Дипольная антенна что это
Дипольная антенна
Резюме
Элементарный диполь
Можно отметить, что этот тип идеального диполя на практике не может быть изготовлен, потому что электрический ток должен откуда-то приходить и откуда-то выходить. На самом деле этот проводящий элемент и ток, который в нем циркулирует, будут просто одним из сегментов, на которые будет делиться макроскопическая антенна, чтобы иметь возможность рассчитать его.
Интерес диполя заключается в том, что можно легко вычислить дальнее электрическое поле электромагнитной волны, излучаемой этой проводящей нитью.
Если расстояние измерения поля намного больше, чем длина волны, которая сама по себе больше, чем длина диполя, мы прямо даем выражение для дальнего электрического поля (в В / м ):
Выражение неприменимо к электрическому полю вблизи дипольного проводника (в том числе внутри самого проводника).
Усиление антенны
Коэффициент усиления антенны определяется как отношение мощностей на единицу площади данной антенны и гипотетической изотропной антенны:
Мощность электромагнитной волны на единицу площади составляет:
Мощность на единицу площади, излучаемая изотропной антенной той же мощности, составляет:
Вот таблица с коэффициентами усиления дипольных антенн в зависимости от их длины (выраженной числом длин волн); коэффициенты усиления не конвертируются в дБи:
Длина в λ <\ displaystyle \ scriptstyle <\ lambda>> | Прирост | Примечание |
---|---|---|
L ≪ λ <\ Displaystyle L \ ll \ scriptstyle <\ lambda>> | 1,50 | Короткий диполь |
0,5 λ <\ displaystyle \ scriptstyle <\ lambda>> | 1,64 | Полуволновой диполь |
1.0 λ <\ displaystyle \ scriptstyle <\ lambda>> | 1,80 | Полноволновой диполь |
1.5 λ <\ displaystyle \ scriptstyle <\ lambda>> | 2,00 | |
2.0 λ <\ displaystyle \ scriptstyle <\ lambda>> | 2.30 | |
3.0 λ <\ displaystyle \ scriptstyle <\ lambda>> | 2,80 | |
4.0 λ <\ displaystyle \ scriptstyle <\ lambda>> | 3,50 | |
8.0 λ <\ displaystyle \ scriptstyle <\ lambda>> | 7.10 |
Эти значения могут быть получены путем расчета для определенных длин диполей, как показано ниже, если они не интерполированы (и подтверждены на практике измерениями).
Короткий диполь
Близко параллельные нити, питающие диполь в его центре, пересекаются токами, текущими в противоположном направлении, электрические поля которых нейтрализуют друг друга на достаточно большом расстоянии по сравнению с их взаимным расстоянием (здесь предполагается равным нулю). Затем мы можем игнорировать их.
Ток течет в одном направлении в обоих плечах диполя: вправо на обоих или влево на обоих. Предполагается, что ток максимален в середине диполя (где он подается) и что он линейно уменьшается до нуля на концах диполя, где сосредоточены электрические заряды, вытесняемые переменным током.
Тогда дальнее поле электромагнитной волны, излучаемой этим диполем, составляет: E θ <\ displaystyle \ scriptstyle
Эмиссия максимальна в плоскости, перпендикулярной диполю и проходящей через его центр, но уменьшается обратно пропорционально расстоянию. Он равен нулю в направлении проводников, которое совпадает с направлением тока.
Картины излучения имеет форму тора с круглым сечением и нулевым внутренним радиусом. На двух изображениях справа диполь замыкает два коротких вертикальных сегмента, соединенных с точкой питания двух нитей, которая, следовательно, расположена в центре тора, размещенного в горизонтальной плоскости.
Из этого электрического поля мы можем вычислить полную мощность, излучаемую этим диполем, и, исходя из этого, вычислить резистивную часть последовательного импеданса этого диполя:
но с другой стороны :
Коэффициент усиления этой антенны (полученный заменой в общем выражении коэффициента усиления) равен:
В чем разница между диполем (симметричной вибраторной антенной) и антенной (штыревая антенна с проволочными противовесами)?
Каждому беспроводному устройству нужна антенна. Это проводящее механическое устройство представляет собой преобразователь, который преобразует передаваемый радиочастотный (RF) сигнал в электрические и магнитные поля, составляющие радиоволну. Он также преобразует полученную радиоволну обратно в электрический сигнал. Для антенн возможно почти бесконечное множество конфигураций. Однако большинство из них основано на двух основных типах: дипольных и штыревых антеннах.
