Фолатный цикл, метилирование, метилфолат… В этой статье вы найдете много новых полезных слов, а, главное, узнаете, зачем нам нужен витамин B 9, как он влияет на уровень гомоцистеина и как контролировать свой фолатный цикл.

Витамин B 9 – это водорастворимый витамин, отвечающий за грамотную работу иммунной, сердечно-сосудистой и нервной систем. Витамин снижает образование гомоцистеина – вещества, которое в избытке провоцирует сердечно-сосудистые патологии.

Дефицит В9 приводит к:

· усталости, слабости и раздражительности;

· риску развития патологий нервной системы, включая шизофрению и аутизм;

· риску осложнений беременности: задержке роста плода, дефекту нервной трубки, отслойке плаценты.

К снижению витамина В9 ведет:

· частое употребление кофе и кофеинсодержащих напитков;

· воспалительные заболевания кишечника;

· применение противосудорожных препаратов;

· прием противовоспалительных средств (аспирин, ибупрофен);

· прием противозачаточных таблеток.

У витамина В9 есть две формы :

1. Фолат – витамин, который существует в природе и присутствует в продуктах питания.

2. Фолиевая кислота – синтетическая форма B 9, основа добавок. Прежде, чем организм сможет ее использовать, она должна быть преобразована в активную форму. Но некоторые генетические мутации могут замедлить этот процесс.

В9 содержится в фруктах и их соках, темно-зеленых листовых овощах, орехах, горохе, фасоли, морепродуктах, мясе, птице, яйцах, молочных продуктах и зерне. Шпинат, спаржа, печень и брюссельская капуста имеют самый высокий уровень фолатов.

Суточная доза потребления витамина В9 составляет 400 мкг, для беременных и кормящих женщин – 600 мкг.

Нарушение фолатного цикла приводит к накоплению гомоцистеина и повышению его уровня в крови. Он обладает токсическим действием, повышает риск развития атеросклероза и тромбоза. Гипергомоцистеинемия может стать причиной серьезных осложнений беременности. У женщин с нарушенным фолатным циклом чаще рождаются дети с дефектом нервной трубки и синдромом Дауна.

Для нормальной работы фолатного цикла требуется, чтобы гены, которы е кодируют ферменты, не имели нарушений. Из-за генетических вариаций организм некоторых людей может недостаточно эффективно использовать витамин В9, в результате чего может выявляться его недостаточность даже при нормальном его поступлении. Например, нарушение работы фермента MTHFR приводит к неэффективному превращению витамина В9 в активную форму, что в дальнейшем аукнется дефицитом витамина.

Людям с дефектами в генах фолатного цикла лучше избегать употребления большого количества фолиевой кислоты и выбирать добавки, которые содержат активный метилфолат (5-MTHF). Это связано с тем, что прием добавок, содержащих активную форму витамина B9, гарантирует, что фолат может сразу использоваться организмом.

Как узнать, есть ли у вас дефекты генов, отвечающих за усвоение витамина B 9?

Он может называться по-разному: фолатный цикл анализ, витамин б9 анализ, мутации фолатного цикла анализ, анализ генов фолатного цикла, анализ полиморфизмов фолатного цикла, нарушения фолатного цикла анализ, генетический анализ фолатного цикла… Но суть одна: это анализ, который исследует гены, отвечающие за метаболизм витамина В9.

Вам необходимо это исследование, если:

После анализа вы узнаете:

Источник

Дефект фолатного цикла что это

Генетика фолатного цикла

Генетика фолатного цикла

Ф олатный цикл – каскадный процесс, контролируемый ферментами, которые в качестве коферментов имеют производные фолиевой кислоты. Ключевым этапом в данном процессе является синтез метионина из гомоцистеина. Это достигается в процессе превращения фолатов: восстановления 5,10-метилентетрагидрофолата до 5-метилтетрагидрофолата, несущего метильную группу, которая необходима для превращения гомоцистеина в метионин. Восстановление фолатов происходит при участии фермента метилентетрагидрофолатредуктаза (MTHFR). Метильная группа переносится на витамин B12, который затем отдает ее гомоцистеину, образуя метионин с помощью фермента метионин-синтазы (MTR). Однако в некоторых случаях В12 может окисляться, что приводит к подавлению метионин-синтазы. Для поддержания активности фермента необходимо восстановительное метилирование с помощью фермента метионин-синтаза-редуктазы (MTRR).

Нарушение фолатного цикла приводит к накоплению гомоцистеина в клетках и повышению общего уровня гомоцистеина в плазме. Гомоцистеин обладает выраженным токсическим, атерогенным и тромбофилическим действием, что обусловливает повышенный риск развития ряда патологических процессов.

