Для чего используется озон
Озон (газ)
Токсичный, голубоватого цвета, пахучий газ с сильной окислительной способностью, образованный из трех атомов кислорода (O3).
Озон возникает естественным образом в верхних слоях атмосферы, где он образуется в результате фотохимической реакции. Он также образуется в результате электрических разрядов и химических реакций, в результате которых кислород выделяется при охлаждении. В нижних слоях атмосферы он является токсичным загрязнителем для животных и растений. Однако в стратосфере он образует защитный слой для жизни на Земле, поглощая ультрафиолетовое излучение Солнца.
1. Физические и химические свойства
2. Используется
Озон используется благодаря своим окислительным и бактерицидным свойствам для дезинфекции воздуха в замкнутых пространствах, стерилизации воды, отбеливания текстиля и выдержки вина и древесины. При лечении ран (озонотерапия) он применяется в виде струи или в водном растворе, в одной или нескольких дозах в зависимости от полученного результата. Он используется в приготовлении высыхающих масел и в синтезе некоторых растительных эссенций.
3. Атмосферный озон
3.1. Стратосферный озон и преимущества озонового слоя
3.2. Тропосферный озон и его влияние на живые организмы
На высоте ниже 10 км уровни озона очень низкие, порядка 0,03 миллионных долей. Однако, в отличие от своей полезной роли в стратосфере, озон действует у земли как окислитель, который нарушает фотосинтез и может вызвать повреждение растений (коричневые пятна на листьях, соответствующие некрозу). В районах с высоким уровнем загрязнения, где его уровень может быть намного выше, озон непосредственно влияет на здоровье человека, особенно на дыхательную систему и слизистые оболочки. Озон раздражает легкие, вызывая кашель, респираторный дискомфорт, а иногда даже отек легких. Лечение после тяжелых ингаляций заключается в строгом покое под наблюдением врача.
Количество озона в атмосфере выражается как «уменьшенная толщина», т.е. вертикальная толщина столба, в котором был бы собран весь газ, при нормальной температуре и давлении. В среднем эта толщина составляет 2,5 мм.
4. Озоновая дыра
4.1. Открытие озоновой дыры
4.2 Происхождение и последствия
Если некоторые природные факторы, такие как выброс сернистых газов при извержениях вулканов, всегда способствовали частичному и временному разрушению озонового слоя, то опасность, которую представляют промышленные выбросы хлора, ученые осуждают с 1980 года. Хлорфторуглероды (ХФУ), используемые в качестве аэрозольных пропеллентов, хладагентов или пенообразователей в некоторых жестких пенопластах, являются основной причиной разрушения озонового слоя. Многие другие химические вещества, такие как галоны (галогенизированные производные углеводородов), используемые в огнетушителях, а также некоторые растворители, такие как четыреххлористый углерод или бромистый метил, также способствуют образованию озоновой дыры. Все эти соединения чрезвычайно стабильны и могут оставаться в атмосфере в течение 50-100 лет. Они попадают на полюса и высвобождают свои атомы хлора (или брома), которые разрушают озон.
Истощая озоновый слой, человеческая деятельность поставила под угрозу нашу естественную защиту от солнца. Истощение стратосферного озона приводит к увеличению количества ультрафиолетового излучения, достигающего земли. Эти лучи могут повреждать ДНК человека, вызывать рак кожи и катаракту, а также другие заболевания. Они также оказывают вредное воздействие на растения и фитопланктон.
4.3. Международная осведомленность
С 1985 года (Венская конвенция) несколько международных конференций ознаменовали собой глобальное осознание необходимости защиты стратосферного озонового слоя и обеспечения ограничения воздействия человеческой деятельности на климат. Основные страны-производители ХФУ отказались от производства и использования этих озоноразрушающих газов. Сегодня гидрофторуглероды (ГФУ) и перфторуглероды (ПФУ), второе поколение заменителей ХФУ, безопасны для озонового слоя (хотя для его восстановления потребуются годы), но они являются мощными парниковыми газами, способствующими глобальному потеплению.
