Для чего используется искусственный интеллект

Почему искусственный интеллект нужно изучать даже гуманитариям

Рассказываем, с чего начать изучение ИИ

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Что такое ИИ и почему это так интересно

Искусственный интеллект – это способность машины имитировать человеческое мышление. Так называют современную технологию, с помощью которой электронные устройства, программы и роботы могут решать различные задачи по заданным алгоритмам.

Тема искусственного интеллекта и машинного мышления интересовала учёных ещё до изобретения компьютеров, а после появления ЭВМ вышла на новый уровень. В 1950-60-х годах вопросы, связанные с созданием и использованием искусственного интеллекта, стали широко обсуждаться в обществе.

Ответ на этот вопрос найти сложно ещё и потому, что нет чётких критериев разумности машины. Если это умение делать логические умозаключения, то компьютер давно превзошёл человека. Если же речь идёт о гибкости и оригинальности мышления, тут человек пока ещё превосходит даже самые современные интеллектуальные устройства.

ИИ активно используется в самых разных областях, список которых с каждым годом расширяется, и найти своё место в этой сфере могут не только технари, но и гуманитарии – специалисты по управлению проектами, рекламе и пиару, психологи, экономисты, лингвисты.

Что могут программы с искусственным интеллектом

Современные технологии искусственного интеллекта позволяют создать устройства и программы, которые:

В каких сферах применяется ИИ

Обработка языка

Машинный перевод активно используется в интернете и социальных сетях, совершенствуясь с каждым годом. Компьютер научился распознавать и устную, и письменную, и печатную речь. По прогнозам, переводчик станет одной из первых профессий, которая исчезнет «по вине» ИИ.

Компьютерные игры

Искусственный интеллект используется для создания игровой Вселенной, он управляет ботами – персонажами, за которых не играют люди. С помощью ИИ создаются игровые стратегии.

Управление финансами

Программы и устройства успешно осуществляют бухгалтерские операции, ведут учёт и контроль, могут создавать прогнозы на основе имеющихся данных. Специальные программы ведут учёт расходов.

Анализ окружающей среды

Технологии искусственного интеллекта применяются для создания «умных домов». Контроль над всем, что происходит в доме – электричеством, отоплением, вентиляцией, работой бытовой техники осуществляет специальная программа. Роботы-пылесосы сканируют окружающее пространство, чтобы определить, нужно ли им приступать к работе.

Мобильные приложения

Программы для мобильных телефонов умеют распознавать лица, отслеживать наше месторасположение, следят за режимом сна и питания.

Транспорт

С помощью интеллектуальных устройств можно выстроить маршрут передвижения с учётом пробок, компьютер в современном автомобиле в определённых режимах отслеживает положение машины на дороге, контролирует скорость и мощность двигателя. Технология ИИ используется в автомобилях, способных передвигаться без участия человека.

Медиа

С помощью специальных программ можно планировать и публиковать материалы в интернете и соцсетях. Технологии ИИ подбирают контент в соответствии с интересами пользователя. В недалёком будущем компьютерные программы, вероятно, научатся создавать тексты на основе уже загруженных в интернет материалов.

ИИ может анализировать резюме соискателей, распределять их на группы в зависимости от навыков и квалификации и даже определять, насколько работник подходит для той или иной должности.

Медицина

Искусственный интеллект анализирует данные пациентов и выявляет связь между методами лечения и состоянием больного. В будущем планируется создать роботов, которые будут ставить диагноз на основе имеющихся симптомов, обращаясь к медицинской базе данных.

Тяжёлая промышленность

Роботы активно применяются в областях, где необходима постоянная концентрация на совершении одних и тех же рутинных действий. Самый высокий уровень внедрения машин с элементами искусственного интеллекта в производство на данный момент отмечен в Японии: на 10 000 сотрудников автомобильной промышленности там приходилось в 2014 году около 1500 роботов.

Зачем изучать технологию ИИ

Искусственный интеллект – технология не только настоящего, но и будущего, и у специалистов в этой сфере не будет проблем с трудоустройством в ближайшие несколько десятков лет. В эту область уже сейчас привлекаются огромные инвестиции, а значит, не будет проблем и с оплатой труда работников, занимающихся разработкой, изготовлением и внедрением технологий ИИ.

