Дисперсия что это в физике
ДИСПЕРСИЯ в физике
ДИСПЕРСИЯ в физике (лат. dispersio рассеивание) — изменение скорости распространения волны электромагнитного или акустического излучения в зависимости от частоты его колебаний (длины волны). Явление Д. находит применение в мед. практике при создании мед. диагностических приборов, а также в леч. целях — в физиотерапии, при выборе оптимального диапазона частоты излучения.
В зависимости от природы излучения различают акустическую Д., Д. электромагнитных волн (в частности, оптическую Д.) и Д. электропроводности. Возникновение Д. связано с изменением скорости распространения волны излучения вследствие рассеяния и избирательного поглощения ее веществом. Любое реальное излучение представляет собой совокупность отдельных гармонических колебаний. Поэтому при прохождении излучения через среду будут наблюдаться изменения скорости прохождения каждой волны в зависимости от частоты ее колебания. Величина изменения скорости волны в данной среде в зависимости от изменения частоты и будет характеризовать величину Д.
Акустическая дисперсия
Зависимость фазовой скорости звуковых волн от частоты акустического излучения при распространении звуковых или ультразвуковых волн в какой-либо среде, определяемая свойствами этой среды. При малых частотах энергия волны за период колебания успевает распределиться между молекулами среды, но с ростом частоты излучения такое перераспределение не успевает произойти — упругость газа и фазовая скорость звуковой волны растут, т. е. возникает акустическая Д. Акустическая Д. наблюдается в однородной, а также в неоднородных средах с различающейся вязкостью или теплопроводностью; в жидких средах, содержащих дисперсную фазу в виде эмульсионных частиц, Д. возникает за счет появления температурных градиентов (перепадов температуры) между компонентами системы, создаваемых звуковой волной, к-рая вызывает в жидкости местное сжатие и разрежение. При высоких частотах выравнивание температуры между частицами эмульсии и среды не успевает произойти и наблюдается увеличение скорости звука. Аналогичное явление имеет место в вязких средах, содержащих плотные частицы, а также в биол, тканях.
Характер акустической Д., свойственный тем или иным биол, тканям (мышечной, жировой, костной и др.), создает возможность для разработки методов ультразвуковой диагностики различных новообразований.
Оптическая дисперсия
Оптическая дисперсия (дисперсия света)— зависимость показателя преломления от частоты падающего света или скорости световых волн от частоты их колебания. Следствием Д. света будет разложение пучка белого света в спектр при прохождении сквозь призму.
Изменения состояния вещества, как правило, приводят к изменению его оптических свойств, а характерные особенности оптической Д. позволяют судить о состоянии и превращениях исследуемых веществ (белков, нуклеиновых к-т, пигмент-белковых комплексов и других биологически важных соединений).
Оптическая Д. в прозрачных материалах учитывается при создании оптических приборов (см. Спектральный анализ), при расчете ахроматических линз и т. д.
Дисперсия электропроводности
Зависимость электропроводности вещества от частоты приложенного к нему электрического поля. Электропроводность вещества — комплексная величина, поэтому его Д. может быть связана как с активной (напр., электропроводность металлов, р-ров электролитов), так и с реактивной (диэлектрики) составляющей электропроводности (см. Импеданс, Электропроводность биологических систем).
Электропроводность металлов с увеличением частоты электрического поля уменьшается вследствие неоднородного распределения переменного тока по сечению проводника. Электропроводность электролитов, наоборот, с увеличением частоты поля растет, что объясняется уменьшением тормозящего влияния ионной атмосферы. Д. электропроводности, связанная с этим явлением, наблюдается на частотах порядка 10 8 —10 9 гц.
Рядом особенностей обладают р-ры макромолекул, биополимеров и взвеси биол, клеток. Это связано с наличием у них диэлектрических свойств, с тем, что электропроводность таких систем в большей степени связана с реактивной составляющей электропроводности (см. Диэлектрическая проницаемость). В соответствии с механизмами поляризации (см.) для таких систем известны три области Д. электропроводности — альфа-, бета- и гамма-, отличающиеся частотной локализацией области Д.
Частотная локализация области альфа-Д. (низкочастотной) меняется в зависимости от размеров и структуры частиц, электролитного состава, вязкости и других факторов. Для крупнодисперсных систем область альфа-Д. смещена в сторону более низких частот, чем для мелкодисперсных. Напр., альфа-Д. для взвеси эритроцитов наблюдается в диапазоне 25—2×10 3 гц, а для взвеси более мелких клеток Е. coli лежит ок. 10 4 гц.
Существует несколько объяснений возникновения альфа-Д. Наиболее вероятным из них считают механизм, связанный с поляризацией двойных электрических слоев мембран и макромолекул (см. Мембраны биологические).
Характерные особенности клеточных структур отражает также высокочастотная бета-Д. (область частот 10 4 — 10 8 гц). Появление ее связывают с ориентацией диполей, а также с поляризацией, аналогичной поляризации слоистых диэлектриков.
Область гамма-Д. проявляется на частотах 10 9 гц и выше. Ее происхождение связано с полярными свойствами молекул воды.
Д. электропроводности биол, тканей наиболее выражена в области частот 10 4 — 10 6 гц. В этой области частот проявляется важная особенность биол, объектов — тесная взаимосвязь между характеристиками Д. электропроводности и физиол, состояния при различных патол, процессах, а также при воздействии физ. и хим. факторов (см. Электропроводность биологических систем).
Д. электропроводности присуща только живым тканям, поэтому предложено характеризовать состояние ткани коэффициентом поляризации (Kn), представляющим собой отношение величин сопротивления ткани, измеренного на частотах 10 4 и 10 6 гц.
Библиография: Андреев В. С. Кондукто-метрические методы и приборы в биологии и медицине, с. 13, М., 1973, библиогр.; Байер В. Биофизика, пер. с нем., с. 116 и др., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, с. 186, М., 1968; Ландсберг Г. С. Оптика, Л., 1976; С к у ч и к Е. Основы акустики, пер. с нем., т. 1—2, М., 1976, библиогр.
Ю. М. Петрусевич; Б. А. Гуляев (оптическая дисперсия), Г. Е. Федоров (дисперсия электропроводности).
Дисперсия света. Цветовой диск Ньютона
Введение
Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.
В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.
Все эти явления связаны с понятием «свет». В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.
Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».
Задачи:
I. Теоритическая часть
1.1. Открытие Исаака Ньютона
В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).
Рисунок 1. Эксперимент И. Ньютона
1.2. Спектральный состав света
Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).
Рисунок 2. Разложение белого пучка света на спектр
Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).
Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.
Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.
1.3. Дисперсия света
Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.
Дисперсией называется явление разложения света на цвета при прохождении света через вещество.
Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.
Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).
Рисунок 4. Преломление светового луча
Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.
sin α | = n21 |
sin β |
где n21 – относительный показатель преломления второй среды относительно первой.
Если луч переходит в какую-либо среду из вакуума, то
где n – абсолютный показатель преломления второй среды.
Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.
Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.
Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:
sin α | = n21 = | V1 |
sin β | V2 |
Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.
Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.
Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.
Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).
Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму
1.4. Радуга
Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).
Рисунок 6. Природное явление радуга
Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.
Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).
Рисунок 7. Преломления света в капле дождя
Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.
Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.
Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).
Рисунок 8. Схема образования радуги относительно наблюдателя
Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).
Рисунок 9. Радуга с борта самолета
II. Практическая часть
2.1. Демонстрация экспериментов по наблюдению дисперсии света
Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.
Эксперимент №1. Получение радужного спектра на мыльных пленках
Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.
Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.
Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму
Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).
Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.
Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду
Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.
Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.
1.2. Цветовой диск Ньютона
Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).
Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет
На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).
Рисунок 11. Цветной диск Ньютона
Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).
Рисунок 12. Экспериментальная установка по получению белого света из спектра
Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.
В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).
Рисунок 13. Результат вращения цветового диск Ньютона
Окраска круга при вращении желтовато-белая по двум причинам:
Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.
Заключение
В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:
Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.
Что такое дисперсия света – открытие Ньютона, что нужно знать
Пока ученые не объяснили видимые природные явления, когда все цвета выстраиваются в определенном порядке или мигрируют один в другой (радуга, северное сияние), людям казалось это чем-то волшебным. Сейчас мы понимаем, что это происходит из-за преломления солнечного потока. Но давайте разберемся в этом явлении чуть глубже. Что представляет собой дисперсия света?