Такой разный озон: пять фактов о газе, который может спасать и убивать
МОСКВА, 16 сен — РИА Новости. Международный день охраны озонового слоя, тонкого «щита», защищающего все живое на Земле от губительного ультрафиолетового излучения Солнца, отмечается в понедельник, 16 сентября — в этот день в 1987 году был подписан знаменитый Монреальский протокол.
В нормальных условиях озон, или O3, — бледно-голубой газ, который по мере охлаждения превращается в темно-синюю жидкость, а затем и в иссиня-черные кристаллы. Всего на озон в атмосфере планеты приходится около 0,6 части на миллион по объему: это значит, например, что в каждом кубометре атмосферы всего 0,6 кубического сантиметра озона. Для сравнения, углекислого газа в атмосфере уже около 400 частей на миллион — то есть больше двух стаканов на тот же кубометр воздуха.
На самом деле, такую небольшую концентрацию озона можно назвать благом для Земли: этот газ, который на высоте 15-30 километров образует спасительный озоновый слой, в непосредственной близости от человека куда менее «благороден». Озон по российской классификации относится к веществам наивысшего, первого класса опасности — это очень сильный окислитель, который крайне токсичен для человека.
Озоновый щит
«Это достаточно хорошо изученный газ, практически все изучено — всего никогда не бывает, но основное все (известно)… У озона много всяких применений. Но и не забывайте, что, вообще говоря, жизнь возникла благодаря озоновому слою — это, наверное, главный момент», — говорит Самойлович.
В стратосфере озон образуется из кислорода в результате фотохимических реакций — такие реакции начинаются под воздействием солнечного излучения. Там концентрация озона уже выше — около 8 миллилитров на кубический метр. Разрушается газ при «встрече» с некоторыми соединениями, например, атомарным хлором и бромом — именно эти вещества входят в состав опасных хлорфторуглеродов, более известных как фреоны. До появления Монреальского протокола они использовались, в частности, в холодильной промышленности и как пропелленты в газовых баллончиках.
Озоновый смог
В 30 километрах от поверхности Земли озон «ведет себя» хорошо, но в тропосфере, приземном слое, он оказывается опасным загрязнителем. По данным UNEP, концентрация тропосферного озона в Северном полушарии за последние 100 лет выросла почти втрое, что к тому же делает его третьим по значимости «антропогенным» парниковым газом.
Здесь озон тоже не выбрасывается в атмосферу, а образуется под действием солнечного излучения в воздухе, который уже загрязнен «предшественниками» озона — оксидами азота, летучими углеводородами и некоторыми другими соединениями. В городах, где озон является одним из основных компонентов смога, в его появлении косвенно «виноваты» главным образом выбросы автотранспорта.
Страдают от приземного озона не только люди и климат. По оценкам специалистов UNEP, снижение концентрации тропосферного озона может помочь сохранить около 25 миллионов тонн риса, пшеницы, сои и кукурузы, которые ежегодно теряются из-за этого токсичного для растений газа.
Озон полезный
«Одно из очень интересных свойств озона — бактерицидное. Он по бактерицидности практически первый среди всех таких веществ, хлора, перекиси марганца, окиси хлора», — отмечает Вадим Самойлович.
Та же экстремальная природа озона, делающая его очень сильным окислителем, объясняет сферы применения этого газа. Озон используется для стерилизации и дезинфекции помещений, одежды, инструментов и, конечно, очистки воды — как питьевой, так и промышленной и даже сточной.
Кроме того, подчеркивает эксперт, озон во многих странах используется как заменитель хлора в установках для отбеливания целлюлозы.
«Хлор (при реакции) с органикой дает соответственно хлорорганику, которая гораздо более ядовитая, чем просто хлор. По большому счету, избежать этого (появления ядовитых отходов — ред.) можно либо резко уменьшив концентрацию хлора, либо просто устранив его. Один из вариантов — замена хлора на озон», — объяснил Самойлович.