Вклад в науку и культуру

Искусственный интеллект и создание интеллектуальных программ и устройств – та область, в которой постоянно совершаются новые открытия. Занимаясь искусственным интеллектом, учёные и инженеры находятся на переднем крае мировой науки, продвигают человечество вперёд. Кроме того, развитие искусственного интеллекта и внедрение его в нашу жизнь порождает множество этико-философских вопросов, для разрешения которых нужен уже не машинный, а человеческий разум, способный к творческому мышлению.

В сфере создания ИИ очень востребованы не только разработчики программного обеспечения, но и люди с креативным мышлением, способные придумывать и продвигать новые идеи. Чтобы работать в этой сфере, важно уметь нестандартно мыслить. Отдельное перспективное направление, которым может заняться творческий человек – обучение машины созданию произведений искусства. Уже сегодня компьютеры рисуют картины, пишут музыку и стихи. В недалёком будущем, возможно, они возьмут на себя создание книг, кино и мультфильмов.

Освоение новых навыков

Чтобы работать в области искусственного интеллекта, необходимо хорошее знание математики и основ программирования. Для изучения ИИ наиболее важны два раздела математики – линейная алгебра и теория вероятности. Самый востребованный язык программирования в этой сфере – Python, потом идут R и Lua. Пригодится также знание английского языка – самые современные научные данные, статьи, отчёты о достижениях и экспериментах, как правило, публикуются на английском.

Для успешной работы в области ИИ необходимо критическое мышление, умение тщательно проверять любую гипотезу, сопоставлять все данные, анализировать любую задачу с разных сторон. Понадобятся и хорошие коммуникативные навыки – работа над проектами ИИ происходит в большой команде, в сотрудничестве с коллегами и специалистами из смежных областей.

Приступить к изучению технологию искусственного интеллекта на начальном уровне вполне можно самостоятельно, с изучения соответствующей литературы.

Книги, в доступной форме рассказывающие о машинном обучении и технологиях ИИ:

Познакомиться с основами создания алгоритмов для искусственного интеллекта можно на кружках робототехники в школе или центре детского творчества. Кроме того, можно найти бесплатные онлайн-курсы и открытые лекции в интернете о машинном интеллекте.

Технологии машинного обучения и искусственного интеллекта – одна из самых интересных и перспективных областей, изучение которой полезно школьникам не только с математическим, но и с гуманитарным складом ума. Это поможет им приобрести новые навыки, расширит список возможных профессий и позволит внести вклад в развитие научно-технического прогресса.

Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей

Источник

Как работают искусственный интеллект, машинное и глубокое обучение

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.

Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).

В чем разница между этими названиями?

Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.

К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.

Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Получается, что машинное обучение — это обучение ИИ

Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.

Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.

Такие алгоритмы можно научить решать задачи любой сложности?

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

А что насчет глубокого обучения? Чем оно отличается от машинного?

Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.

Нейронные сети? Как те, что в мозгу у человека?

Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Если говорить упрощенно, смысл этой сверточной нейронной сети в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

А как происходит процесс обучения?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Что значит «поощрять» и «штрафовать» нейросеть?

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?

Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Источник

Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница

Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.

Что такое искусственный интеллект

Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.

Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.

В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.

Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.

Каким бывает искусственный интеллект

Исследователи обычно делят ИИ на три группы:

Слабый ИИ (Weak, или Narrow AI)

Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:

Это несколько примеров, в реальности применений намного больше.

Сильный ИИ (Strong, или General AI)

Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.

Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.

Суперинтеллект (Superintelligence)

Мы не только не создали суперинтеллект, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.

Машинное обучение: как учится ИИ

Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.

Чтобы машина могла принимать решения, необходимы три вещи:

В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.

Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.

А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.

Deep learning: глубокое обучение для разных целей

Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.

Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.

Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.

Для чего используется искусственный интеллект. Смотреть фото Для чего используется искусственный интеллект. Смотреть картинку Для чего используется искусственный интеллект. Картинка про Для чего используется искусственный интеллект. Фото Для чего используется искусственный интеллект

По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»

А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.

Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.

Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.

Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.

Подведём итоги

Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.

Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.

Первичное, обычно регулярное, обследование тех, у кого нет клинических симптомов. Проводится с целью ранней диагностики заболевания.

До покупки Google, Waymo cars была самостоятельной компанией по производству самопилотируемых автомобилей.

Умный облачный помощник для устройств Apple.

Виртуальный голосовой помощник, созданный компанией «Яндекс».

Одна из основных теорем элементарной теории вероятностей. Позволяет переставить причину и следствие: по известному факту события вычислить вероятность того, что оно было вызвано этой причиной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *