Дискретизация что это в информатике
Дискретизация
Что такое дискретизация в информатике
Для того чтобы решить определенные задачи, человек вынужден преобразовывать имеющуюся информацию из одной формы, в которой она представлена, в другую. Например, при чтении книги вслух мы преобразовываем информацию из текстовой (дискретной) формы в звуковую (непрерывную). Тот, кто занимается транскрибацией, преобразовывает звуковую форму в текстовую — совершает обратный процесс.
Для того чтобы передавать, хранить, автоматически обрабатывать данные, гораздо удобнее использовать дискретную форму представления информации. В этом и состоит ее основное преимущество. Именно поэтому информатика — наука, на которой основана работа всей компьютерной техники, — много внимания уделяет дискретизации.
Дискретизация — процесс, с помощью которого непрерывная форма представления информации преобразуется в дискретную.иеие
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В информатике под понятием дискретности подразумевают алгоритм решения задачи, разбивающий весь процесс на определенное количество простых шагов (этапов), выполняемых поочередно.
Другими словами, дискретность — это набор действий, имеющих строго определенную, предписанную им алгоритмом последовательность. Каждое следующее действие может быть исполнено только при полном завершении предыдущего этапа.
Формы представления дискретной информации
Итак, существуют две формы представления информации:
Они принципиально отличаются в зависимости от своей природы.
Любой объект или явление, существующие в нашем мире, можно представить с помощью определенных физических величин и характеристик. Такое природное явление, как циклон, можно описать с помощью скорости ветра, температуры воздуха, количества выпавших осадков и другими характерными для циклона величинами.
Характерные физические величины для описания человека:
Все вышеуказанные физические величины имеют собственные определенные диапазоны. Количество значений, которые способна принимать та или иная величина, может быть бесконечным.
Подобные величины и ту информацию, которую они передают, принято называть непрерывными. Между значениями таких величин не бывает скачкообразных разрывов. Такая непрерывная величина, как масса тела, например, может принимать любые значения от нуля до бесконечности, включая дробные.
Кроме непрерывных величин, существуют и такие, которые обозначают целое, а не дробное количество: например, число музыкантов в оркестре или число атомов в молекуле вещества.
Если объект изучения обладает характерным свойством в какие-то моменты принимать строго конкретные значения (знаковые или числовые), то это свойство называют дискретной информацией об объекте.
Особенность дискретной информации — ее прерывистость, возможность пронумеровать и представить в цифровом виде с использованием логических нуля и единицы.
Дискретными значениями являются:
Для того чтобы обладать наиболее полными сведениями об объекте или явлении, чаще всего их описывают с помощью двух форм представления информации одновременно.
Геометрическую фигуру можно описать с помощью ее дискретного значения (квадрат) и непрерывного значения длины его стороны (15,25 см).
При использовании пружинных весов или весов со стрелкой измеряемая величина (масса) является сама по себе непрерывной. Но весы переводят этот показатель в дискретную форму в зависимости от того, к какому делению шкалы ближе окажется бегунок пружинных весов или стрелка.
В этом случае, чем более мелкие деления на шкале, тем более точной будет дискретное представление информации о массе взвешиваемого предмета.
Дискретную информацию принято представлять в символьном виде, с использованием знаков — натуральных чисел или букв. С помощью натуральных чисел можно представить деления на шкале измерительного прибора, нумерацию страниц книги или домов на улице города.
Цифровой вариант представления информации очень удобен для использования в ЭВМ.
В повседневной жизни для представления информации помимо цифр используют слова, составленные из букв какого-либо алфавита (русского, латинского, китайского и пр.). С помощью слов обозначают имена и свойства объектов, перечисляют действия.
Также широкое применение получили различные математические символы, знаки препинания.
Использование совокупности всех имеющихся символов, условно именуемой «алфавитом», дает возможность создания различных информационных объектов.
Такой вид представления информации называется символьным, так как она имеет дискретную природу, заключенную в использовании последовательности различных символов.
Существует большое количество «алфавитов» или систем письменности, с помощью которых можно передать (записать, сохранить) одну и ту же информацию различными символическими наборами.
В качестве примера поставим в соответствие каждой букве алфавита ее порядковый номер. В этом случае с помощью цифр от 0 до 9 можно записать текст целой книги.
Более того, ту же самую информацию можно закодировать с помощью двоичного кода, используя всего 2 символа — 0 и 1.
К дискретным формам представления информации относят также ее графическое изображение в виде различных чертежей, графиков, схем.