Озонировать можно и воздух, и это тоже дает интересные результаты — так, по словам Самойловича, в Иванове специалисты ВНИИ охраны труда и их коллеги провели целую серию исследований, в ходе которых «в прядильных цехах в обычные воздуховоды вентиляции добавляли некоторое количество озона». В результате, распространенность респираторных заболеваний уменьшалась, а производительность труда, напротив, росла. Озонирование воздуха на складах пищевой продукции может повышать ее сохранность, и такие опыты в других странах тоже есть.
Озон токсичный
«Это все-таки техника достаточно сложная. Вылить ведро какого-нибудь там бактерицида — это проще гораздо, вылил и все, а тут следить надо, какая-то подготовка должна быть», — говорит ученый.
Озон вредит организму человека медленно, но серьезно — при длительном нахождении в загрязненном озоном воздухе возрастает риск сердечно-сосудистых заболеваний и болезней дыхательных путей. Вступая в реакцию с холестерином, он образует нерастворимые соединения, что приводит к развитию атеросклероза.
«При концентрациях выше предельно допустимых могут возникать головная боль, раздражение слизистых, кашель, головокружение, общая усталость, упадок сердечной деятельности. Токсичный приземной озон приводит к появлению или обострению болезней органов дыхания, в группе риска находятся дети, пожилые люди, астматики», — отмечается на сайте Центральной аэрологической обсерватории (ЦАО) Росгидромета.
Озон взрывоопасный
Озон вредно не только вдыхать — спички тоже стоит спрятать подальше, потому что этот газ весьма взрывоопасен. Традиционно «порогом» опасной концентрации газообразного озона считается 300-350 миллилитров на литр воздуха, хотя некоторые ученые работают и с более высокими уровнями, говорит Самойлович. А вот жидкий озон — та самая синяя жидкость, темнеющая по мере охлаждения — взрывается самопроизвольно.
Именно это мешает использовать жидкий озон как окислитель в ракетном топливе — такие идеи появились вскоре после начала космической эры.
«Наша лаборатория в университете возникла как раз на такой идее. У каждого топлива ракетного есть своя теплотворная способность в реакции, то есть сколько тепла выделяется, когда оно сгорает, и отсюда насколько мощной будет ракета. Так вот, известно, что самый мощный вариант — жидкий водород смешивать с жидким озоном… Но есть один минус. Жидкий озон взрывается, причем взрывается спонтанно, то есть без каких-либо видимых причин», — говорит представитель МГУ.
По его словам, и советские, и американские лаборатории потратили «огромное количество сил и времени на то, чтобы сделать это каким-то безопасным (делом) — выяснилось, что сделать это невозможно». Самойлович вспоминает, что однажды коллегам из США удалось получить особо чистый озон, который «вроде бы» не взрывался, «уже все били в литавры», но затем взорвался весь завод, и работы были прекращены.
«У нас были случаи, когда, скажем, колба с жидким озоном стоит, стоит, жидкий азот подливают туда, а потом — то ли азот там выкипел, то ли что — приходишь, а там половины установки нет, все разнесло в пыль. Отчего он взорвался — кто его знает», — отмечает ученый.
Про Володю и озонатор
Писал я недавно в свой канал заметку насчет комнатных растений, по мнению NASA очищающих воздух от формальдегида/аммиака/паров растворителей (бензола, трихлорэтилена, ксилола и толуола). И сразу от подписчиков получил вопрос по поводу озона в воздухе. Набросал черновик ответа, но за пару дней он внезапно «растолстел» и попросился на хабр. Тем более антропогенный озон — это в определенной степени и лазерные принтеры и копиры, коих в офисах и компаниях тысячи…
Поэтому сегодня под катом читаем про тропосферный (или приземный) озон, кустарные методы определения его в воздухе и конечно же про растения, которые способны озон этот дезактивировать (и не только его). Как повысить продуктивность с помощью комнатных растений и защититься от заболеваний легких.