Причины нарушений фолатного цикла:

Генетические дефекты ферментов фолатного цикла MTHFR, MTR и MTRR.

Дефицит фолиевой кислоты.

Дефицит витаминов В6 и В12.

Назначение: Позволяет определить генетические дефекты ферментов фолатного цикла MTHFR, MTR и MTRR.

Стоимость услуги: 2500.

Материал исследования/ Подготовка к проведению анализа:

венозная кровь с ЭДТА (Не требуется специальная подготовка).

буккальный (защечный) эпителий/ не рекомендуется прием пищи в течение 2 часов до взятия соскоба.

Противопоказания к проведению анализа: отсутствуют.

Срок исполнения: 10 рабочих дней (без учёта доставки).

Показания к назначению исследования:

Повышенный уровень гомоцистеина в крови (гипергомоцистеинемия);

Невынашивание беременности, гибель плода во 2 и 3 триместрах беременности;

Рождение ребенка с изолированными пороками нервной трубки, сердца или урогенитального тракта;

Плановая подготовка к беременности;

Наличие ИБС, артериальной гипертонии, атеросклероза или атеротромбоза;

Семейная предрасположенность к онкологическим заболеваниям;

Назначение оральных контрацептивов и гормональной заместительной терапии.

Метод исполнения: Исследование «Генетика фолатного цикла» выполняется методом ПЦР в реальном времени, включающий анализ 4 локусов генов MTHFR, MTR, MTRR.

Возможность проведения качественного и количественного анализа.

Высокая специфичность реакции за счет использования высокоспецифичных флуоресцентных зондов.

100% соответствие результатам «золотого стандарта».

Быстрый и точный метод определения генотипа.

Анализ на наличие мутаций достаточно провести 1 раз в жизни.

Высокая прогностическая значимость выявляемых факторов риска.

Источник

Генетический полиморфизм, ассоциированный с риском развития нарушений обмена гомоцистеина (фолатный цикл)

Фолиевая кислота – водорастворимый витамин B9, необходимый для роста и развития кровеносной и иммунной систем. Недостаток фолиевой кислоты может вызвать мегалобластную анемию у взрослых, а при беременности повышает риск развития дефектов нервной

трубки. Производные фолиевой кислоты называются фолатами. Животные и человек не синтезируют фолиевую кислоту, получая ее в основном вместе с пищей. Фолиевая кислота в больших количествах содержится в зеленых овощах с листьями, бобовых, в хлебе из муки грубого помола, дрожжах, печени. Во многих странах законодательство обязывает производителей мучных продуктов обогащать зерна фолиевой кислотой.

Группа соединений фолатов играет ведущую роль в широком спектре жизненно важных процессов:

Данные функции реализуются в процессе метаболизма фолатов, который составляет основу фолатного цикла.

Фолатный цикл – каскадный процесс, контролируемый ферментами, которые в качестве коферментов имеют производные фолиевой кислоты. Ключевым этапом в данном процессе является синтез метионина из гомоцистеина. Это достигается в процессе превращения фолатов: восстановления 5,10-метилентетрагидрофолата до 5-метилтетрагидрофолата, несущего метильную группу, которая необходима для превращения гомоцистеина в метионин. Восстановление фолатов происходит при участии фермента метилентетрагидрофолат-редуктазы (MTHFR). Метильная группа переносится на B12, который затем отдает ее гомоцистеину, образуя метионин с помощью фермента метионин-синтазы (MTR). Однако в некоторых случаях В12 может окисляться, что приводит к подавлению метионин-синтазы. Для поддержания активности фермента необходимо восстановительное метилирование с помощью фермента метионин-синтаза-редуктазы (MTRR).

Нарушение фолатного цикла приводит к накоплению гомоцистеина в клетках и повышению общего уровня гомоцистеина в плазме крови. Главной формой фолата в плазме является 5-метилтетрагидрофолат, несущий на себе метильную группу, которая необходима для превращения гомоцистеина в метионин. Поскольку кобаламин (витамин B12) служит акцептором метильной группы 5-метилтетрагидрофолата, дефицит этого витамина приводит к «ловушке для фолата». Это тупиковый путь метаболизма, поскольку метилтетрагидрофолат не может восстанавливаться до тетрагидрофолата и возвращаться в фолатный пул.

Это приводит к истощению запаса метионина и выбросу в кровь избытка гомоцистеина, который

обладает атерогенным действием, гипертензивными свойствами, повышает гиперагрегацию тромбоцитов.