Определение дисперсии света
Солнце проходит через прозрачные или условно прозрачные вещества, такие как вода, стекло, хрусталь. При этом белый луч, который мы считаем бесцветным, раскладывается на составляющие его радужные цвета.
Это происходит из-за того, что волны, попадая из одного вещества в другое, частично или полностью меняют свое направление. Такое изменение направления называется преломлением.
Но почему поток из белого, превращается в разноцветный? Это объясняется тем, что он не монохромный, а как раз содержит в себе весь цветовой ряд. Когда диапазоны всех цветов сливаются, мы видим белое излучение. При этом каждый цвет имеет разную длину волны. И в зависимости от нее по-своему меняет угол преломления.
Например, для зеленого диапазона угол отклонения будет больше, чем для оранжевого, а для синего больше, чем для зеленого. При этом скорость распространения изменяется при прохождении через другую среду, а вот частота остается прежней.
Объяснив эти наблюдения, можно дать определение такому понятию, как разложение белого света на составляющие.
Дисперсия — это зависимость показателя преломления от длины волны, или зависимость скорости света в веществе от длины волны. Это определение можно представить в виде формулы: n = f(v) или n = f(v), где
n — показатель приломления, λ — длина, а ν — частота.
Где встречается в природе
Разложение волнового потока в природе мы наблюдаем часто, но порой даже не догадываемся, что это дисперсия.
Первые шаги на пути к открытию дисперсии
Еще задолго до того, как явление разложение спектра было описано и объяснено с точки зрения современной физики и представлений о волновой природе облучения, люди наблюдали и пытались понять суть этого явления.
Древнегреческий ученый Аристотель еще в 3 веке до н.э. активно изучал и пытался дать объяснение некоторым свойствам светового потока. Он наблюдал дисперсию света в природе и даже пытался экспериментально выяснить, как устроено солнечное излучение.
Так он выяснил, что солнечные лучи могут иметь разный цвет. И попытался описать суть этого явления. Ученый объяснил это тем, что разный оттенок свет приобретает из-за разного «количества темноты» в нем. Если темноты много, тогда освещение становится фиолетовым, если мало, то красным.
Уже тогда ученый сделал предположение, что белый спектр является основным и состоит из множества оттенков.
Открытие Ньютона
Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона.
В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.
Цвета были расположены строго по порядку от красного до фиолетового. Ученый выделил семь полос разного оттенка и назвал этот ряд спектром (от латинского видимый).
Сегодня для опытного наблюдения разложения диапазона применяют дифракционные решетки. Это стеклянные пластины с нанесенными бороздками и тонкими отверстиями. С помощью них можно наблюдать разложение не только цветового спектра, но и расщепление самого луча.
Советуем посмотреть видео:
Аномальная дисперсия
Нормальная дисперсия характеризуется тем, что чем выше частота излучения, тем больше угол преломления.
Аномальная же — это разновидность обычного расщипления видимого диапазона, когда при распространении света в веществе показатель преломления уменьшается с увеличением частоты светового потока. То есть обратная зависимость.
На практике отличия между двумя видами явлений можно увидеть в парах некоторых газов. При разложении луча красные волны преломляются больше чем синие, а некоторый диапазон поглощается веществом.
Радуга
Самым ярким и занятным проявлением разложения спектра в природе является радуга. После дождя в насыщенной водными каплями атмосфере солнечные лучи проходит через эти капли. Преломляясь в водных порах поток раскладывается на спектральную полосу.
Солнечный поток может преломляться дважды. Тогда мы видим двойную радугу. При чем, во второй радуге цвета расположены в обратно порядке от фиолетового к красному. Это явление редкое, но объяснимое с точки зрения физики.
Чем выше радуга, там она бледнее и наоборот.
В заключение
Очень часто мы сталкиваемся с явлениями обыденными, объяснить которые мы по-прежнему не всегда можем. Но появление радуги теперь для нас вполне объяснимо. Попробуйте провести ньютоновский опыт с детьми и делитесь своими результатами в комментариях и социальных сетях.