Для чего биполярный транзистор
Биполярные транзисторы: принцип работы, характеристики и параметры
Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.
Особенности устройства биполярного транзистора
Биполярный транзистор включает в себя три области:
К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.
Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.
Принцип работы биполярного транзистора
Этот тип транзистора имеет два перехода:
Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.
Режимы работы биполярных транзисторов
Режим отсечки
Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.
Активный инверсный режим
Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.
Режим насыщения
Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».
Схемы включения биполярных транзисторов
В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.
С общим эмиттером
Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.
С общей базой
Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.
С общим коллектором
Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.
Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры
Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры
Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.
Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.
Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).
Устройство биполярного транзистора.
Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.
Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.
В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.
Принцип работы биполярного транзистора.
При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.
Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.
Режимы работы.
Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:
1. Отсечка.
В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».
2. Активный режим.
В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.
3. Насыщение.
В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.
4. Барьерный режим.
Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.
Схемы включения биполярных транзисторов.
Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.
При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.
Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.
При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.
Основные параметры биполярных транзисторов:
Биполярный транзистор
Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
-коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
Чтож, теперь давайте попробуем рассчитать значение базового резистора.
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет
Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
Желаю вам удачи, успехов и солнечного настроения!
Биполярный транзистор
1. Основные сведения
Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.
Рис. 1. Упрощенный вид внутреннего устройства биполярного транзистора p-n-p структуры.
На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р + область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.
Расстояние между обедненными зонами называется эффективной толщиной базы «W».
Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия
, что обуславливает взаимодействие переходов.
Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования – концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает
10 17 – 10 18 ат/см 3 (этот факт обозначен символом р + ). Область базы легирована нормально – концентрация донорной примеси ND в ней составляет
Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:
односторонняя диффузия (несимметичный эмиттерный переход)
Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу. Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла.
Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.
Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:
низкочастотные не более 3 МГц;
высокочастотные- от 30 МГц до 300 МГц;
По мощности выделяют следующем образом:
В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.
2. Принцип действия
Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками. Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.
Рис. 2. Иллюстрация принципа действия биполярного транзистора p-n-p структуры.
Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:
(2.1)
Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.
Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.
Режим насыщения— оба перехода открыты.
Режим отсечки— оба перехода закрыты.
В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК). На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.
Рис. 3.2. Схемы включения транзистора слева направо: схема с ОБ, ОЭ и ОК.
В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора. Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.
В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.
4. Статические вольт-амперные характеристики
(4.1)
Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:
(4.2)
(4.3)
Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции
(4.4)
Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.
4.1. Статические характеристики в схеме с ОБ
В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.
Входная характеристика в схеме ОБ представлена зависимостью
(4.5)
которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкб уменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым (
) и при прямых напряжениях
.
Выходная характеристика транзистора в схеме ОБ представляет собой зависимость
(4.6)
Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.
Рис. 4.1. Семейства входных (а) и выходных (б) характеристик биполярного транзистора в схеме с ОБ.
Выражение для идеализированной выходной характеристики в активном режиме имеет вид
(4.7)
Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.
При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).
В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк. Этот ток называют инверсным. Инверсный ток резко увеличивается с ростом , в результате чего Iк очень быстро уменьшается и, затем, меняет знак.
4.2. Статические характеристики в схеме с ОЭ
В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ.
Рис. 4.2. Семейства входных (а) и выходных характеристик (б) биполярного транзистора в схеме с ОЭ.
Входная характеристика в схеме с ОЭ представляет собой зависимость
(4.8)
что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.
Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.