Кроме того, гомоцистеин свободно проходит через плаценту и оказывает тератогенное и фетотоксическое действие.

Нарушение метаболизма фолатов и повышение уровня гомоцистеина обусловливают повышенный

риск развития патологических процессов:

Нарушения фолатного цикла не оказывают изолированного влияния на возникновение венозных тромбозов при применении гормональной заместительной терапии и оральных контрацептивов, однако при наличии других тромбофилических полиморфизмов (особенно лейденской мутации и мутации гена протромбина: 20201 G>A) многократно усиливают их действие.

Причины нарушения фолатного цикла:

Анализ полиморфизмов в генах фолатного цикла позволяет определить предрасположенность

к указанным выше патологическим процессам и дает возможность своевременного принятия мер

посредством назначения корректирующей терапии.

П оказания к назначению профиля «Генетика метаболизма фолатов» :

Полиморфизм гена метионинсинтазы MTR(A2756G)

П оказания к назначению: повторные эпизоды венозных тромбоэмболий в анамнезе, эпизоды тромбоэмболий во время беременности, в послеродовом периоде и во время приёма оральных контрацептивов, необъяснимая гибель плода во 2 или 3 триместрах беременности, мегалобластная анемия, мутация MTRR.

Биологический материал для анализа : цельная кровь, стабилизированная ЭДТА

Полиморфизм гена метилентетрагидрофолатредуктазы MTHFR(A1298C) (тератогенный фактор)

Показания к назначению: повторные эпизоды венозных тромбоэмболий в анамнезе, эпизоды тромбоэмболий во время беременности, в послеродовом периоде и во время приёма оральных контрацептивов, необъяснимая гибель плода во 2 или 3 триместрах беременности, дефект невральной трубки у плода в анамнезе.

Биологический материал для анализа : цельная кровь, стабилизированная ЭДТА

Полиморфизм гена метилентетрагидрофолатредуктазы MTHFR(С677Т) (наследственная гипергомоцистеинемия)

Частота встречаемости гомозиготного носительства по данной мутации среди белого населения планеты составляет от 5 до 12 %. Гетерозиготная мутация С677Т наблюдается у 50% в популяции. Полиморфизм C677T связан, по крайней мере, с четырьмя группами многофакторных заболеваний: сердечно-сосудистыми заболеваниями (атеросклеротическое поражение сосудов, атеротромбоза и его осложнений), дефектами развития плода (дефект развития нервной трубки), колоректальной аденомой и раком молочной железы и яичника.

Показания к назначению: гипергомоцистеинемия, ИБС и инфаркт миокарда, атеросклероз и атеротромбоз, антифосфолипидный синдром, полипоз кишечника, колоректальная аденома и рак, мутации генов BRCA, цервикальная дисплазия, особенно в сочетании с папилломавирусной инфекцией.

Биологический материал для анализа : цельная кровь, стабилизированная ЭДТА

Полиморфизм гена редуктазы метионинсинтазы MTRR(A66G) (тератогенный фактор)

Ген MTRR кодирует фермент метионинсинтазу редуктазу, участвующий в большом количестве биохимических реакций, связанных с переносом метильной группы. Одной из функций МСР является обратное превращение гомоцистеина в метионин. В качестве кофактора в этой реакции принимает участие витамин В12 (кобаламин). Полиморфизм I22M A>G связан с аминокислотной заменой в молекуле фермента МСР. В результате этой замены функциональная активность фермента снижается, что приводит к повышению риска нарушений развития плода – дефектов невральной трубки. Влияние полиморфизма усугубляется дефицитом витамина В12. При сочетании полиморфизма I22M A>G гена MTRR с полиморфизмом 677C-> T в гене MTHFR риск увеличивается. Полиморфизм I22M A->G гена MTRR также усиливает гипергомоцистеинемию, вызываемую полиморфизмом 677C-> T в гене MTHFR.

Показания к назначению: повторные эпизоды венозных тромбоэмболий в анамнезе, эпизоды тромбоэмболий во время беременности, в послеродовом периоде и во время приёма оральных контрацептивов, необъяснимая гибель плода во 2 или 3 триместрах беременности.

Биологический материал для анализа : цельная кровь, стабилизированная ЭДТА

Источник

Генетика метаболизма фолатов

Поскольку метаболизм фолатов является важным звеном базовых биологических процессов, то его нарушения, в том числе генетически обусловленные, рассматриваются как фактор высокого риска развития патологических состояний: сердечно-сосудистых заболеваний (ССЗ), онкологических заболеваний, нарушений репродуктивных функций и патологий развития плода. Своевременное выявление генетической мутации, нарушающей выработку ферментов фолатного цикла, дает возможность эффективно контролировать и корректировать уровень фолиевой кислоты у пациентов, что благотворно сказывается на их здоровье.

Группа соединений фолатов играет ведущую роль в широком спектре жизненно важных процесов:

Фолатный цикл – каскадный процесс превращения фолиевой кислоты в доступное для усваивания организмом производное – 5-метилтетрагидрофолат. Процесс контролируется ферментом метилентетрагидрофолатредуктазой (MTHFR). Обмен фолатов является источником одноуглеродных фрагментов (метильной группы –СН3) для жизненно важных клеточных процессов: биосинтеза пуриновых нуклеотидов и превращения уридинионофосфата в тимидилат; митилирования ДНК и РНК.

С фолатным циклом сопряжён цикл образования метионина из гомоцистеина, который проходит при участии витамина В12 и двух ферментов: метионин-синтазы (MTR) и метионин-синтаза-редуктазы (MTRR).

Нарушения метаболизма фолатов влияют на стабильность ДНК двумя основными способами:

Поскольку метаболизм фолатов является важным звеном базовых биологических процессов, то его нарушения, в том числе генетически обусловленные, рассматриваются как фактор высокого риска развития патологических состояний: сердечно-сосудистых заболеваний (ССЗ), онкологических заболеваний, нарушений репродуктивных функций и патологий развития плода.

С точки зрения вклада в развитие ССЗ рассматриваются два процесса, связанные с фолатным циклом: накопление гомоцистеина и нарушение процессов метилирования ДНК.

Основным повреждающим эффектом повышения уровня гомоцистеина является активация атеротромбоза за счёт многочисленных механизмов. Установлено, что у больных с повышенным уровнем гомоцистеина риск смерти от всех сердечно-сосудистых причин был выше в 1,7 раза, от инфаркта миокарда – в 3,4 раза, от инсульта – в 4,3 раза, чем у больных с нормальным уровнем гомоцистеина. Кроме того, гомоцистеин является частичным агонистом рецепторов глицина. При таких состояниях, как инфаркт и травма мозга, когда концентрация глицина возрастает, даже незначительные концентрации гомоцистеина начинают оказывать выраженное нейротоксическое воздействие. Эффективность метаболизма гомоцистеина напрямую зависит от достаточности фолатов в организме и полноценного функционирования фермента MTHFR.

Роль генетически обусловленных нарушений метаболизма фолатов была доказана для пациентов с инфарктом миокарда и ишемическим инсультом: наличие полиморфизма MTHFR C667T было ассоциировано с тромботическими событиями. Тем не менее следует отметить, что само по себе носительство условно «неблагоприятных» аллельных вариантов генов ферментов фолатного цикла повышает риск ССЗ в случае отсутствия коррекции уровня фолатов в организме. Исследования показали, что носительство полиморфных аллелей MTHFR C667T не влияло на прогноз больных с нормальным уровнем фолиевой кислоты, в то время как при низком фолатном статусе риск основных коронарных событий был повышен на 32% у гетерозиготных носителей и на 44% у гомозиготных носителей аллели 667TT, а также была отмечена тенденция к повышению сердечно-сосудистых осложнений у носителей потенциально благоприятного «дикого» генотипа, имевших сопутствующий дефицит фолиевой кислоты.

Регулярный приём фолиевой кислоты (под контролем врача) значительно снижает содержание в крови гомоцистеина и сокращает ежегодную смертность от ССЗ.

Особую актуальность генетические дефекты фолатного цикла имеют с точки зрения развития репродуктивных проблем и пороков развития плода. Ассоциация генетических полиморфизмов ферментов фолатного цикла доказана при осложнениях беременности: фетоплацентарной недостаточности, преэклампсии, преждевременной отслойке нормально расположенной плаценты, замершей беременности, внутриутробной гибели плода, развитии гестоза. Была установлена связь с высокой частотой аномальных гинекологических и акушерских кровотечений. Примечательно, что дефекты генов ферментов фолатного цикла ассоциированы и с бесплодием у мужчин, необструктивной азооспермией и олигозооспермией.

Важно знать, что при наследственных дефектах генов ферментов фолатного цикла избыток синтетической фолиевой кислоты может ещё больше нарушить равновесие и привести к таким же последствиям для плода, как и дефицит этого витамина.

Показания к генетическому анализу:

При проведении генетического исследования метаболизма фолатов определяют следующие полиморфизмы:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *