Дегазированная вода что это такое

Дегазация воды: химические и физические способы дегазации

Дегазацию воды можно позиционировать как устранение растворенных в ней газов, а также удаление газов, которые образовались в результате ее обработки. Наиболее часто из воды приходится устранять углекислоту, кислород и сероводород, более редко встречаются случаи, требующие использования методов по устранению из жидкости метана.

Углекислота, сероводород и другие коррозионно-активные газы создают благоприятные условия для образования коррозии металла, а также выступают в качестве катализаторов коррозионных процессов. Диоксид углерода способствует образованию коррозии бетона.

Дегазация используется в системах горячего водоснабжения, а также при подготовке питательных вод для котлов, как среднего, так и высокого давления, кроме того, она необходима при ионитовом умягчении воды, обезжелезивании воды. Кроме того дегазация является обязательным процессом в случае применения подземных вод, которые отличаются высоким содержанием сероводорода.

В настоящее время, для дегазации воды используют физические, а также химические способы. Под химическими способами, которые предназначены для дегазации воды, понимают добавление в жидкость специальных реагентов, которые имеют способность связывать растворенные в жидкости газы.

Примером данного способа может послужить обескислороживание (устранение кислорода) воды путем добавления в нее гидразин-гидрата. Такая процедура обескислораживания также может проходить путем фильтрации с использованием фильтров, которые загружены стальными стружками. И в первом, и во втором случае осуществляется связывание растворенного в воде кислорода, в результате чего он утрачивает свои коррозионные свойства.

Стоит отметить, что используемые для дегазации воды после водоочистки физические методы имеют более доступную стоимость по сравнению со стоимостью химических методов. Это обстоятельство, пожалуй, служит основной причиной, по которой физические методы применяются на практике гораздо чаще.

Сущность этого вида методов борьбы с газами в жидости заключается в создании условий, которые способствуют тому, что растворимость содержащихся в воде газов сводится практически к нулю. В качестве примера физических методов дегазации, можно взять аэрацию воды, к которой прибегают для удаления из жидкости таких газов, как сероводород или свободная углекислота. По своей сути процедура аэрации заключается в обеспечении соприкосновения газа, который растворен в воде, с воздухом.

Все дело в том, что парциальное давление сероводорода и углекислоты в атмосферном воздухе ничтожно мало и приравнивается к нулю, а это в свою очередь значит, что создаются идеальные условия для процесса диффузии растворенного в воде газа и пропускаемого через эту жидкость воздуха. Для осуществления аэрации необходимо использовать специальное оборудование, которое предназначено непосредственно для дегазации, и носит соответствующее название – дегазаторы. Хотя не исключены случаи, когда с этой же целью применяются так называемые брызгальные бассейны, в основном подобные устройства нужны, когда требуется провести обезжелезивание воды.

Среди различного оборудования, которое применяется при водоподготовке для дегазации воды, наиболее распространены пленочные дегазаторы. Эти устройства в целом представляют собой колонны, которые наполнены насадкой. Вода, которая проходит процедуру аэрации, стекает по насадке и при этом омывается встречным потоком воздуха, который подается довольно мощным вентилятором.

Физическая дегазация воды проводится также при необходимости обескислороживании жидкости. Для удаления кислорода из воды, ее доводят до кипения. В процессе кипения растворимость каждого из присутствующих в воде газов приближается к нулю. Для этой процедуры используются либо термические, либо вакуумные дегазаторы. Термические дегазаторы повышают температуру воды, доводя ее до кипения, в то время как вакуумные дегазаторы снижают давление жидкости, тем самым провоцируя кипение воды без изменения ее температуры.

Источник

Дегазация воды: химические и физические способы дегазации

Дегазация — технологический процесс очистки, суть которого заключается в улавливании растворенных в воде летучих газов. Метод активно применяется для удаления молекул кислорода, углекислого газа, сероводородных включений. В качестве коррозийных катализаторов эти элементы создают оптимальные условия на стадии обезжелезивания, однако негативным образом сказываются на окончательном качестве воды.

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Реже на практике встречаются случаи, когда подобные установки используются для устранения из жидкости метана. Выделяемый в процессе первичной водоподготовки, газ при взаимодействии с воздухом образует взрывоопасную смесь. Во избежание серьезных последствий дегазация воды в подобных ситуациях является обязательной.