Информационные параметры сигнала
Дискретизация в системах обработки информации выглядит как обмен информацией, который происходит с помощью сигналов. Носителями таких сигналов выступают физические величины, которые могут быть представлены распределением сигналов в пространстве и времени.
Показатели соответствующих временных функций являются информационными параметрами сигнала. Среди таких показателей могут быть:
Как происходит дискретизация, основные этапы
По аналогии с видом представления информации сигналы классифицируют также на 2 типа:
В случае аналогового сигнала параметры внутри отдельных диапазонов могут принимать любые значения в любой момент времени.
В случае дискретного сигнала каждому установленному моменту времени соответствует определенное значение параметра. Дискретный сигнал описывает непрерывную информацию в виде точек графика, построенного в системе координат. В ней ось абсцисс представляет собой время сигнала в дискретном изображении, а ось ординат отражает дискретное представление уровня сигнала.
Преобразование аналогового сигнала в дискретный называется дискретизацией, которая происходит как по времени, так и по уровню сигнала.
Рассмотрим, как происходит дискретизация на примере самописцев атмосферного давления. Эти приборы работают на метеорологических станциях. Они в непрерывном режиме записывают изменение атмосферного давления на протяжении длительного времени в виде барограмм — кривых, вычерченных прибором в течение нескольких часов.
Одна из таких барограмм представлена ниже:
Взяв график за основу, можно снять с него необходимую нам информацию. Например, показания самописца в начале измерения атмосферного давления и каждый последующий час. Полученные данные заносятся в таблицу:
Таким образом, мы смогли преобразовать полученную в аналоговой (непрерывной) форме информацию в дискретный вид.
Если внимательно сравнить данные таблицы с данными графика, то можно заметить некоторую потерю точности. Так, самого большого значения давление достигло во время четвертого часа работы самописца, но в таблицу эта информация не попала.
Чтобы увеличить точность процесса дискретизации, следует брать меньшие временные интервалы. Например, снимать данные с барограммы не раз в час, а каждые полчаса или пятнадцать минут. В этом случае мы получим более точную картину изменения давления, представленную в дискретной форме.
Дискретные сигналы легче обрабатывать и хранить, чем аналоговые. Кроме того, на них практически не влияют помехи во время передачи на большие расстояния, что является их явным преимуществом. Поэтому использование дискретных сигналов получило более широкое распространение по сравнению с непрерывными.
Побочные эффекты дискретизации и квантования
Как мы уже выяснили, дискретизация происходит как по уровню (амплитуде) сигнала, так и по времени. При этом дискретизацию по уровню часто называют квантованием. В научной литературе могут встречаться оба термина, которые обозначают процесс оцифровки сигнала.
Поскольку все сигналы в природе имеют аналоговое происхождение, то для их хранения, обработки и передачи необходимо сначала оцифровывать сигналы — произвести с помощью аналого-цифровых приборов их дискретизацию и квантование по уровню.
После этого любой сигнал можно закодировать, провести его цифровую обработку, передать на расстоянии и хранить. При этом часто возникает необходимость преобразовать полученный цифровой сигнал обратно в аналоговый.
Подобным образом, например, происходит звуковое воспроизведение аудиозаписей с компакт-дисков. Цифровые сигналы, записанные в области высоких частот, преобразуются в низкочастотные звуковые.
Обратное преобразование сигнала происходит с определенной степенью точности, которая зависит от:
Следует учесть, что чем больше будет частота и число уровней, тем больше будет и цифровой информации, а значит, потребуется соответствующее количество ресурсов для ее передачи, хранения, обработки. Поэтому приходится соблюдать разумный компромисс между желаемой точностью воспроизведения сигнала и размерами обеспечивающих ее ресурсов.
Описание процесса дискретизации файлов в информатике
Каждый день человек совершает определенные задачи, при выполнении которых он преобразует из одной формы в другую. Такой же процесс только на компьютере называется дискретизация файлов. В статье речь пойдет об этапах этого процесса, формах, побочных эффектах.
Что это такое в информатике?
Для работы с ПК информацию необходимо представить в дискретном виде, ведь для ее обработки, хранения, передачи в автоматическом режиме с помощью средств вычислительной техники не пойдет непрерывный сигнал представления информации. Лишь потому, что дискретный сигнал представления сведений удобен для работы на ПК, поэтому при изучении информатики, уделяется особое внимание именно этой процедуре. Процесс обратный дискретизации называется транскрибация.
Само понятие дискретность предполагает, что процесс выполнения определенной задачи, разбивается на составные этапы (шаги), осуществляемые в определенной очередности.
Формы представления дискретной информации
Дискретная форма представления информации тесно связана с двоичной системой счисления, ведь процессор обрабатывает всю информацию именно в ней. Как уже выяснилось, что ПК работает только с комбинациями двух значений 0 и 1, поэтому ему не понятно, что мы от него хотим, когда вводим в MS Excel формулу «=125,5/5». В этом случае, необходимо дискретная форма представления информации. Для преобразования из непрерывной системы в дискретную, необходимо разбить на участки. Например, если мы построим график движения поезда из точки А в точку Б по извилистой дороге, то у нас получается плавная линия, хотя на самом деле ее не может быть, ведь на разных участках движения скорость поезда изменяется. Дискретный процесс движения поезда будет выглядеть как точечный график, на котором точки, не соединены линиями и обозначают замеры скорости в разные отрезки участка.
Исходя из этого можно резюмировать, что дискретизация в информатике – это преобразование непрерывного сигнала в дискретный.
После построения графика, все значения из десятичной системы счисления, нужно перевести в двоичный код. Когда это будет выполнено, процессор сможет работать с этой информацией.
Обратите внимание, что перевод в двоичную систему компьютер осуществляет самостоятельно, но после перевода непрерывного сигнала в дискретный.
Числовая информация представляется в дискретной форме с помощью алгоритмов кодирования, которые отвечают двум свойства: конечность и понятность. В зависимости от разрядности операционной системы 32 или 64 бита, будет меняться бинарный код чисел (количеством знаков в одном коде).
Свойства необходимые для дискретизации текстовой информации – это ценность, новизна, адекватность, полезность и истинность. Для преобразования текста в бинарный код используются следующие кодировки для русского алфавита КОИ-8, ISO, CP1251, Mac, CP866.
Звуковая информация обладает следующими основными свойствами:
Для графической информации основными свойствами в научной литературе определяют: полнота, объективность, достоверность, полезность, актуальность, адекватность. Но в общем смысле свойствами информации является палитра цветов, занимаемая площадь и поверхность. Кодирование графической информации осуществляется с учетом вида изображения (растровое, векторное, фрактальное, трехмерное).
Видеоинформации кодирует отдельно звуковую и графическую информацию.
Информационные параметры сигнала
Суть дискретизации информации в процессе обработки представлен как обмен сведениями, осуществляемый сигналами. Носителями которых являются физ.величины, представленные в пространстве и времени распределением сигналов. А информационными параметрами являются:
Этапы дискретизации
Первоначально, нужно разбить область на отрезки одинаковой длины, причем на каждом участке принимается постоянное среднее значение за показатель. Далее значения проецируют с оси х на ось у – это называется дискретным представлением функции, улучшаемую путем изменения длины отрезков в меньшую сторону.
В результате получено множество значений.
Обратите внимание, что так кодируется любое сообщение.
Побочные эффекты дискретизации и квантования
Процесс дискретизации информации происходит как в пространстве, так и во времени. Причем, квантование это кодирование по уровню (в пространстве). Оба процесса для передачи, обработки или хранения информации переводят ее из аналогового сигнала в цифровой и обратно. Это приводит к ухудшению качества сигнала.
В заключение, хочется сказать, чем больше число уровней и частота сигнала, тем больше будет информации в цифровом формате, а соответственно потребуется большее количество ресурсов для ее передачи, обработки и хранения.
Дискретность информации. Дискретизация
Вы будете перенаправлены на Автор24
Формы представления информации
Информация представляет собой понятие довольно емкое, вмещающее в себя весь окружающий нас мир (это вещи, явления, история, литература, искусство и многое другое). Всю информацию можно представить в двух формах:
Познакомимся с ними более детально.
Физические величины, а точнее их значения, характеризуют объекты и явления. Например, человека могут характеризовать такие физические величины, как масса тела, рост, температура тела, давление и т.д. В качестве явления, например, природы можно рассмотреть ураган, который будет характеризоваться такими физическими величинами, как скорость ветра, температура воздуха, количество выпавших осадков.
Некоторые физические величины по своей природе таковы, что могут принимать любые значения в определенном диапазоне. Эти значения могут находиться достаточно близко друг от друга, но тем не менее они различаются, а количество же значений, которое может принимать величина, бесконечно велико.
Подобные величины называют непрерывными, соответственно информацию, которая выражается с помощью этих величин, также называют непрерывной.
Помимо непрерывных величин существуют и другие, например, количество спортсменов на стадионе, количество атомов в молекуле и т.д. Подобные величины могут принимать только целые значения и не могут иметь дробных значений.
Величины, которые могут принимать не все возможные значения, а только вполне конкретные, называют дискретными. Дискретные величины характеризуются тем, что все их значения можно пронумеровать целыми числами.
Примерами дискретных величин являются:
Таким образом, различие между двумя формами информации строится на принципиальном различии природы величин. В то же время непрерывная и дискретная информация могут использоваться одновременно для более полного представления сведений об объектах и явлениях.
Готовые работы на аналогичную тему
Попробуем разобраться, что может объединять непрерывные и дискретные величины.
Рассмотрим простой пример и опишем наши рассуждения, в качестве примера возьмем пружинные весы. Масса тела, которую можно измерить с их помощью, представляет собой непрерывную величину. В данном случае информация о массе содержится в длине отрезка, на которую переместился указатель весов под непосредственным действием массы тела. Длина отрезка также представляет собой непрерывную величину.
Возникает вопрос, а можно ли по дискретному представлению восстановить непрерывную величину? Да, это действительно в определенной степени возможно, однако сделать это достаточно сложно, в результате восстанавливаемый образ может отличаться от подлинника.
Формы представления дискретной информации
В качестве имен можно использовать натуральные числа. Подобным образом нумеруются страницы книг, дома, деления на шкалах измерительных приборов. С помощью чисел можно пронумеровать все. Именно такая цифровая форма представления информации используется в ЭВМ.
В повседневной жизни цифровая форма представления информации не совсем практична. Традиционно информацию об объектах и явлениях окружающего мира мы представляем в форме слов и их последовательностей.
Слово является основным элементом в данной форме представления информации, с помощью него обозначаются имена объектов, действий, свойств и т.п.
Слова строятся из букв конкретного алфавита (например, русского). Помимо букв могут использоваться специальные символы: знаки препинания, математические символы и знаки и т.п. Разнообразные символы, которые мы используем, образуют алфавиты, на их основе, в свою очередь, можно построить различные объекты:
Во всех этих объектах заключена информация:
Эта информация по своей природе дискретна и может быть представлена в виде последовательности символов. Такая информация представляет собой особый вид дискретной информации, который называют символьным.
В настоящее время существует множество разных систем письменности, с помощью которых одна и та же информация может быть представлена на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.
Таким образом, разные алфавиты обладают одинаковой «изобразительной возможностью», т.е. с помощью одного алфавита можно изобразить информацию, которую удалось изобразить с помощью другого алфавита. Можно, к примеру, использовать алфавит, состоящий из 10 цифр, и с его помощью записать текст любой книги. При этом исключена потеря информации. Кроме того, можно использовать алфавит, состоящий только из двух символов (0 и 1). И его «изобразительная возможность» будет аналогичной.
Следовательно, символьная информация может быть представлена с помощью различных алфавитов без искажения содержания и смысла информации.
Помимо приведенных выше существуют и другие формы представления дискретной информации. К ним можно отнести чертежи, схемы, содержащие графическую информацию.
Дискретизация информации
Обмен информацией в системах обработки информации происходит при помощи сигналов. В качестве носителей сигналов могут выступать любые физические величины, которые представляют собой функции времени или определенное пространственное распределение сигналов. Параметры передаваемых временных функций (частоты, амплитуды, фазы, длительности импульсов или пространственного распределения последовательных импульсов, точек на изображении, сочетаний цветов на экране и др.) являются информационными параметрами сигнала.
Непрерывные сигналы в системе координат (уровень и время) описывают с помощью непрерывных функций. Преобразование аналогового сигнала в дискретный связано с его дискретизацией по уровню и во времени.
Дискретные сигналы довольно таки просто хранить и обрабатывать, поскольку они мало подвергаются искажениям под влиянием помех, причем последние легко обнаружить. В связи с этим дискретные сигналы наиболее широко применяются, чем непрерывные.
Преобразование непрерывного информационного множества аналоговых сигналов в дискретное множество называется дискретизацией или квантованием по уровню.
Квантование по уровню широко применяется в цифровых автоматах, поскольку производится отображение всевозможных значений величины X на дискретную область, состоящую из величин X, уровней квантования.
При дискретизации по времени (квантование по времени) непрерывная по времени функция преобразовывается в функцию дискретного аргумента времени. Дискретизация непрерывных сигналов построена на принципе представления их в виде взвешенных сумм. Органы чувств человека не совершенны, и в связи с этим окружающий нас мир мы воспринимаем дискретно. Использование различных приборов, которые увеличивают чувствительность или разрешающую способность, принципиально ничего не дает, меняет лишь шаг дискретизации.
Содержание урока
§7. Дискретность
Дискретизация
§8. Алфавитный подход к оценке количества информации
§7. Дискретность
Дискретизация
Поскольку данные в компьютерах передаются с помощью дискретных сигналов, компьютеры могут хранить и обрабатывать только дискретную информацию, т. е. такую, которая может быть записана с помощью конечного количества знаков некоторого алфавита. Поэтому для ввода любых данных в компьютер их нужно перевести в дискретный код.
Дискретность означает, что мы представляем нечто целое (непрерывное) в виде набора отдельных элементов. Например, картина художника — это аналоговая (непрерывная) информация, а мозаика, сделанная на её основе (рисунок из кусочков разноцветного стекла), — дискретная. Множество вещественных чисел непрерывно (между любыми двумя различными числами есть ещё бесконечно много других), а множество целых чисел дискретно.
Дискретизация — это представление единого объекта в виде множества отдельных элементов.
Всем известное иррациональное число л содержит бесконечное количество знаков в дробной части. Если мы хотим записать, чему равно π, необходимо остановиться на каком-то знаке, отбросив остальные, например: π ≈ 3,14. Таким образом, мы перешли к дискретной информации, потому что рассматриваем только числа с шагом 0,01 — точки на числовой оси (рис. 2.10).
Изменение высоты столбика термометра — это аналоговая информация, а записанная температура, округлённая до десятых долей градуса (например, 36,6°), — дискретная (рис. 2.11).
Дискретность состоит в том, что записанные значения температуры изменяются скачкообразно (через 0,1°), — это дискретизация по уровню, или квантование. Кроме того, обычно температуру больного измеряют не непрерывно, а несколько раз в день — появляется дискретизация по времени.
Заметим, что при дискретизации, как правило, происходит потеря информации. В данном случае мы, во-первых, потеряли информацию об изменении температуры между моментами измерений и, во-вторых, исказили измеренные значения, округлив их до десятых (каждая дискретизация, и по времени, и по уровню, вносит свою ошибку). Чтобы уменьшить ошибки, нужно уменьшить шаг дискретизации — измерять температуру чаще, записывать показания термометра до тысячных долей градуса. Однако в любой практической задаче есть некоторый предел, после которого увеличение точности уже никак не влияет на конечный результат.
Из приведённого примера понятно, что непрерывность или дискретность — это не свойство самой информации, а свойство её представления. В данном случае информация — это сведения об изменении температуры человека в течение дня. Если бы температура измерялась постоянно и записывалась самописцем (в виде графика), можно было бы говорить о том, что информация представлена в аналоговой (непрерывной) форме.
Ещё один пример — аналоговые («стрелочные») и цифровые вольтметры, которые измеряют одну и ту же величину, но выводят результат измерения в разном виде (рис. 2.12).
Теперь подумаем, как записать аналоговую величину, которая может принимать бесконечное множество значений. Вы уже знаете, что с помощью алфавита, состоящего из N символов, можно закодировать Q = разных сообщений длины L. Поэтому теоретически для записи аналоговой величины придется использовать бесконечное число знаков.
Итак, когда мы хотим записать (зафиксировать) информацию с помощью какого-то алфавита, нужно переходить к дискретному представлению. С одной стороны, это делает более надёжной передачу данных (если обе стороны одинаково понимают используемые знаки). С другой стороны, при дискретизации часть информации теряется.
Хотя аналоговую информацию невозможно точно представить в дискретном виде, при увеличении точности дискретизации свойства непрерывной и дискретной информации практически совпадают. Например, для точной записи числа тг требуется бесконечное количество цифр, но в расчётах чаще всего достаточно знать это значение с точностью не более 10 знаков.
Идеальная непрерывность существует только в теории. Мы считаем дерево, пластмассу, металл непрерывными, но на самом деле они состоят из отдельных молекул, расположенных на некотором расстоянии друг от друга, — это значит, что вещество дискретно. Иллюстрация в книге кажется нам сплошной, но при сильном увеличении видно, что она строится из отдельных точек (имеет «растр») (рис. 2.13).
«Плёночная» фотография считается аналоговой, но при увеличении снимка с фотоплёнки нельзя бесконечно получать все новые и новые детали — предел «уточнения» определяется величиной зерна светочувствительного материала.
Мы часто воспринимаем дискретные объекты как непрерывные, потому что наши органы чувств не позволяют различить отдельные элементы. Например, разрешающая способность глаза составляет около одной угловой минуты (1′ = 1/60 часть градуса), это значение определяется размером элементов сетчатки глаза. Поэтому человек не может различить два объекта, если направления на них различаются меньше, чем на 1′. Для того чтобы повысить разрешающую способность при наблюдении, применяют специальные приборы (например, бинокли и микроскопы).
Следующая страница Вопросы и задания
Cкачать материалы урока