От автора: надеюсь, статью прочитают те, кто среди зимы занимается «кронированием» городских деревьев, срезая две трети ствола и, хоть о чем-то задумается…
Предыстория. Захотел однажды некий научный сотрудник задействовать в своих изысканиях озон. Приобрел озонатор для этой цели и поручил своему аспиранту прибор наладить и приступить к генерации этого самого озона для целей народного хозяйства. Но аспирант оказался не промах и затребовал к озонатору еще и прибор для контроля уровня озона в воздухе. Ну а зачем, спросили аспиранта, «озон ведь полезен». Но тот остался верен себе «индикатора озона нет — работы нет». Храброй, уверенной в своих знаниях молодежи посвящается! А тем кто не уверен — может быть статья и поможет.
Чем озон хорош?
Хорош он в первую очередь конечно же тем, что является основным защитником земли от жесткого ультрафиолета Солнца. Тонкий (около 3 мм — прим. SilverHorse «3 мм — это приведенная толщина озонового слоя, то есть толщина этого слоя, если весь озон в атмосфере Земли сконцентрировать на уровне моря при н.у.» = при температуре 273К/0С и давлении 10 5 Па/1 атм — уточнение от tvl ) слой этого газа в стратосфере фильтрует УФ от 200 до 315 нм (пик поглощения 250 нм).
Благодаря очень высокой окислительной активности озон используется во многих отраслях промышленности и медицины. В качестве примера можно привести водоподготовку, где пропускание озона через загрязненную воду позволяет убирать из нее железо и марганец (обезжелезивание и деманганация):
Озон окисляет растворенный сероводород в воде до сернистой кислоты:
Озон нейтрализует цианиды в пирожных, переводя их в безопасные цианаты (а дальше и вообще в углекислый газ):
Этот способ можно использовать на аффинажных предприятиях (= по добыче золота и серебра).
Озонирование довольно активно используется в водоподготовке (как замена хлору), т.к озон не образует опасных хлорорганических соединений и не остается в воде после обработки (прим. — но если в воде есть бромиды (вроде «армейского брома») то обработка озоном может привести к образованию канцерогенного бромата). Там где есть достаточное количество электроэнергии — озон «препарат выбора» для обеззараживания воды. Не требует затрат на транспортировку, на специальное оборудование для хранения опасных газов, и никак не меняет органолептические качества воды (вкус и запах).
Озон может убивать бактерии/грибы/насекомых, чем активно пользуются, например для дезинфекции белья в больницах/дезинфекции операционных, для обработки бассейнов и бань (+ морских кораблей), для очистки воздуха пищевых производств от спор дрожжей и плесени, для ликвидации возбудителей лямблиоза и криптоспоридиоза в воде. Озоном, в конце концов уничтожают жучков в зерне.
Прекрасный окислитель, озон вполне может быть использован для дезодорирования помещений/предметов после пожара, для отбеливания тканей, древесины, бумаги (как замена хлору). Озон используется при травлении пластмасс, чтобы увеличить адгезию красителей и чернил. Интересное применение — удаление остатков пестицидов из фруктов и овощей.
Чем озон плох?
А плох он тем же, чем и хорош. Своей высокой окисляющей способностью. Именно благодаря этому происходит ускоренное старение полимеров, особенно резин (натуральный каучук, нитрильный каучук и стирол-бутадиеновый каучук). Изделия растрескиваются, теряют эластичность и т.д. и т.п. Поэтому в полимеры, работающие в условиях повышенного содержания озона добавляют «антиозоновые» добавки (в основном воски, которые создают защитную пленку). В жизни примером «озоновых трещин» могут стать топливные шланги в моторном отсеке. Озон там образуется из-за работы электрических компонентов с искрением в них (щетки, электромеханические реле, контакторы и т.п.).
Так же как расправляется с микроорганизмами и резинами, озон может расправится и с легочной тканью человека.
Традиционно принято считать, что «любой природный запах свежести» — это озон. Хотя, если уж начистоту, мне запах озона напоминает запах хлора, который далек от понятия «приятно». Есть мнения, что свежесть воздуха около моря — это заслуга озона. На самом деле — это запах связан со старым добрым диметилсульфоксидом (лекарственное средство димексид, ага). Запахи это вообще материя такая странная, неуловимая…
Тропосферный озон оказывает влияние в основном на легкие при вдыхании, хотя при определенных условиях может оказывать и раздражающее действие на кожные покровы. «Газовая атака» может выражаться в следующих симптомах:
— Раздражение дыхательной системы: кашель, раздражение горла и/или неприятные ощущения в груди. В группу риска попадают и люди, проводящие много времени на улице у которых повышается восприимчивость к респираторным инфекциям.
— Снижение физиологической активности легких, сложность с глубоким и энергичным дыханием. Озон заставляет мышцы дыхательных путей сжиматься, что задерживает воздух в альвеолах, а в итоге появляются хрипы и одышка
— Воспаление и повреждение слизистой оболочки легких. При отравлении озоном в течении нескольких дней поврежденные клетки отмирают так же, как кожа после загара. Но если этот тип воспаления повторяется в течение длительного периода времени (месяцы, годы и т.п.), на ткани легкого образуются рубцы, что в итоге приводит к потере определенной части функционала легкого.
— Обострение хронических заболеваний. Наиболее уязвимы для озона люди с хроническими респираторными заболеваниями, вроде астмы, хронической обструктивной болезни легких, рака легких и т.п. При повышении уровня озона у астматиков возрастает количество приступов, они становятся более чувствительны к различным аллергенам в воздухе.
На картинке ниже показано взаимодействие озона с дыхательной жидкостью и клетками легких
Острые и хронические последствия для здоровья и роль озона в заболеваемости и смертности обобщены в документе ВОЗ. Исследования последних лет показывают, что ежедневное воздействие высоких уровней озона может вызвать повреждение ДНК у операторов в копировальных центрах. Особое внимание многие авторы обращают на опасность повышенного содержания озона для детей из-за более высокого потребления воздуха на килограмм массы тела. EPA США (за 2017) утверждает, что длительное воздействие озона в высоких концентрациях приводит к постоянному повреждению легочной ткани. В качестве примера факт, что увеличение максимальной концентрации озона за 1 ч на 10 мкг/м 3 приводит к увеличению смертности на 0,21% без учета других загрязнителей воздуха. Исследование показало, что сокращение концентрации озона в городах на одну треть спасло бы примерно 4000 жизней в год. Сюда же информация о том, что один только тропосферный озон вызывает приблизительно 22 000 преждевременных смертей в год в 25 странах Европейского союза.
Теоретически, большая часть людей могут обнаружить присутствие
0,01 мкмоль/моль озона в воздухе, благодаря резкому запаху, напоминающему запах хлора. Если в воздухе содержится от 0,1 до 1 мкмоль/моль озона в воздухе — тогда возникают головные боли, жжение в глазах и раздражение дыхательных путей.
Источники тропосферного озона
В городских условиях озон чаще всего образуется в результате реакции между летучими органическими соединениями и оксидами азота в присутствии ультрафиолета солнечного света (фотохимическая реакция). Летучая органика (VOC по английски) — это любые органические вещества, которые кипят при низкой температуре и соответственно легко испаряются из жидкой или твердой формы и поступают в окружающую среду. Сюда относится формальдегид, бутан, бензол, метиленхлорид, стирол, лимонен и т.д. и т.п. Тысячи их. Считается, что предшественниками тропосферного озона являются СО (угарный газ), летучая органика и оксиды азота (NOx). Основными поставщиками прекурсоров являются выхлопные газы автомобилей, промышленные выбросы и химические растворители (+ курильщики). И хотя прекурсоры озона часто возникают в городских районах, ветер может переносить NOx на сотни километров, и добавить «озоньку» даже в достаточно отдаленных районах крайнего Севера.
Тропосферный озон начинается с того, что угарный газ или летучая органика окисляется с помощью гидроксильного радикала. В случае СО получается нестабильный радикальный аддукт *HOCO, который в реакции с кислородом воздуха образует пероксидный радикал, а летучие углеводороды так те сразу дадут пероксосоединения.
Затем пероксидные радикалы начнут реагировать с оксидом азота NO c образование оксида азота NO2 и старого доброго гидроксильного радикала с которого все началось.
Ну а дальше уже получившийся NO2 под воздействием оставшегося после прохождения стратосферного озонового слоя ультрафиолета будет распадаться обратно на NO и атомарный кислород О.
NO2 + hv = NO + O, λ для тех кому бумажек мало
Когда озон измерен, самое время задуматься о том, что теперь с ним делать. Лучший вариант — переместиться куда-нибудь территориально (на дачу, например). Связано это с тем, что именно наружный воздух является основным источником озона внутри помещений. В зависимости от скорости воздухообмена/скорости распада озона его концентрация в помещении может составлять примерно от 30 до 70% от концентраций в наружном воздухе (при условии отсутствия антропогенных источников озона, вроде очистителей воздуха, лазерных принтеров или копиров).
Замечание от teakettle по поводу принтеров/копиров:
В настоящее время надо суметь найти лазерный принтер, загрязняющий воздух озоном. Это было актуально лет, примерно, 20 назад: тогда для заряда фотобарабана и переноса тонера на бумагу в них применялись коронаторы (коротроны, скоротроны — каждый переводчик переводил charge corona unit по своему) с рабочим напряжением 4,5-5 кВ, при котором возникал коронный разряд (который и обеспечил название детали и образование озона). В настоящее время в большинстве принтеров (копиров, МФУ) применяется ролик заряда под напряжением 1,3-1,7 кВ. Такого напряжения недостаточно для образования озона.
Коронаторы в лазерной печатающей технике встретить все еще можно, обычно при скоростях печати 70 страниц в минуту и выше, но обычно это немаленький такой шкаф, который мало кто поставит у себя под боком (он еще и шумит изрядно), либо в «инженерках» — копировальных аппаратах формата А0, тоже не особо распространенных. Самое забавное случалось при периодической замене озоновых фильтров в аналоговых копирах (в цифровиках почему-то обычно стояли ролики, уже тогда): аппарат работает нормально, меняем старый пыльный фильтр на новый — начинает вонять озоном, прекращает через несколько дней.
Если изменить свое местоположение не представляется возможным — остается с озоном бороться. Технологически, сегодня известны активные и пассивные методы удаления озона в помещении. Активные — это принудительный прогон воздуха в помещении через фильтры с активированным углем. Пассивные — это использование специализированных покрытий на стенах/потолке, способных снижать содержание озона в воздухе. На сегодня это открытая тема на острие науки. Чаще всего для этой цели используются неорганические материалы, например, краски/штукатурки на основе глин, глиняный и известняковый облицовочный камень, потолочные плиты на основе перлита, листы гипсокартона без армирующей бумажной стенки и т.п. Эти методы чаще всего сопряжены с высокими энергетическими и финансовыми затратами и не всегда обладают достаточной эффективностью (особенно в крупных мегаполисах).
Единого мнения о времени полураспада озона нет, что не удивительно, т.к. этот параметр будет зависеть от температуры, влажности, материала стен и т.п. Например, в герметичной камере с вентилятором, который постоянно перемешивает газ, период полураспада составляет около одного дня при комнатной температуре. По некоторым данным, при атмосферных условиях период полураспада озона может составлять от тридцати минут до двух часов.
Про наших маленьких друзей
Ну и самый перспективный, экологичный и дешевый вариант — использовать растения. Озон может удаляться растениями, выделяющими монотерпены. Активно поглощают озон и дитерпеноиды, выделяемые устьицами растений. В качестве примера можно привести листья табака, которые выделяют дитерпенол цис-абиенол. При поглощении озона через устьица листа начинается механизм окисления с активацией нескольких растительных антиоксидантных систем (ферментных и т.п.), что вместе уменьшает окислительный стресс и позволяет растениям пережить высокий уровень озона в воздухе. Если смотреть в сторону доступных комнатных растений, то чемпионами по очистке воздуха от озона являются следующие растения:
— Хлорофитум хохлатый (Chlorophytum comosum, «растение-паук», «брызги шампанского»)
— Сансевиерия трёхполосная (Sansevieria trifasciata, «тещин язык»)
Так что, если вдруг так случилось, что вы много времени проводите в местах скопления оргтехники или попали летом под фотохимический смог — обязательно держите рядом с собой иодокрахмальные полоски со шкалой Шёйнбейна и хотя бы одно упомянутое выше растение.
Замечание про другие виды загрязнений
В публикации посвященной растениям-поглотителям летучих органических соединений (которые, напомню, являются предшественниками появления приземного озона) я ничего не сказал про то, каким способом растения это делают. А надо бы.
Убирают всю самую распространенную летучую органику (формальдегид, аммиак, пары бензола, трихлорэтилена, ксилола и толуола), не токсичны для котиков/пёсиков
Например, в работе было проанализировано 217 травянистых и древесных видов на предмет эффективности поглощения NO2. Было установлено, что наиболее эффективные древесные растения — это Eucalyptus viminalis, Populus nigra, Magnolia kob u и Robinia pseudoacacia, а среди травянистых — Erechtites hieracifolia, Crassocephalum crepidioides и Nicotiana tabacum.
Сложная органика (вроде бензола) окисляется по орто- или мета-положениям и превращается в полезные (людям) полифенолы.
Интересно, что по отношению к наночастицам РМ2.5 более активны растения с листьями в виде игл. Возможно это объясняется большим количеством игл по сравнению с количеством плоских листьев, и кроме того, очень большую роль играет наличие слоя воска, покрывающего лист и играющего роль адгезива для приклеивания твердых частиц. Также хорошей задерживающей способностью по отношению к твердым аэрозолям могут обладать все растения с высокой степень «оволоснения» листьев (Catalpa speciosa, Broussonetia papyrifera и Ulmus pumila, см. статью в Nature). Все упоминания об фиксации твердых частиц относятся в основном к листьям растений и не известно, могут ли микробы расщеплять накопленные на листьях частицы для дальнейшего использования в метаболизме растений. Это отдельная, неизученная пока, тема.
Несмотря на множество сугубо технических подходов для очистки воздуха (адсорбенты, каталитическое окисление, хемосорбция и катализ), постоянно идет поиск увеличения эффективности и, одновременно, снижения стоимости очистки воздуха. И все больше исследователей сходится в том, что лучше всего для этой задачи подходят леса (удивительно, да? 🙂 ). Поэтому достаточно активно финансируются работы, направленные на изучение биоремедиации (= использования организмов для накопления, разложения или превращения опасных веществ в менее токсичные или нетоксичные), и здесь уже фиторемедиация (использование растений в качестве биофильтров) занимает видное место в развитых странах.
Эта тема достаточно непростая. Пары ртути — это, фактически, элементарный металл. Листья некоторых растений способны поглощать газообразную ртуть через устьица листа. В статье исследователи на примере злаковых растений установили, что поглощение ртутных паров листом увеличивается с повышением концентрации паров, температуры и освещенности. Листья также способны поглощать ртуть после осаждения микрокапель на поверхности листьев. Но несмотря на присутствие определенного эффекта, чаще всего растения используются только для биоиндикации загрязнения ртутными парами, а не для очистки от них. Наиболее близким к «комнатному ртутному био-фильтру» можно считать использование такого интересного растения, как тилландсия уснеевидная (испанский мох), с помощью которого удалось снизить уровень ртутных паров в бразильских магазинах торгующих золотом. Так что пока это самый оптимальный вариант для использования в качестве комнатного вазона :). Кстати, именно это растение используют для создания кукол Вуду.