Актуальность метода

Данный способ применим ко многим сферам промышленной деятельности, работа которых основана на применении воды из первичных или центральных источников. Дегазация активно используется в системах горячего водоснабжения, без нее не обходится ни одна профессиональная подготовка подпитки для котельного оборудования.

В обособленном формате такой вид фильтрации встречается крайне редко. Чаще данная стадия присутствует в комплексных системах водоподготовки, функционал которых нацелен на ионитовое умягчение и обезжелезивание воды, а также борьбу с сероводородными включениями из подземных источников.

Способы дегазации

В настоящее время существуют две эффективные методики очистки воды с использованием профессиональных дегазаторов:

-химическая (с добавлением в рабочую среду специальных реагентов направленного действия);
-физическая (создание благоприятных условий для естественного удаления газовых скоплений).

Выбор оптимального решения зависит от индивидуальных особенностей объекта, уровня загазованности воды, присутствия в ее составе других посторонних включений и примесей. Рассмотрим каждый более подробно.

Химические методы дегазации

Под химическими процессами очистки воды понимают добавление в исходную жидкость подходящих по составу реагентов. Их способность объединять мельчайшие молекулы растворенных газов в более крупные частицы способствуют их дальнейшему удержанию встроенными фильтрующими элементами.

Ярким примером реализации представленного способа является обескислороживание воды при помощи добавления в нее гидразин-гидрата. При желании, такая методика может быть реализована при помощи специальных фильтров-уловителей, наполненных стальной стружкой. Обе технологии нацелены на изоляцию растворенного в воде кислорода с целью блокировки его коррозийных свойств.

Физические способы дегазации

По сравнению с предыдущей методикой подобные решения характеризуются относительно невысокой стоимостью, безопасностью и удобством реализации. Эти факты, пожалуй, служат основной причиной, по которой физические методы применяются на деле гораздо активней. Один из них — процедура аэрации. Основная задача данного метода заключается в удалении сероводорода и диоксида углерода путем насыщения исходной жидкости молекулами кислорода.

Наиболее распространенными моделями установок для физической дегазации являются пленочные дегазаторы. Конструктивно такие системы выполнены в форме цилиндрических колонн, оснащенных специальными насадками. Вода, проходя аэрационную стадию, стекает по выведенным каналам, контактируя при этом со встречным воздушным потоком. Обогащенный кислородом воздух подается через специальные отверстия под напором, который создается довольно мощным вентилятором.

В качестве наглядного примера рассмотрим все ту же необходимость обескислороживания жидкости, что и в предыдущем случае. Для эффективного удаления кислорода из жидкости, ее предварительно доводят до кипения. В ходе принудительного нагрева растворимость каждого из присутствующих в воде газов приближается к нулевой отметке. Для этих целей используются термические или вакуумные дегазаторы. Первые повышают температуру воды классическим способом, вторые достигают того же эффекта путем снижения ее нормального давления.

Источник

ДЕГАЗИРОВАННАЯ ВОДА, ИЛИ «ХОЛОДНЫЙ КИПЯТОК»

В воде обычно растворены различные газы. Конечно, не в такой степени, как в специально газированной. По закону Генри-Дальтона, определенной температуре воды при постоянном атмосферном давлении соответствует определенное содержание газов.

Содержание кислорода в такой воде уменьшается примерно в два раза (с 9 мг/л до 4,2 мг/л). Уменьшение содержания газов в охлажденной воде приводит к изменению ее физико-химических свойств: поверхностного натяжения, плотности, вязкости, электропроводности. Полученный «холодный кипяток» очень сходен с жидкими средами биологических объектов.

Он легче проникает через мембраны клеток, его поглощение тканью растений возрастает в несколько

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Рис. 12. Получение «холодного кипятка»

раз. Такую воду так и называют — биологически активная вода. Есть и другие названия — дегазированная вода, или «холодный кипяток».

В том, что дегазированная вода биологически активна, можно убедиться на элементарном опыте: если свежесор- ванные листья березы или тополя опустить на полчаса в дегазированную воду, они покроются множеством темных пятен — это вода проникла в клетки листа (рис. 13).

Секрет втом, что обычная вода насыщена природными газами, в том числе и кислородом, который и определяет многие ее свойства.

После подогрева и быстрого охлаждения содержание кислорода в воде уменьшается, что и обеспечивает ее биологическую активность. Согласно закону Генри-Дальтона, насыщенность воды газами зависит от температуры: при понижении температуры сна повышается и наоборот. Эффект заключается втом, что, если нагретая вода при охлаждении лишена возможности поглощать газы, она приходит в неравновесное состояние. Неравновесная вода, как растянутая пружина, стремится к равновесию, и так

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Рис. 13. Опыт, проведенный со свежесорванными листьями березы

же, как в пружине, в такой воде содержится энергия. Эта энергия и определяет биостимулирующие свойства дегазированной воды.

Специалисты экспериментально установили, что такая вода ускоряет целый ряд физико-химических процессов, например повышает прочность бетона до 20% (подтверждено исследованиями составителя).

Необычные свойства дегазированной воды открыли казахстанские исследователи, братья И. Д. и В. Д. Зелепухи- ны. Еще в 1972 году они начали опыты по стимуляции жизнедеятельности растений и животныхдегазированной водой.

Как и при рождении многих открытий, «его величество случай» имеет отношение и к этому открытию. Зелепухины натолкнулись на удивительное свойство воды случайно, по. нерасторопности. Обычно для одного биологического опыта использовались 8 стаканов заранее вскипяченной и медленно охлажденной воды. При такой технологии пока приготовят последний стакан, в первом успевают раствориться газы воздуха. Когда доходит очередь использовать последний стакан — в воде тоже уже много газов. Неожиданно один из стаканов разбился, и, чтобы не прерывать опыт, недоста-

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Рис. 14. Простейшие методы получения дегазированной воды:

I — дегазация с помощью нагрева до 90-95 °С (емкость открыта).

ющую часть воды после кипячения охладили очень быстро, получив дегазированную воду (рис. 14).

Для получения активированной воды на садовом участке открытую металлическую бочку следует заполнить водой и нагреть до 90-95 °С (например на костре), после чего закрыть плавающей крышкой (деревянной или пенопластовой). Крышка должна свободно перемещаться в бочке, зазор между нею и стенкой бочки не должен превышать 1-2 мм. Воду охлаждают до 20 °С или до температуры окружающей среды в летнее время, что влечет за собой резкое уменьшение содержания ра

створенных газов. В частности, концентрация растворенного кислорода снижается вдвое по сравнению с необработанной водой. Полученную активированную воду нужно как можно меньше переливать из одной посуды в другую, так как при этом она насыщается газами и теряет свою активность уже через 3- 4 часа. Желательно как можно быстрее ее охладить, для чего змеевик, по которому пропускают холодную воду для полива, необходимо прикрепить к низу плавающей крышки. Установив внизу бочки кран, можно получить отличную емкость для приготовления и временного хранения «холодного кипятка» — она всегда закрыта и не имеет контакта с воздухом.

Выше описана простейшая установка, рассчитанная на применение в личном хозяйстве. Нарис. 15,16 и 17 представлены схемы и включение термического дегазатора для потребления активированной воды.

Конструкции нескольких видов установок для непрерывного получения дегазированной воды разработаны в «Мос- гипроНИИСельстрое».

Зелепухины установили, что дегазированная вода имеет повышенную биологическую активность. Поставив множество экспериментов с животными и растениями, они доказали эффективность ее использования в сельском хозяйстве.

Биологически активной водой поили крыс, хомяков и нутрий. Воду давали ежедневно в течение 30 дней. Итог — подопытные грызуны вдвое превзошли по массе и размерам своих контрольных собратьев. После того, как кур в течение месяца поили дегазированной водой, прибавка в весе составила 50%, а у кроликов — 25%.

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Действие дегазированной воды на функции печени животных проверялось на четырехлетней и полуторагодовалой овцах. Сначала овец поили обычной водой и через день брали у них желчь, в которой определяли содержание пигмента билирубина, фолиевой (птероилглютоминовой) кислоты, мочевины, сухого остатка. Затем животных начали раз в день по утрам поить дегазированной водой (12 дней). Реакция

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Рис. 16. Схема термического дегазатора непрерывного действия

испытуемых была различной. У более старой овцы вода стимулировала выделение желчи, повышала содержание в ней билирубина, фолиевой кислоты и мочевины, а у молодой — наоборот, вызвала торможение в функционировании органа. Интересно, что у обеих подопытных биологически активная вода способствовала понижению температуры тела. Это весьма важно, если учесть, что, согласно исследованиям американских ученых-физиологов, снижение температуры на 1-2 °С приводит к увеличению на 20-25% продолжительности жизни животных.

Использование биологически активной воды — один из путей повышения урожайности сельскохозяйственных культур. «Холодный кипяток» действует как стимулятор роста

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

Рис. 17. Включение установки дегазации в схему водопое- ния сельскохозяйственных животных: а — зона нагрева, дегазация; б — нагреватель; в — емкости; г — сетевая вода; д — дегазированная вода

и повышения урожайности растений и в сравнении с рядом известных стимуляторов имеет преимущества. Он нетоксичен, экологически чист, доступен, прост в изготовлении. Биологическую активность такая вода сохраняет несколько часов, пока в воде опять не растворятся газы. Доказано, что биологически активная вода лучше усваивается растениями, стимулирует их физиологические процессы (дыхание, фотосинтез, водообмен, рост), так как она легче проникает через мембраны клеток и ее поглощение тканью растений возрастает в несколько раз.

В жизни растений большое значение имеет процесс испарения воды — транспирация. Еще К.А. Тимирязев убедительно доказал: ни для роста, ни для питания испарение в тех размерах, в каких оно обычно происходит, не может быть признано необходимым для растительного организма. Так что, значительно сократив расход воды на транспирацию, можно получить большой экономический эффект. Исследования, проведенные в Чимкентской области, показали, что дегазированная вода способна сократить расход влаги хлопчатником до 20-30%. При этом повышается ее жаростойкость.

Наибольшего эффекта можно добиться при использовании дегазированной воды в теплицах. Сохраняя обычную в условиях закрытого грунта технологию выращивания растений (семена как обычно замачивают до полного набухания, затем подсушивают и высевают), здесь можно время от времени «подменять» обычную воду дегазированной. Опыт некоторых хозяйств показал: у огурцов, семена которых прошли такую обработку, а побеги поливались или опрыскивались дважды в фазе 4-го и 5-го листа и в фазе бутонизации, урожайность повысилась до 50%.

Если исходить из исследований Зелепухиных, то спектр применения дегазированной воды таков: для профилактики и лечения простудных заболеваний (ангины, гриппа); при заболеваниях зубов и полости рта (применение в виде полоскания); для обработки пораженных мест при кожных заболеваниях (ранах, ушибах, ожогах). Полезно умываться и мыть голову этой водой — кожа становится эластичной, а волосы мягкими. Ученые утверждают, что ежедневное употребление одного стакана воды, приготовленной таким образом, не уступает по эффекту многим лечебным эликсирам. Отмечены случаи эффективного лечения гипотонии — воду пьют через день по одной четверти стакана натощак, а также при болезнях почек и печени (дозировка индивидуальна).

Однако биологически активная вода не может заменить обычную. Обращение с ней требует осторожности. Нельзя постоянно поливать ею растения: лучше только замочить семена, а поливать не более 2-3 раз за период вегетации.

Дегазацию воды можно провести и другими способами. Так, еще в 1825 году французский химик Жан Батист Дюма (Dumas) предложил способ дегазации воды вакуумированием. В 1962-1964 годах в Одесском инженерно-строительном институте изучали свойства бетона, затворенного на воде, дегазированной методом вакуумирования.

Дегазируют воду также с помощью ультразвука. На пьезоизлучатель ставят плоскопараллельный сосуд, дно которого смазано вазелином или трансформаторным маслом для хорошего акустического контакта. В сосуд наливают воду и пропускают через него ультразвук. При этом образуются пузырьки газа, которые, всплывая, улетучиваются.

Применяется для дегазации и способ, когда газ выделяется из воды под действием центробежной силы.

Чуть ли не с каменного века известен и широко используется термический способ активации воды с помощью нагрева. Но только недавно сибирскими учеными установлено, что после нагревания воды в герметически закрытых сосудах (при одновременном повышении давления) и последующего охлаждения вода приобретает новые свойства, исчезающие очень медленно. Такая жидкость обладает повышенной растворяющей способностью. Добавление небольших количеств кислоты не подкисляет, а. подщелачивает воду! Однако этот факт еще пока не получил сколько-нибудь полного научного объяснения.

Источник

Дегазация воды с использованием обратноосмотических мембран

Содержание растворенных агрессивных газов СО2 и О2 в воде является причиной коррозии оборудования и трубопроводов. При повышении температуры воды подвижность молекул кислорода увеличивается, и коррозионная агрессивность воды растет.

Проблему удаления кислорода и диоксида углерода из воды решают преимущественно двумя способами. Это термическая и химическая дегазации (деаэрация).

При термической дегазации происходит удаление растворенных газов из воды в деаэрационной колонке. Вода в состоянии насыщения растекается по тарелкам деаэрационной колонки тонкой пленкой. При этом часть воды выпаривается, унося с собой растворенные газы, которые выделяются с поверхности воды при её кипении. Чем больше поверхность испарения воды и чем выше температура насыщения, тем эффективнее происходит дегазация воды.

При химической дегазации удаления газов не происходит. Происходит только их связывание в неорганические соединения.

При использовании сульфита натрия

При использовании гидразин-гидрата

Связывание углекислого газа в бикарбонат ион (подщелачивание) происходит по реакции:

Химическая деаэрация и подщелачивание имеет ряд существенных недостатков:

Термическая дегазация для паровых котельных, в настоящее время, является наиболее приемлемым вариантом. Деаэратор является также накопительным баком питательной воды,куда поступает подпиточная вода и конденсат. За счет небольшого избыточного давления не происходит повторного загрязнения воды агрессивными газами из атмосферы.

Те мне менее, термическая дегазация требует целого ряда сложных технических решений при проектировании и обладает значительной стоимостью основного и вспомогательного оборудования. Так необходимо обеспечить подогрев подпиточной воды перед деаэратором не менее 80 о С, что представляет значительную техническую сложность особенно при переменном расходе подпиточной воды. Прирезком снижении расхода подпиточной воды в деаэратор, за счет инерционности регулятора пара на теплообменник подпиточной воды, температура подпиточной воды после теплообменника резко увеличивается и наблюдается закипание воды в трубопроводе от теплообменника до деаэратора. При этом в данном трубопроводе начинается выделение кислорода из воды и интенсивная кислородная коррозия. Для исключения повреждения данного трубопровода целесообразно его выполнять из нержавеющей стали.

Руководства по проектированию предписывают обеспечить долю выпара в деаэраторе равную 2 кг на 1 тонну деаэрированной воды. На практике для получения кислорода в деаэрированной воде менее 50 мкг/л расход выпара может быть увеличен более чем в 10 раз. Кроме того, часто вызывает затруднение автоматизация деаэратора. Так как необходимо одновременно поддерживать заданное давление в деаэраторе, температуру воды в деаэраторе и уровень воды в деаэрационном баке. При резком изменение расхода питательной воды происходит понижение уровня воды в баке деаэратора, и для его поддержания увеличивается расход подпиточной воды в деаэратор выше паспортного значения. При этом качество деаэрации снижается.

Таким образом, для небольших паровых и особенно водогрейных котельных организация термической деаэрации является чрезвычайно дорогостоящим мероприятием, как по капитальным, так и по эксплуатационным затратам. Более того для водогрейных котельных используются вакуумные деаэраторы, конструкция которых ненадежна и не обеспечивает необходимое качество воды.

Как правило, на практике для котельных производительностью менее 3,0 – 6,0 т/ч по пару,даже если термический деаэратор установлен, то он не обеспечивает требуемой дегазации питательной воды и деаэратор по факту работает как накопительный бак питательной воды.

Для более эффективной дегазации питательной воды в котельных целесообразно применение мембранной дегазации воды.

Известно,что мембранную дегазацию воды можно осуществлять при помощи гидрофобных мембран, или так называемых мембранных контакторах.

В настоящее время для дегазации воды во многих отраслях промышленности используются гидрофобные мембранные контакторы. Это поливолоконные структуры с большой поверхностью. Через эту поверхность осуществляется массоперенос газа из жидкости в поток инертного газа или вакуум. Инертный газ находится внутри волокон. Вода протекает снаружи волокна. Сами волокна сделаны из гидрофобного материала. Волокно не впитывает (не пропускает воду), однако незаряженные молекулы газа могут свободно проходить через микропористую структуру волокна при наличии разницы концентраций газа внутри и снаружи волокон.

Дегазация при использовании мембранных контакторов достаточно эффективна для удаления диоксида углерода из воды, т.к. в качестве инертного газа может использоваться атмосферный воздух. Но для удаления кислорода из воды необходимо использовать азот высокой степени очистки с вакуумом. Это обстоятельство требует применять в котельной дополнительное дорогое и энергозатратное оборудование. При этом нормативного значения по кислороду не будет достигнуто и есть необходимость в дозировании сульфита натрия для связывания остаточного кислорода. Следует учесть, что значение рН воды достаточно сложно получить выше 8,5 сразу после мембранного контактора. Это обстоятельство вызывает необходимость в дозировании каустической соды в питательную воду, что впоследствии приведет к высокому содержанию углекислоты в конденсате.

Однако если на предприятии имеется система централизованного получения азота, данная схема мембранной дегазации может быть вполне конкурентоспособна с термической деаэрацией.

Авторы предлагают для дегазации воды использовать традиционные полимерные обратноосмотические мембраны, используемые повсеместно для обессоливания воды. Данные мембраны являются гидрофильными и не могут препятствовать прохождению через них воды.При этом ионы солей металлов, растворенные в воде, через гидрофильные не проходят. Селективность современных обратноосмотических мембранных элементов для очистки воды составляет от 99,0 до 99,7 %. Практически все соли задерживаются.

Растворенные в воде газы проходят через полимерные обратноосмотические мембраны.Соответственно для того чтобы удалить из воды газы необходимо перед мембранной эти газы перевести в неорганические соединения растворенные в воде.

Так для растворенного диоксида углерода необходимо в воду перед установкой обратноосмотического обессоливания дозировать раствор каустической соды NaOH.

В результате диоксид углерода связывается в бикарбонат натрия, который удаляется на мембране в потоке концентрата.

Для связывания кислорода необходимо дозировать раствор бисульфита натрия (1). Получающийся сульфат натрия также будет удаляться с концентратом.

В результате на выходе из установки обратноосмотического обессоливания получается обессоленная вода без растворенных агрессивных газов.

Данный метод дегазации принципиально отличается от чисто химической дегазации. В данном методе газы связываются и удаляются из воды. При химической деаэрации только связываются. Тем самым солесодержание воды не увеличивается и, что очень важно, не увеличивается количество бикарбонат и сульфат иона в питательной воде.

Основные преимущества мембранной дегазации гидрофильными мембранами:

У данного метода имеются недостатки:

Предложенный способ дегазации воды осуществляют следующим образом (рисунок 1).

Способ дегазации воды, содержит следующие технологические стадии. Вода проходит стадию осветления на установке непрерывного осветления воды (1) и поступает на установку системы непрерывного Na-катионитового умягчения воды (2). Целесообразно, чтобы было установлено не менее 2-х фильтров, которые позволяют работать системе в непрерывном режиме. Жесткость умягченной воды должна быть в пределах 0,02-0,1 мг-экв/л. Величина жесткости умягченной воды будет определяться исходя из количества раствора едкого натра,дозируемого в умягченную воду после установки умягчения (2). Чем выше жесткость умягченной воды и больше расход едкого натра, тем выше вероятность образования твердого осадка карбоната кальция на мембране.

После установки умягчения (2) в воду при помощи установки дозирования (3) дозируется раствор едкого натра.Количество едкого натра выбирают не более 10-15% количества свободной углекислоты в воде. Происходит связывание свободной углекислоты в бикарбонат ион (уравнение 3)

Значение рН воды возрастает до 8,2-8,5. Затем в воду при помощи установки (4) дозируется раствор сульфита натрия. При этом количество сульфита натрия выбирают либо эквивалентно равным количеству растворенного в воде кислорода, либо не менее чем на 10-30% больше количества растворенного в воде кислорода.

Затем вода, проходя через фильтр тонкой очистки (5), поступает на установку обратноосмотического обессоливания воды (6). На установке обратноосмотическогообессоливания (6) происходит разделение исходной воды на два потока: пермеат (обессоленная вода) и концентрат (вода насыщенная солями и сбрасываемая в канализацию). Работа данной установки организована так, что большая возвращается на вход установки обессоливания (6). Таким образом, получается рециркуляция части потока концентрата (рецикл).

Поступающий в воду при помощи установки дозирования (4)сульфит натрия реагирует с растворенным кислородом. В результате получается сульфат натрия (уравнение 1).

Данная реакция протекает достаточно быстро в горячей воде или в воде со значением рН более 8,5. Вода, поступающая на установку обессоливания (6), имеет температуру от 2 до 40°С. Тем не менее недостаточно быстрое протекание реакции (уравнение 1) компенсируется эффективным перемешиванием сульфита натрия в воде в фильтре тонкой очистки (5)и в самом обратноосмотическом мембранном элементе. Так, большая часть сульфита натрия не связавшая кислород перед и внутри обратноосмотического элемента возвращается на вход обратноосмотического элемента с потоком рецикла. Тем самым обеспечивается достаточно полное протекание реакции (уравнение 1) до и внутри обратноосмотического элемента.

Обратноосмотический мембранный элемент пропускает растворенные в воде газы, но практически не пропускает растворенные в воде ионы. Таким образом, углекислый газ, связанный в бикарбонат едким натром, не проходит через мембрану, а сбрасывается в виде бикарбонат иона в канализацию. Тот же принцип работает при связывании растворенного в воде кислорода. В результате протекания реакции (уравнение 1) растворенный в воде кислород связывается сульфитом натрия в сульфат натрия и затем сбрасывается с потоком концентрата в канализацию.

Таким образом, на обратноосмотической установке (6) проходит процесс одновременного обессоливания и дегазации воды, что является принципиально новым подходом в работе подобных устройств.

Обессоленная и дегазированная вода направляется потребителю. Важно не допустить вторичного загрязнения воды кислородом и углекислым газом атмосферного воздуха. Для этого рекомендуется использовать мембранный гидроаккумуляторный бак (7) перед насосом повысителем давления (8). Насос повыситель давления (8) нужен в случае, если требуется давление пермеата выше, чем 1,0-2,0 бар.

При работе системы как системы водоподготовки паровых и водогрейных котлов подготовленную воду необходимо направлять либо сразу в котел, либо в накопительный высокотемпературный бак (9), в котором поддерживается температура воды не менее 100°С.

Одновременное обессоливание и дегазация воды на обратноосмотической установке позволяет значительно сократить потери тепла, связанные с продувкой котла, а также работой термического деаэратора. При этом значительно уменьшается коррозионная агрессивность возвращаемого конденсата, упрощается технология дегазации воды и, соответственно, количество и состав оборудования, а также значительно уменьшается стоимость всей системы водоподготовки. Система легко автоматизируется и не требует постоянного контроля.

Предложенная схема достаточно вариативна. Если требуется удалить из воды только кислород, то можно отказаться от использования установки умягчения перед обратным осмосом и исключить из схемы дозирование раствора едкого натра перед обратноосмотической установкой.

В заключении можно сказать, что дегазация обратным осмосом подпиточной воды паровых и водогрейных котлов вполне может быть применима для автоматизированных котельных без обслуживающего персонала тепловой мощностью до 200 МВт.

На данную технологию подготовки воды подана и зарегистрирована заявка на патент, регистрационный № 2018138802 (Дата регистрации — 05.11.2018).

Дегазированная вода что это такое. Смотреть фото Дегазированная вода что это такое. Смотреть картинку Дегазированная вода что это такое. Картинка про Дегазированная вода что это такое. Фото Дегазированная вода что это такое

© 2018 Tikhonov Ivan. tiwater.info

1 – установка непрерывного осветления воды;

2 – установка системы непрерывного Na-катионитового умягчения воды;

3 — установка дозирования раствора едкого натра;

4 — установка дозирования раствора сульфита натрия;

5 — фильтр тонкой очистки;

6 – установка обратноосмотического обессоливания воды;

7 — мембранный гидроаккумуляторный бак;

8 – питательный насос котла, либо насос повыситель давления фильтрата;

9 – накопительный высокотемпературный бак.

Рисунок 1 Схема системы водоподготовки с дегазацией воды на установке обратного осмоса

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *