Дифракция в фотографии что это
Дифракция объектива её влияние на фотографию
Явление дифракции можно наблюдать при попадании световых волн в район тени от объектива. При этом точки геометрической оптики превращаются в размытые дифракционные пятнышки. На фотоснимках теряется четкость изображения, снимки получаются некачественными. Явление напрямую связано с величиной диафрагмы. Происходит дифракция при малых диафрагмах, когда их ребра препятствуют прохождению волн света по прямой линии. В результате этого световые лучи огибают ребра диафрагмы на своем пути. Если даже просто прищуриться, глаза не увидят четко столько деталей, как в открытом состоянии, такое простое сравнение может наглядно дать представление о дифракции.
Явление дифракции приводит к снижению контрастности снимка, к ухудшению четкости изображения, поэтому для фотографа очень важно уметь подобрать необходимую величину диафрагмы для различных видов съемок. Снимок, на котором виден эффект дифракции, похож на тот, который снят через стекло.
Съемки пейзажных фотографий требуют определенного настроя фотоаппарата, обычно фотографы стараются увеличить при этом диафрагму. Но увеличение диафрагмы приводит и к большему проявлению дифракции. В итоге пейзажные снимки имеют по краям нечеткое изображение. Профессионалы рекомендуют для пейзажей не поднимать диафрагму выше значения f/11. Существенную потерю резкости можно наблюдать уже со значения f/14, более высокие показатели диафрагмы приведут к тому, что снимки на профессиональном фотоаппарате будут похожи на фотографии с «мыльницы».
Дифракция может проявляться не только при малых диафрагмах, на ее появление влияют и такие факторы, как фокусное расстояние, длина волн света, светосила объектива. Даже при точном расчете дифракционного предела оптической системы точность фокусировки, несовершенный объектив могут ограничить качество снимка. Только дифракция создает размытое изображение в случаях использования штативов, высококачественного объектива. Явление дифракции может быть и допустимым, если требуется большая резкость в фокальной плоскости, а резкость на границах не столь существенна. Другими словами, диафрагма небольшого значения может быть необходима для получения длинной выдержки, такой, которая используется при снятии движущейся предметов например воды.
Явление дифракции связано с качеством объектива. Каждый объектив для фотоаппарата имеет свое оптимальное значение величины диафрагмы. При этом значении качество снимков получается наиболее высокое. Такие характеристики объективов ограничиваются дифракцией, которая снижает эффективную разрешающую способность оптического элемента. В итоге объективы с очень узкой диафрагмой больше поддаются эффекту дифракции. При выборе объектива следует уделять внимание его качеству, поскольку такой элемент фотооборудования также может иметь порой невидимые искажения, дефекты. Чем объектив качественней, чем меньше он имеет собственных искажений, тем больше при открытой диафрагме он обеспечит высокую четкость снимка, его контрастность.
Но и большая диафрагма не всегда является самым лучшим решением. Оптимальный вариант для многих объективов, которые обладают достаточной мягкостью, это среднее положение диафрагмы, ее среднее значение.
Хорошее качество снимков не всегда зависит и от количества пикселей. При больших диафрагмах меньший размер пикселей позволит получить снимок с меньшим количеством дефектов.
При выборе объектива лучше обращать внимание на модели с большим диаметром, так как данная характеристика увеличит широту применения его возможностей.
Избежать явления дифракции, при котором происходит снижение четкости снимка, и не видно всех мелких деталей, можно, если выставить правильно величину диафрагмы. Ее не следует максимально закрывать для того, чтобы достигнуть максимальную ГРИП. Кадр следует выстраивать так, чтобы объекты были размещены в самой зоне глубины резкости. Можно также использовать гиперфокальное расстояние. Если требуется вести съемки с получением высокой резкости, можно использовать фильтр нейтральной плотности, который уменьшит световой поток. О сайте fotomtv.
Дифракция
Дифракция – это оптическое явление, ограничивающее резкость фотографии при уменьшении относительного отверстия объектива. В отличие от прочих оптических аберраций, дифракция принципиально неустранима, универсальна и в равной степени свойственна всем без исключения фотографическим объективам вне зависимости от их качества и стоимости.
Дифракцию можно увидеть только при 100% увеличении. Обратите внимание, как с ростом диафрагменного числа изображение становится всё менее резким.
f/4 | |
f/5,6 | |
f/8 | |
f/11 | |
f/16 | |
f/22 |
Природа дифракции
При прохождении света через отверстие диафрагмы основная часть световых волн продолжает двигаться прямолинейно. Однако те волны, путь которых пролегает близ самого края диафрагмы, отклоняются от своего первоначального направления, стремясь обогнуть препятствие, возникшее у них на пути. Чем меньше размер отверстия диафрагмы, тем больший процент лучей касается его края, и тем сильнее рассеивается свет. Вследствие дифракции световых волн изображение точечного источника света приобретает вид не точки (как это было бы в идеальной оптической системе), а размытого пятна, которое называется диском Эйри.
Не смотря на некоторое сходство диска Эйри с кружком рассеяния, возникающим при дефокусировке объектива, диск Эйри обладает тремя весьма характерными особенностями.
Во-первых, кружок нерезкости освещён более-менее равномерно, яркость же диска Эйри стремительно убывает по мере удаления от его центра.
Во-вторых, в отличие от кружка рассеяния, представляющего собой одинокое круглое пятно, диск Эйри окружён серией концентрических колец. Эти кольца возникают вследствие интерференции отклонившихся от первоначального пути световых волн друг с другом, а также с волнами, сохранившими прямолинейное направление. Вместе с диском Эйри кольца образуют характерный дифракционный узор, известный как узор Эйри. 85% освещённости приходится на сам диск Эйри, и 15% – на окружающие его кольца.
В-третьих, при диафрагмировании объектива диаметр кружка рассеяния уменьшается, в то время как диаметр диска Эйри, напротив, увеличивается. Соответственно, по мере уменьшения относительного отверстия (т.е. с ростом числа диафрагмы) глубина резко изображаемого пространства возрастает, но общая резкость фотографии падает.
Дифракция и разрешение фотоаппарата
Согласно критерию Рэлея, для того чтобы два соседствующих диска Эйри были визуально различимы, их радиус не должен превышать расстояния между центрами дисков. В противном случае диски воспринимаются как одна точка. Поскольку при неизменной длине световой волны радиус диска Эйри зависит исключительно от величины диафрагмы, то для любого расстояния между дисками существует некое максимальное значение диафрагмы, по достижении которого диски увеличиваются настолько, что сливаются воедино.
Какое это имеет отношение к цифровой фотографии? Самое непосредственное. Две теоретические точки могут быть различимы на снимке лишь при условии, что расстояние между ними не меньше расстояния между центрами двух соседних пикселей матрицы. Если две точки являются дисками Эйри (а в действительности иначе быть и не может), то при определённом значении диафрагмы они всё равно перестанут быть различимыми из-за эффекта дифракции. Таким образом, потенциальное разрешение системы ограничено с одной стороны плотностью пикселей матрицы, а с другой – величиной относительного отверстия диафрагмы.
Значение диафрагмы, при котором радиус диска Эйри равен размеру пикселя матрицы конкретной цифровой фотокамеры, называется дифракционно-ограниченным значением диафрагмы или просто дифракционно-ограниченной диафрагмой (калька с английского diffraction limited aperture – DLA). При диафрагменных числах больше дифракционно-ограниченного значения деградация изображения вследствие дифракции становится визуально различимой.
Значение дифракционно-ограниченной диафрагмы для любого цифрового фотоаппарата можно вычислить при помощи следующей формулы:
, где
K – дифракционно-ограниченная диафрагма;
n – размер пикселя матрицы в микрометрах (микронах);
λ – длина волны света в нанометрах.
Размер пикселя n (см. «Как узнать размер пикселя матрицы?») соответствует предельному радиусу диска Эйри или, если хотите, дифракционному пределу оптической системы. За длину волны λ советую принимать 540 нм, поскольку как человеческий глаз, так и цифровая фотоматрица наиболее чувствительны именно к зелёному цвету. Для синего цвета дифракция будет выражена в меньшей степени, а для красного – в большей.
Для экономии вашего времени автор не поленился рассчитать значения дифракционно-ограниченной диафрагмы для матриц с различными параметрами и составить соответствующую таблицу. Используя эти или меньшие диафрагменные числа, вы можете быть уверены в том, что ваши снимки свободны от негативных последствий дифракции и что их нерезкость обусловлена либо изъянами фотооборудования, либо, что более вероятно, вашей собственной небрежностью.
Значения дифракционно-ограниченной диафрагмы в зависимости от разрешения камеры и её кроп-фактора.
Разрешение, Мп
Кроп-фактор
* Кроп-фактор, равный единице, соответствует
полному кадру (36 × 24 мм).
Точность значений диафрагмы, приведённых в таблице, избыточна. Поскольку обычно диафрагму можно установить лишь с точностью до 1/3 ступени, выбирайте то реальное значение диафрагмы, которое ближе всего к теоретическому.
Слова «падение резкости» или «деградация изображения» звучат устрашающе, но на самом деле дифракция далеко не так страшна, как её малюют. Никто не запрещает вам пользоваться бо́льшими значениями диафрагмы, если в этом есть объективная необходимость. Весьма незначительное снижение резкости можно заметить невооружённым глазом лишь установив диафрагму на одну полную ступень больше дифракционно-ограниченного значения. Иногда резкость может даже возрасти (особенно это характерно для недорогих объективов), поскольку диафрагмирование уменьшает оптические аберрации, вызывающие замыливание изображения при съёмке с открытой диафрагмой. Если прикрыть диафрагму ещё на одну ступень, дифракция станет несколько более очевидной, но в целом качество изображения останется вполне приемлемым. И только отступив от дифракционно-ограниченной диафрагмы на три ступени, мы получим заметную потерю детализации. Но даже с этим можно смириться, если кадр требует особо большой глубины резкости. А вот от дальнейшего уменьшения относительного отверстия лучше всё-таки воздержаться.
Дифракция и объективы
Объектив, разрешающая способность которого ограничена преимущественно дифракцией, называется дифракционно-ограниченным. Это означает, что у данного объектива при данной диафрагме оптические аберрации устранены столь хорошо, что их вклад в деградацию изображения не превышает эффекта дифракции. Собственно, все наши теоретические рассуждения о дифракционном ограничении разрешения цифровых фотоаппаратов подразумевают использование именно таких идеальных объективов. На деле же очень немногие объективы являются дифракционно-ограниченными при полностью открытой диафрагме, и то лишь по центру кадра. Обычно для достижения оптимальной резкости приходится закрывать диафрагму на пару ступеней, после чего объектив таки имеет шанс стать дифракционно-ограниченным, но его разрешающая способность будет, конечно же, ниже чем у объектива, достигшего предела резкости при большем размере относительного отверстия.
Дифракция и фокусное расстояние
Существует достаточно распространённое заблуждение, будто бы дифракция зависит также от фокусного расстояния объектива. Ведь диафрагменное число – это отношение фокусного расстояния к диаметру отверстия диафрагмы, а значит при одном и том же значении диафрагмы физический размер отверстия у длиннофокусного объектива будет больше, чем у короткофокусного, а увеличение отверстия ведёт к уменьшению диска Эйри. Так-то оно так, но нельзя забывать и о том, что с увеличением фокусного расстояния объектива увеличивается и расстояние, которое должны пройти лучи света, коснувшиеся края диафрагмы и отклонившиеся от прямого пути, в результате чего рассеяние света с ростом фокусного расстояния усугубляется. Как следствие, положительный эффект от увеличения физического размера отверстия нейтрализуется отрицательным эффектом от увеличения фокусного расстояния. Так что, размер диска Эйри в действительности зависит только от величины относительного отверстия.
Удивительно то, что, вопреки теории, при использовании телеобъективов большие значения диафрагмы зачастую и вправду крадут резкость не столь откровенно, как при использовании широкоугольных объективов. Скорее всего, это можно объяснить тем, что съёмка с длиннофокусной оптикой очень часто сопряжена с острым недостатком глубины резкости, в связи с чем даже при сильном диафрагмировании объектива вред, причиняемый дифракцией, компенсируется увеличением ГРИП, что создаёт иллюзию повышения резкости. В то же время на малых фокусных расстояниях глубина резкости обычно не является проблемой даже при умеренных значениях диафрагмы, и потому чрезмерное диафрагмирование только ухудшает картинку.
Спасибо за внимание!
Post scriptum
Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.
Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.
Резкость, дифракция и диафрагма
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.
Большинство фотографов имеют представление о том, как диафрагма влияет на резкость и о глубине резкости. Но есть так называемый диафрагменный предел, значение которого зависит как от объектива, так и от модели камеры и причиной этого является дифракция.
При съемке пейзажа или архитектуры естественным стремлением будет получение максимальной глубины резкости. Это достигается путем уменьшение отверстия диафрагмы. Легко увлечься и слишком сильно зажать диафрагму, «на всякий случай», пытаясь получить достаточную глубину поля.
При этом необходимо соблюдать разумный предел. Несмотря на то, что меньшие диафрагмы обеспечивают бо́льшую ГРИП, эффект дифракции при очень малых диафрагмах приводит к снижению общей резкости изображения.
Также неправильным будет и использование малых диафрагм для получения максимально резкого изображения, результат будет прямо противоположным. Зная пределы объектива, можно избежать этого явления, а также сопутствующих ему, таких как необходимость использования высоких ISO или длительной выдержки, необходимых для получения нормальной экспозиции при закрытой диафрагме.
Наука о дифракции света
Физики давно установили, что свет имеет корпускулярно-волновую природу. Таким образом, все свойства других видов волн, такие как звуковые колебания, волны в жидкостях и твердых телах могут быть применены к свету.
Принцип Гюйгенса-Френеля гласит, что каждую точку фронта волны можно рассматривать как источник вторичных волн, которые распространяются во все стороны со скоростью, равной скорости распространения волны.
Это означает, что свет, проходящий через диафрагму, создает новые световые волны. Крошечное отверстие диафрагмы объектива, точнее, острые края лепестков диафрагмы, создают дифракционный эффект (эффект огибания препятствия световыми волнами). К примеру, возьмем непрозрачный объект, помещенный перед источником света. Он блокирует свет, создавая тень. Посмотрите внимательно на края этой тени. Можно заметить, что даже если объект имеет острые края, края тени всегда слегка размыты
Обратите внимание на разницу в резкости спинки ножа и режущей кромки
Я использовал фотографию перочинного ножа, чтобы продемонстрировать эффект дифракции на краях. Фото было сделано в абсолютно темной комнате, единственным источником света была моя вспышка. Я также немного отрегулировал контраст в Photoshop, чтобы лучше показать эффект. Обратите внимание, что противоположная режущей кромке часть получилась очень резкой, а режущая кромка – несколько размытой, даже при таком источнике как вспышка, который можно считать точечным. Такой же эффект наблюдается и на краях лепестков диафрагмы.
Фронт световой волны, проходя через отверстие, соизмеримое с ее длиной, становится источником вторичных волн, которые взаимодействуют с основной по принципу интерференции, то есть сложения колебаний. Это создает чередование освещенных и затененных областей, а также проникновение света в затененные области. Подобные явления можно наблюдать со всеми типами волн.
Влияние дифракции на вашей камере можно имитировать, если скосить глаза. Когда вы косите глазами, мир становится расплывчатым.
Искажения световых волн при прохождении через отверстия различного диаметра.
Предположим, что у нас есть идеальный объектив с идеально круглым отверстием диафрагмы. Он называется объективом дифракционного предела, так как единственным ограничением на максимальное разрешение изображения является явление дифракции света, а не любые дефекты, смещение или разрешение сенсора.
Интерференционный узор, производимый круглой линзой при освещении пучком параллельных лучей, называется диском Эйри (в честь ученого Джорджа Эйри Биддела). При этом в центре находится так называемое дифракционное пятно, на которое приходится примерно 85% световой энергии, а окружают его светлые и темные кольца.
Диск Эйри при дифракции на круглом отверстии
Размер диска Эйри зависит только от диафрагмы и может быть приближенно рассчитан, исходя из диафрагменного числа, если его разделить на 1500. То есть, при диафрагме f/22 диаметр диска Эйри составит около 0,015 мм.
Если диаметр центрального пятна диска Эйри становится слишком большим по отношению к размеру пикселя, то изображение будет размытым. Это становится ограничивающим фактором в достижении резкого изображения. То есть, для каждой камеры есть свое значение диафрагмы, выше которого наступает ухудшение резкости изображения. Это значение носит название диафрагменного предела.
Практическое применение
Теперь, когда мы закончили со скучной теорией, давайте посмотрим, как практически применяется этот принцип. Тест на эффект дифракции очень простой. Просто возьмите набор объектов, сохраняя при этом неизменное фокусное расстояние и экспозицию, и снимайте в режиме приоритета диафрагмы, изменяя ее значение. Для получения достоверных результатов очень важно избежать любых изменений в изображении.
Примечание переводчика: для этого теста лучше использовать специальную шкалу – миру.
Для этого нужно использовать хороший штатив, дистанционный спуск затвора, блокировку зеркала, в общем, исключить все факторы, которые могут привести к малейшему дрожанию камеры.
Следующая серия изображений – это 100% кроп этикетки Crown Royal. Эти снимки были сделаны в помещении с камеры, стоящей на полу.
Отчетливо видно ухудшение резкости изображения от дифракции.
Из этого теста следует, что изображение начинает терять резкость примерно с диафрагмы f/11, сохраняя приемлемый вид до f/16. Начиная с f/22, происходит резкое ухудшение резкости, а диафрагма f/36 практически непригодна для использования.
Не забывайте также, что при использовании некоторых объективов широко открытая диафрагма также уменьшает резкость. Важно найти оптимальную величину диафрагмы для вашего объектива. Я предпочитаю использовать f/8 или f/11 в большинстве случаев.
Теперь понятно, что лучше всего не зажимать максимально диафрагму для достижения максимальной ГРИП, а строить кадр таким образом, чтобы все объекты находились в зоне глубины резкости, либо использовать гиперфокальное расстояние. Есть много способов и онлайн-калькуляторов для расчета глубины резкости.
Для этого снимка дистанция и фокусное расстояние не требуют небольшой диафрагмы для достижения большой глубины резкости.
Давайте на примере этого снимка дерева рассмотрим выбор диафрагмы для получения оптимальной ГРИП. Фотография была сделана на неполнокадровую камеру с помощью объектива с фокусным расстоянием 18 мм, расстояние до дерева примерно 20 м. Так как объект находится достаточно далеко и используется широкоугольный объектив, то даже умеренно закрытая диафрагма f/6.3 обеспечивает глубину резкости от 2,26 м до бесконечности.
Этого более чем достаточно, чтобы захватить в кадр все детали. На самом деле, с таким фокусным расстоянием даже диафрагма f/1 даст мне глубину резкости от 8,95 м до бесконечности, что опять же достаточно, чтобы дерево получилось резким.
В этой ситуации не было никакой необходимости использовать малую диафрагму, что позволило сделать снимок с меньшим ISO и более короткой выдержкой, что также вносит вклад в общую резкость картинки.
Это хорошо, когда вы знаете, что меньший диаметр диафрагмы обеспечивает большую глубину резкости, однако есть и другие факторы, оказывающие гораздо большее влияние.
Например, расстояние до объекта 25 м, а диафрагма f/8. Если используется объектив с фокусным расстоянием 100 мм, то глубина резкости будет от 17,9 до 41,6 м, общая протяженность ГРИП 23,7 м.
Однако, если вы будете использовать объектив с фокусным расстоянием 75 мм, диапазон ГРИП будет уже от 14,6 до 85,9 м, то есть 71,3 м. Это почти в три раза больше, чем при использовании объектива с фокусным расстоянием 100 мм.
Для сравнения, если мы закроем диафрагму до f/11 при фокусном расстоянии 100 мм, это даст нам глубину резкости от 16 до 57,3 м, в общей сложности 41, 3 м.
Для снимков, которые требуют более длительной выдержки, сначала лучше выбрать выдержку, которая даст вам соответствующий эффект, а затем подобрать диафрагму для нормальной экспозиции. Однако имейте ввиду, что лучше не использовать диафрагмы меньше f/8 или f/11 из-за эффекта дифракции.
Использование фильтра нейтральной плотности ND для уменьшения светового потока при съемках с длинной выдержкой даст гораздо лучший результат по резкости, чем использование для этой цели диафрагмы f/32.
Заключение
Я надеюсь, что эта статья принесет вам пользу. Знание о дифракции легко применить (хотя, в большинстве случаев этого не потребуется), но незнание может иметь плохие последствия для ваших фотографий.
Дифракционных эффектов легко избежать, если не зажимать диафрагму больше, чем до f/8.