Понятие «антенны»
Радиоволна содержит электрическое поле, перпендикулярное магнитному полю. Оба перпендикулярны направлению распространения (рисунок ниже). Это электромагнитное поле и создает антенну. Сигнал, излучаемый устройством, вырабатывается в передатчике и затем отправляется на антенну с помощью линии передачи, обычно коаксиального кабеля.
Линии представляют собой магнитные и электрические силовые линии, которые движутся вместе и поддерживают друг друга, когда они «движутся наружу» от антенны.
Напряжение создает электрическое поле вокруг антенных элементов. Ток в антенне создает магнитное поле. Электрические и магнитные поля объединяются и регенерируют друг друга в соответствии с известными уравнениями Максвелла, и «комбинированная» волна отправляется с антенны в пространство. При приеме сигнала электромагнитная волна индуцирует напряжение в антенне, которое преобразует электромагнитную волну обратно в электрический сигнал, который может быть дополнительно обработан.
Первичным рассмотрением в ориентации любой антенны является поляризация, которая относится к ориентации электрического поля (E) с землей. Это также ориентация передающих элементов относительно земли. Вертикально установленная антенна, перпендикулярная к земле, излучает вертикально поляризованную волну. Таким образом, горизонтально расположенная антенна излучает горизонтально поляризованную волну.
Поляризация также может быть и круговой. Специальные конфигурации, такие как винтовые или спиральные антенны, могут излучать вращающуюся волну, создавая вращающуюся поляризованную волну. Антенна может создавать направление вращения либо вправо, либо влево.
В идеальном случае антенны как на передающем, так и на приемном устройстве должны иметь одинаковую поляризацию. На частотах ниже примерно 30 МГц волна обычно отражается, преломляется, вращается или иным образом модифицируется атмосферой, землей или другими объектами. Следовательно, согласование поляризации на двух сторонах не является критическим. На частотах ОВЧ, УВЧ и СВЧ поляризация должна быть одинаковой для обеспечения максимально качественной передачи сигнала. И, обратите внимание, что антенны демонстрируют взаимность, то есть они одинаково хорошо работают как на передачу, так и на прием.
Диполь или симметричная вибраторная антенна
Диполь представляет собой полуволновую структуру из проволоки, трубки, печатной платы (PCB) или другого проводящего материала. Он разделен на две равные четверти длины волны и подпитывается линией передачи.
Линии показывают распределение электрических и магнитных полей. Одна длина волны (λ) равна:
Фактическая длина обычно сокращается в зависимости от размера антенных проводов. Лучшее приближение к электрической длине:
где K — коэффициент, связывающий диаметр проводника с его длиной. Это 0,95 для проводных антенн с частотой 30 МГц или менее. Или:
Значение K меньше для элементов большего диаметра. Для трубки диаметром в полдюйма K составляет 0,945. Дипольный канал для 165 МГц должен иметь длину:
λ/2 = 5904(0.945)/165 = 33.81 дюйма
или два 16,9-дюймовых сегмента.
Длина важна, потому что антенна является резонансным устройством. Для максимальной эффективности излучения он должен быть настроен на рабочую частоту. Однако антенна работает достаточно хорошо на узком диапазоне частот, как резонансный фильтр.
Полоса пропускания диполя является функцией его структуры. Обычно он определяется как диапазон, в котором отношение коэффициента стоячей волны антенны (КСВ) меньше 2:1. КСВ определяется величиной отраженного сигнала от устройства назад по линии передачи, подающей на него. Это функция импеданса антенны с отношением к импедансу линии передачи.
Фактическое сопротивление антенны в ее центральной точке зависит от ее частоты и высоты антенны. При резонансе и полуволне над землей импеданс антенны составляет приблизительно 73 Ом. Паразитный резонанс, импеданс антенны будет включать либо индуктивный, либо емкостный компонент реактивного сопротивления.
Идеальной линией передачи является сбалансированная проводящая пара с сопротивлением 75 Ом. Также можно использовать коаксиальный кабель с характеристическим импедансом 75 Ом (Zo). Коаксиальный кабель с характеристическим импедансом 50 Ом также может использоваться, так как он хорошо соответствует антенне, если он меньше половины длины волны над землей.
Коаксиальный кабель является несбалансированной линией, так как радиочастотный ток будет протекать снаружи коаксиального экрана, создавая некоторые нежелательные индуцированные помехи в соседних устройствах, хотя антенна будет работать достаточно хорошо. Лучший метод подачи — использовать симметрирующий трансформатор в точке подачи с коаксиальным кабелем. Симметрирующий трансформатор — это трансформаторное устройство, которое преобразует сбалансированные сигналы в несбалансированные сигналы или наоборот.
Диполь может быть установлен горизонтально или вертикально в зависимости от желаемой поляризации. Линия подачи идеально должна проходить перпендикулярно к излучающим элементам, чтобы избежать искажения излучения, поэтому диполь наиболее часто ориентирован горизонтально.
Диаграмма излучения сигнала антенны зависит от ее структуры и монтажа. Физическое излучение является трехмерным, но обычно оно представлено как горизонтальными, так и вертикальными диаграммами направленности.
Горизонтальная диаграмма направленности диполя представляет собой цифру восемь (рисунок 3). Максимальный сигнал появляется на антенне. На рисунке 4 показана вертикальная диаграмма направленности. Это идеальные образцы, которые легко искажаются землей и любыми соседними объектами.
Усиление антенны связано с направленностью. Коэффициент усиления обычно выражается в децибелах (дБ) с учетом некоторого «эталона», такого как изотропная антенна, которая является точечным источником радиочастотной энергии, излучающая сигнал во всех направлениях. Подумайте о точечном источнике света, освещающем внутреннюю часть расширяющейся сферы. Изотропная антенна имеет коэффициент усиления 1 или 0 дБ.
Если передатчик формирует или фокусирует диаграмму излучения и делает ее более направленной, он имеет усиление по изотропной антенне. Диполь имеет коэффициент усиления 2,16 дБи по изотропному источнику. В некоторых случаях коэффициент усиления выражается в зависимости от дипольного задания в дБд.
Вертикальная антенна с дополнительными горизонтальными отражающими элементами
Данное устройство представляет собой, по существу, половину диполя, установленного вертикально. Термин монополь также используется для описания этой установки. Земля ниже под антенной, проводящая поверхность с наименьшим λ / 4 по радиусу или образец λ / 4-проводников, называемых радиальными, составляют вторую половину антенны (рис.5).
Если антенна подключена к хорошему заземлению, она называется антенной Маркони. Основной структурой служит другая λ / 4 половина передатчика. Если плоскость заземления имеет достаточный размер и проводимость, то производительность заземления эквивалентна вертикально установленному диполю.
Длина четвертьволновой вертикали:
Коэффициент K меньше 0,95 для вертикалей, которые обычно изготавливаются с более широкой трубкой.
Импеданс точки питания представляет собой половину диполя или примерно 36 Ом. Фактическая цифра зависит от высоты над землей. Подобно диполю, плоскость заземления является резонансной и обычно имеет реактивный компонент в своем основном импедансе. Наиболее распространенной линией передачи является 50-Ω коаксиальный кабель, поскольку он относительно хорошо соответствует импедансу антенны с КСВ ниже 2: 1.
Вертикальная антенна с дополнительным отражающим элементом является ненаправленной. Горизонтальная диаграмма направленности — это круг, в котором устройство излучает сигнал одинаково хорошо во всех направлениях. На рисунке 6 показана вертикальная диаграмма направленности. По сравнению с вертикальной диаграммой направленности диполя плоскость заземления имеет более низкий угол излучения, что дает преимущество более широкого распространения при частотах ниже примерно 50 МГц.
Выводы
Практически все другие антенны, которые часто используются, являются вариациями антенн дипольного или вертикального плана. Например, антенна Яги-Уда добавляет паразитные элементы, такие как ретранслятор и / или отражатель, к диполю, чтобы увеличить его усиление и направленность. Несколько диполей можно укладывать вертикально или располагать в разных массивах, что значительно увеличивает коэффициент усиления. Телевизионные антенны УКВ-«бабочки» и антенны с печатными платами, используемые в некоторых беспроводных устройствах, являются дипольными вариациями. Патч (микрополосковая линия) и щелевые антенны, используемые на микроволновых частотах, также являются дипольными производными.
Кроме того, могут быть выполнены две или более вертикальные антенны с дополнительным отражающим элементом для создания более направленного сигнала с усилением. Например, направленная радиостанция AM использует две или более башни для направления сильного сигнала в одном направлении, подавляя его в другом.
Коэффициент стоячей волны
Стоячие волны представляют собой схемы распределения напряжения и тока вдоль линии передачи. Если характеристический импеданс (Zo) линии соответствует выходному импедансу генератора (передатчика) и нагрузке антенны, напряжение и ток вдоль линии постоянны. При согласованном импедансе происходит максимальная передача мощности.
Если нагрузка антенны не соответствует линейному импедансу, не вся передаваемая мощность поглощается нагрузкой. Любая мощность, не поглощенная антенной, отражается назад по линии, мешая прямому сигналу и создавая изменения тока и напряжения вдоль линии. Эти вариации представляют собой стоячие волны.
Мерой этого несоответствия является коэффициент стоячей волны (КСВ). КСВ обычно выражается как отношение максимального и минимального значений прямого и обратного тока или значений напряжения вдоль линии:
Другим более простым способом выразить КСВ является отношение характеризующего импеданса линии передачи (Zo) к импедансу антенны (R):
в зависимости от того, какой импеданс больше.
Идеальный КСВ составляет 1: 1. КСВ от 2 до 1 указывает на отраженную мощность 10%, а это означает, что 90% передаваемой мощности поступает на антенну. КСВ 2: 1 обычно считается максимально допустимым для наиболее эффективной работы системы.
Дипольная антенна
Оглавление
история
Основы
На рисунке справа показаны фазы колебаний диполя λ / 2. Пусть электрическое возбуждение начинается в нулевой момент времени, когда наибольший избыток электронов находится на левом конце. В то же время на правом конце потенциал особенно положительный, электронов не хватает. Электричества пока нет.
Противоположные заряды притягиваются, поэтому много электронов движется вправо. Четверть периода спустя, в момент времени T / 4, максимум тока измеряется в середине диполя, и именно здесь создается самое сильное магнитное поле. Напряжение на диполе в это время уравновешивается.
Магнитное поле предотвращает резкую остановку тока. Он перемещает электроны дальше на другую сторону. Ровно через половину периода колебаний после начала ( T / 2) плотности электронов поменялись местами, и теперь самое высокое отрицательное напряжение измеряется на правом конце диполя. Электричество отключилось. Теперь начинается обратный процесс компенсации. По прошествии всего периода T восстанавливается исходное состояние.
Есть два типа диполя:
Импеданс
Сложенный диполя также тип & lambda ; / 2 диполя. Он подается в середину одного из двух параллельных проводов, соединенных друг с другом на концах. Его импеданс в 4 раза выше, чем у растянутого диполя λ / 2, так как только половина тока проходит через точки питания. Это очень хорошо сочетается с балуном, сделанным из обходной линии λ / 2, что снижает импеданс до 1/4 и позволяет подключать стандартный коаксиальный кабель.
Диаграмма направленности
Интеграция угловой зависимости по всем направлениям обеспечивает общую мощность и ее равномерное распределение как эталонное значение для интенсивности излучения ( изотропный излучатель ). Для диполя λ / 2 интенсивность излучения в главном направлении ( h = 0) в G = 1,64 (2,15 дБи ) раз больше, чем эталонное значение. С диполем Герца это усиление антенны G составляет всего 1,5 (1,76 дБи). При длине 5/4 λ наибольшее усиление диполя составляет 5,2 дБи. Боковые лепестки образуются выше, и лучшие значения возможны только с гораздо большим диполем. Вот почему диполи 5/4-λ используются в качестве простых направленных антенн, особенно в форме антенны на плоскости заземления с длиной 5/8-λ. Однако согласование импеданса имеет важное значение.
Согласованная по мощности антенна извлекает мощность из плоской волны, падающей с основного направления, которое соответствует ее эффективной площади A W. Для диполя λ / 2 это:
В случаях, когда направленный эффект просто нежелателен, например B. Если вам нужен всесторонний прием или передача, вы можете использовать диполь изгиба, в котором два металлических стержня расположены под углом 90 ° друг к другу.
Полноволновые диполи
Чтобы собрать антенну из двух полуволновых диполей и добиться общего сопротивления кабеля (примерно 50 Ом), существуют разные возможности:
Как недопонимание одного явления привело к недопониманию учёными других явлений.
Вспомним, историю. В 1887 году немецкий физик Генрих Герц экспериментально открыл радиоволны, изучая новое явление — возникновение электрических токов в незамкнутых цепях. Герцу посчастливилось тогда открыть явление излучения радиоволн благодаря явлению электрического резонанса, возникающего в установке, названной впоследствии «вибратором Герца». Давайте рассмотрим, что это была за установка Герца, названная впоследствии «вибратором Герца».
Перед вами на рисунке тот самый электрический «вибратор Герца», имеющий собственную резонансную частоту. С его помощью Герцем и были экспериментально открыты радиоволны, которые регистрировались петлеобразным регистратором, расположенным на расстоянии нескольких метров от излучателя.
Вибратор Герца состоял из двух симметричных электропроводных плеч, расположенных соосно и зеркально друг другу. Каждое из плеч вибратора состояло из проводника (металлического стержня или трубки), на внутренний конец которого был надет маленький сферический наконечник, а на наружный конец проводника была насажена большая металлическая сфера, имеющая большую площадь наружной поверхности, и, соответственно, значительно большую, чем у проводника, электрическую ёмкость.
К этой установке Герца прилагался ещё высоковольтный индуктор — катушка Румкорфа, вырабатывающая переменное электрическое напряжение до 200 тысяч Вольт с частотой колебаний 10-30 раз в секунду.
Запитывание установки от высоковольтного индуктора происходило в непосредственной близости от маленьких сферических наконечников, представляющих собой электрический разрядник, величина воздушного зазора которого определяла напряжение электрического пробоя.
Теперь самое важное. После пробоя разрядника (т.е. образования искры, обладающей низким электрическим сопротивлением. Иначе говоря, искра является проводником, соединяющим накоротко тела, заряженные электричеством разного знака) эта установка вдруг начинала излучать короткие по длительности и затухающие по амплитуде радиоволны на собственной резонансной частоте, которая составляла миллионы колебаний в секунду!
В процессе исследования работы своего «вибратора» а также радиоволн, которые он излучает, Герц пришёл к выводу, что резонансная частота «вибратора» определяется геометрической длиной его электропроводящих плеч, и связано это в первую очередь с образованием на этой геометрической длине стоячей продольной волны электрического поля.
Именно благодаря использованию катушки Румкорфа и искрового разряда для запитывания «вибратора Герца» было выяснено, что у него есть собственная резонансная частота, и что он интенсивно излучает радиоволны, длина которых ровно в два раза превышает суммарную длину плеч «вибратора Герца». (1-я гармоника, см. рисунок выше). Отсюда его второе название в радиотехнике и в физике — «полуволновой вибратор».
Повторюсь, резонансная частота излучающего «диполя Герца» или «полуволнового вибратора» определяется суммарной длиной его электропроводящих плеч, и связано это с возможностью образования на этом линейном участке стоячей продольной волны электрического поля. Это было очевидным и для самого Герца, и для всех тех физиков, которые повторяли его опыты. При этом о поверхностных волнах электронной плотности на наружных поверхностях излучающих проводников никто тогда не подозревал. А значит, ни сам Герц, ни его последователи не имели тогда полного представления о механизме излучения радиоволн, и, следовательно, их теоретические объяснения процесса излучения радиоволн (до сих пор признаваемые истиной в последней инстанции) могут быть в той или иной степени ошибочными.
Однако, этот вопрос сегодня, почему-то не волнует ни нашу, ни мировую науку.
Последующий опыт радиоинженеров показал, что, «вибратор Герца» а также его производные и модификации лучше всего запитывать от источника синусоидального сигнала с частотой, близкой или равной резонансной частоте излучающего диполя.
По этой причине более века радиоинженеры и радиолюбители конструировали приёмопередающие антенны, линейные размеры которых они старались по возможности подогнать к длине волны, исходя из знания и опыта, что лучше всего излучает радиоволны симметричный полуволновой диполь или его модификация – вертикальный четвертьволновый штырь с заземлённым противовесом.
Приведенный рисунок, на котором показано распределение тока и напряжения в четвертьволновой антенне объясняет, что благодаря использованию земли в качестве второго плеча диполя, такая конструкция всё равно работает как «полуволновый резонатор», хотя в нём излучает радиоволны только одно четвертьволновое плечо.
И вот представьте теперь, что однажды одному американскому радиоинженеру, которого зовут Тэд Харт, пришла в голову идея пересмотреть концепцию приёмопередающих антенн и не привязывать их размеры к длине излучаемой или принимаемой волны.
То есть, Харт решил отказаться от практики использования стоячей продольной волны электрического поля в антенне, и попытаться построить малогабаритные, но тоже резонансные антенны-диполи, размеры которых в 20-40-80 и даже в 100 раз меньше (!) размеров «полуволнового вибратора».
Чтобы эффективность этих сильно уменьшенных антенн была приближена к эффективности полуволнового вибратора, нужно было выполнить ряд важных условий. В первую очередь ёмкость сильно укороченных плеч диполя надо увеличить за счёт увеличения их площади наружной поверхности. Для этого в качестве излучателей нужно использовать не тонкую проволоку, а металлические цилиндры большого диаметра или металлические пластины. Вместе с этим плечи сильно укороченного диполя нужно запитывать электричеством под значительно большим электрическим давлением (напряжением) чем подаётся напряжение на полуволновой вибратор. В антеннах Харта это делается с помощью повышающего автотрансформатора с большим коэффициентом трансформации.
Повышающий высокочастотный автотрансформатор, в виде проволочной катушки с отводом, обладающий определённой индуктивностью, а также ёмкость наружных поверхностей пластин или цилиндров, которые выполняют роль симметрично расположенных плеч диполя, образуют LC-резонансный колебательный контур, имеющий, как выяснил Хард, две резонансных частоты, отстоящих недалеко друг от друга. Об этом нюансе я расскажу чуть позже.
Тэд Харт рассчитал размеры этой антенны для частоты 10,1 МГц (длина волны – 30 метров). Согласно чертежу, наибольшая длина (ширина) плоской антенны Харта (он её назвал ЕН-антенной) для частоты 10,1 МГц составляет 0,46 метра. При этом антенна излучает а также улавливает радиоволны длиной 30 метров. Таким образом, в сравнении с полуволновым вибратором, работающим на той же частоте, ЕН-антенна Харта имеет габариты в 32,6 раза меньшие! При той же эффективности излучения!
Вот только подводить к ней мощность более 100 Ватт проблематично, величина напряжения питания пластин или цилиндров диполя достигает таких значений, что между пластинами или цилиндрами может возникнуть коронный разряд. Однако, и этой мощности вполне хватает, чтобы проводить сеансы радиосвязи по всему земному шару.
Как я уже сказал, у ЕН-антенны, как оказалось, имеется две резонансных частоты, отстоящих недалеко друг от друга, одна частота резонанса – нерабочая, другая – рабочая. Нерабочая частота резонанса находится легко, с помощью ВЧ-генератора и высокоомного вольтметра. Но на этой частоте ЕН-антенна имеет мизерный КПД. Рабочая же резонансная частота ЕН-антенны находится намного труднее, только с помощью специальных приборов или, как минимум, с помощью индикатора поля.
С чем это связано? Плечи диполя ЕН-антенны имеют не только полезную ёмкость наружной поверхности, обращённую в открытое пространство, но и паразитную ёмкость, которая естественным образом возникает между самими излучающими плечами диполя. Паразитная ёмкость также возникает между излучающими плечами диполя и землёй, между излучающими плечами диполя и питающим антенну кабелем, между излучающими плечами диполя и близко расположенными предметами…
Вот все эти ёмкости (полезные и паразитные) складываются вместе и в составе LC-резонансного контура создают нерабочую резонансную частоту антенны. Ну а рабочая резонансная частота ЕН-антенны, соответственно, складывается из индуктивности питающего автотрансформатора и той полезной ёмкости плеч диполя, которая обращена в открытое пространство и работает на его возбуждение.
Как понял Тэд Харт в ходе экспериментов с изобретённой им антенной, её настройка – это целое искусство. Но, кто имеет терпение, обязательно добьётся успеха. После того, как Тэд Харт рассказал о своём изобретении в радиолюбительской литературе и объяснил при этом, как нужно правильно настраивать ЕН-антенны, в России их смогли изготовить и настроить сотни радиолюбителей.
На этой фотографии Тед Харт с изобретённой им ЕН-антенной, имеющей высоту
1 метр. Сама ЕН-антенна настроена на частоту 14 МГц (λ – 20 метров).
Как радиолюбителям построить и самим успешно настроить ЕН-антенну, можно узнать на сайте российского радиоинженера и радиолюбителя В.В.Кононова, который уже много лет их конструирует для разных нужд, в том числе и для российских военных.
Естественно, как только Тэд Харт добился успеха, перед ним сразу встал вопрос: как объяснить принцип работы ЕН-антенн?
Было очевидно, что свойства ЕН-антенны сильно отличаются от свойств полуволнового вибратора. Главное отличие между ними, как заметил сам Тэд Харт, заключается в следующем:
В полуволновом диполе электрическое поле Е и магнитное поле Н рассредоточены по всей длине полотна излучателей, при этом между ними имеется сдвиг по фазе равный 90 градусов. Причём по утверждению классиков «Электродинамики», в полуволновом диполе «радиоволна формируется на расстоянии нескольких длин волн от полотна антенны». Последнее утверждение, на мой взгляд, есть большое заблуждение учёных, создававших в начале ХХ века теорию работы полуволнового вибратора и не ведавших о «поверхностных поперечных волнах электронной плотности», которые возникают на наружных поверхностях излучающих проводников.
Распределение полей Е и Н в полуволновом вибраторе графически можно описать так:
Максимуму напряжения соответствует минимум тока в полуволновом вибраторе, а минимуму напряжения соответствует максимум тока. Сдвиг фаз – 90 градусов.
В ЕН-антенне, как установил Тэд Харт, поля Е и Н почти не имеют сдвига по в фазе. Он минимален. При этом очевидно, что радиоволны рождаются непосредственно на открытых поверхностях плеч диполя.
Что доказывают эти наблюдения, оформленные в графики?
Только то, о чём я рассказал в самом начале.
В полуволновом диполе при запитывании его переменным напряжением высокой частоты возникают сразу две стоячих волны. Одна возникает на наружной поверхности полотна плеч диполя, это поперечная волна поверхностной плотности электрических зарядов, а в случае цилиндрической формы проводника – это поперечно-радиальная волна поверхностной плотности электрических зарядов. Другая стоячая волна возникает под ней, в толще проводников, образующих плечи диполя. Это продольная волна электрического поля, которая собственно и определяет геометрическую длину полуволнового вибратора.
Сейчас уже понятно, что продольная волна электрического поля является для процесса излучения радиоволн лишь вспомогательным фактором. Она делает полуволновой диполь резонансным, и вместе с тем она порождает паразитное магнитное поле (в своё время гений электричества Никола Тесла назвал его «побочным продуктом» в деле излучения радиоволн), которое хорошо маскирует радиоволну вблизи полуволнового диполя. Вот почему учёные ХХ века пришли к выводу, что при работе на излучение полуволнового диполя «радиоволна формируется на значительном удалении от него». Однако, как я уже сказал, это большое заблуждение!
Разумеется, радиоволна порождается непосредственно на поверхности плеч полуволнового диполя, равно как и на поверхности плеч диполя ЕН-антенны. Её порождает поперечная волна поверхностной плотности электрических зарядов. Но, в полуволновом диполе её маскирует для исследователей продольная волна электрического поля, возникающая в толще излучающих проводников полуволнового диполя. Вот и весь секрет этого феномена.
Смотрим ещё раз на график распределения полей в ЕН-антенне:
Почему пусть и небольшой сдвиг фаз между полями Е и Н, но всё же имеется?
Вспомним о коэффициенте линейного укорочения ЕН-антенны по сравнению с полуволновым вибратором. Это может быть и 10, и 20, и 30, и 60 и 80 раз! В данном конкретном случае укорочение ЕН-антенны против полуволнового диполя было 20-кратным. Соответственно, поскольку в трубчатых или пластинчатых диполях ЕН-антенны продольная волна электрического поля тоже возникает (без неё никуда, они же имеют линейные размеры), но её путь короче длины излучаемой волны в 40 раз, то и сдвига фаз между полями Н и Е в 90 градусов не может никак получится. Вот почему по факту в ЕН-антеннах имеет место сдвиг фаз между полями Е и Н всего в несколько градусов.
Какой же вывод следует из всего этого?
Вывод такой: во всех дипольных антеннах на излучение работают поперечные волны поверхностной плотности электрических зарядов, которые, по утверждению современного российского физика И.Мисюченко, ещё плохо изучены учёными.
6 сентября 2021 г. Мурманск. Антон Благин