Для чего используется питон
Что такое Python: чем он хорош, где пригодится и как его выучить
Python — самый быстрорастущий язык программирования за последние несколько лет. Об этом говорит исследование StackOverflow за 2019 год. Давайте разберёмся, за что его любят разработчики и почему мы советуем начинающим программистам попробовать его в качестве первого языка.
Python просто понять и изучить
Вам точно стоит попробовать Python, если вы никогда не писали код, но хотите получить первую работающую программу как можно быстрее. Самый простой пример — программа, которая выводит на экран заданную фразу. Вот как выглядит ее код на трёх разных языках. Сравните количество и понятность строк кода.
“Java” справляется в 5 строк, используем множество скобок.
“C” работает похоже, хоть строк и немного меньше:
Python использует одну понятную строку:
Конечно, это не значит, что так будет всегда. Есть программы посложнее, но в них всё ещё можно разобраться, если немного знать английский. Например, вот программа, которая умеет отправлять электронные письма:
У Python много готовых библиотек для решения задач
Библиотеками в программировании называют инструменты для решения конкретных типов задач. Вот несколько примеров популярных библиотек для Python:
Pygame. Библиотека для создания небольших игр и мультимедийных приложений.
NumPy. Библиотека для работы с искусственным интеллектом и машинным обучением. Используется для сложных математических вычислений.
Pandas. Библиотека для работы с большими данными.
SQLAlchemy. Библиотека для работы с базами данных.
Django, Flask. Библиотеки для разработки серверной части приложений.
Наличие библиотек значит, что под каждую задачу есть свой инструмент. Придумывать что-то сложное с нуля не придется.
Python используют компании-гиганты
Многие известные нам компании и организации используют Python:
Python надолго останется популярным
Скорее всего, вы слышали о машинном обучении и больших данных. Хорошая новость — Python считается лучшим языком программирования для работы в этих областях. Вот что делают с его помощью:
Python-разработчикам готовы платить
По данным калькулятора зарплат на сайте «Мой Круг», средняя зарплата младшего (Junior) Python-разработчика — примерно 60 000 рублей. В зависимости от региона, требований компании и умений кандидата, цифра может меняться. Python-разработчики среднего и высокого уровня (Middle и Senior) получают более высокие зарплаты.
3 самых важных сферы применения Python: возможности языка
Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.
Если вы собираетесь изучать Python или совсем недавно начали его учить, вы точно задумывались, что же можно на нем сделать. Вопрос не простой, так как этот язык используется во многих сферах.
Но можно выделить 3 самых популярных направления применения Python:
Каждое из них заслуживает отдельного рассмотрения.
Веб-разработка
Относительно недавно в веб-разработке стали очень популярны Python-фреймворки, такие как Django и Flask. Они облегчают процесс написания на языке Python кода серверной части приложений. Это тот код, который запускается на сервере, а не на устройствах и браузерах пользователей (frontend-код). Если вы не знакомы с отличиями backend- и frontend-разработки, вам будет интересна заметка в конце статьи.
Зачем нужен веб-фреймворк?
Фреймворки позволяют легко и быстро создать базовую логику бэкенда. Она включает в себя сопоставление разных URL-адресов с частями Python-кода, работу с базами данных, создание HTML-представлений для отображения на устройствах пользователя.
Какой Python-фреймворк выбрать?
Django и Flask – два самых популярных веб-фреймворка, созданных для языка Python. Новичку следует выбрать один из них.
В чем разница между Django и Flask?
Другими словами, Flask – это, возможно, лучший выбор для начинающего разработчика, так как он содержит меньше компонентов. Кроме того, его стоит выбрать, если необходима тонкая настройка проекта.
Flask из-за своей гибкости лучше подходит для создания REST API.
С другой стороны, если стоит задача сделать что-то просто и быстро, вероятно, стоит выбрать Django.
Data Science: машинное обучение, анализ данных и визуализация
Прежде всего, следует разобраться, что такое машинное обучение.
Предположим, что вы хотите разработать программу, которая будет автоматически определять, что изображено на картинке.
Например, предлагая ей это изображение, вы хотите, чтобы программа опознала собаку.
А здесь она должна увидеть стол.
Возможно, вы думаете, что для решения этой задачи можно просто написать код анализа изображения. Например, если на картинке много светло-коричневых пикселей, делаем вывод, что это собака.
Или вы можете научиться определять на изображении края и границы. Тогда картинка с большим количеством прямых границ, вероятно, окажется столом.
Однако это довольно сложный и непродуманный подход. Что делать, если на фотографии изображена белая собака без коричневых пятен? Или если на картинке круглый стол?
Здесь вступает в игру машинное обучение. Обычно оно реализует некоторый алгоритм, который позволяет автоматически обнаруживать знакомый шаблон среди входных данных.
Вы можете предложить алгоритму машинного обучения, скажем, 1000 изображений собаки и 1000 снимков столов. Он выучит разницу между этими объектами. Затем, когда вы дадите ему новую картинку со столом или собакой, он сможет определить, что именно на ней изображено.
Это очень похоже на то, как учатся маленькие дети. Каким именно образом они узнают, что одна вещь похожа на стол, а другая – на собаку? Из большого количества примеров.
Вы ведь не даете ребенку четкую инструкцию: «Если нечто пушистое и светло-каштановое, значит, это собака». Напротив, вы говорите: «Это собака. Это тоже собака. И это. А это стол. И это тоже стол».
Алгоритмы машинного обучения в основном работают сходным образом.
Эта технология может применяться:
Среди самых популярных алгоритмов машинного обучения, о которых вы, вероятно, слышали:
Любой из вышеперечисленных алгоритмов может быть использован для решения задачи с собаками и столами на изображениях.
Способы применения Python для машинного обучения
Существуют разные библиотеки и фреймворки для машинного обучения на Python. Две самые популярные – это scikit-learn и TensorFlow.
Новичкам в машинном обучении лучше начать со scikit-learn. Более опытным разработчикам, которые столкнулись с проблемами эффективности, стоит присмотреться к TensorFlow.
Как изучать машинное обучение?
Для ознакомления с основами предмета прекрасно подойдут курсы Стэнфорда или Калтеха (Калифорнийский технический институт). Следует отметить, что для понимания материала требуются базовые знания в области математического анализа и линейной алгебры.
Затем можно переходить к практике на платформе Kaggle. Это сайт, на котором исследователи в области data science создают различные алгоритмы машинного обучения для решения реальных проблем. Победители получают солидные денежные призы. У них также есть отличные учебники для начинающих.
Анализ и визуализация данных
Чтобы понять, о чем идет речь, следует обратиться к простому примеру.
Предположим, вы работаете аналитиком данных в компании, которая продает товары через Интернет. Вы можете получить такую гистограмму:
Из этого графика можно понять, что в это воскресенье мужчины купили более 400 единиц продукта, а женщины – около 350. Ваша задача, как аналитика, придумать несколько возможных объяснений такой разницы.
Один из очевидных вариантов заключается в том, что этот продукт больше популярен у мужчин, чем у женщин. Другое объяснение может быть связано со слишком маленьким размером выборки, который привел к недостоверным результатам. Третий вариант – мужчины по какой-либо причине склонны покупать продукт по воскресеньям.
Чтобы разобраться, в чем дело, вы можете просмотреть данные за всю неделю и составить новый график.
Из схемы видно, что различие довольно устойчиво и проявляется не только по воскресеньям.
Можно сделать вывод, что наиболее убедительным объяснением является принципиально большая заинтересованность мужчин в этом продукте.
С другой стороны, график за неделю может выглядеть вот так.
Как здесь объяснить большую разницу в продажах в воскресенье?
Вы можете предположить, что мужчины в конце недели почему-то склонны покупать больше. Или это может оказаться простым совпадением.
Это упрощенный пример того, как выглядит реальный анализ данных.
Настоящие аналитики, например, в Google или Microsoft, делают то же самое, только их работа более сложная и комплексная.
Они используют язык запросов SQL, чтобы извлекать данные из баз. Затем для анализа и визуализации применяются специальные инструменты, например, Mathplotlib (для Python) или D3.js (для JavaScript).
Способы применения Python для анализа и визуализации данных
Одна из самых популярных библиотек для визуализации – Mathplotlib.
Новичкам следует начинать обучение с нее по двум причинам:
Как изучать анализ данных на Python?
Сначала следует изучить основы. Вот хорошее видео, посвященное данной теме:
Закрепить знания поможет курс по визуализации данных на Pluralsight. Получить его бесплатно можно, подписавшись на 10-дневную пробную версию.
Чтобы разобраться в основах статистики, пройдите курсы на Coursera и Khan Academy.
Автоматизация процессов
Одна из самых популярных сфер применения Python – это написание небольших скриптов для автоматизации различных рабочих операций и процессов.
В качестве примера можно привести систему обработки электронной почты. Для сбора статистики и анализа данных требуется подсчитывать количество входящих писем, содержащих определенные ключевые слова. Это можно делать вручную, или же написать простой скрипт, который все посчитает сам.
Есть несколько причин применения Python для задач автоматизации:
Встроенные приложения
Python является самым популярным языком программирования для Raspberry Pi.
Python и игры
Несмотря на то, что существует библиотека PyGame, популярность применения Python для создания игр невелика. Для серьезных проектов он не подходит.
Чтобы создавать хорошие мультиплатформенные игры, стоит присмотреться к одному из самых популярных движков Unity, работающем с языком C#.
Десктопные приложения
Вы можете создать парочку, используя Tkinter, но это не самое популярное решение.
Для этой задачи лучше использовать такие языки, как Java, C# и C++.
С недавних пор некоторые компании начали использовать для создания настольных приложений JavaScript. Например, десктопное приложение Slack было создано с помощью JavaScript-фреймворка Electron.
Преимущество написания настольных приложений на JavaScript заключается в том, что можно повторно использовать код веб-версии.
Python 3 или Python 2
Python 3 – это более современный и популярный выбор.
Пояснение о backend- и frontend-коде
Предположим, вы хотите сделать нечто, напоминающее Инстаграм.
Вам необходимо создать frontend-код для каждого типа устройств, который должен поддерживаться. Для этого могут использоваться разные языки программирования, например:
На каждом типе устройства будет запускаться свой набор кода. Он определит формат приложения, его внешний вид и т.д.
Однако вам требуется хранить личные данные и фотографии. Вы хотите использовать для этого свой сервер, а не устройства пользователей, чтобы подписчики могли просматривать фотографии друг друга.
Для решения этой задачи потребуется backend-код (server-side). Он будет выполнять следующие операции:
Почему программисты используют Python
P ython — привлекательный язык программирования, который стремительно набирает поклонников по всему миру. Достаточно открыть любой рейтинг популярных и актуальных языков (например рейтинг от TIOBE ) и увидеть, что «Питон» стабильно находится в тройке лидеров списка.
Что уж говорить — американские пользователи гуглили слово «Python» чаще, чем «Ким Кардашьян», а российские интернет-серферы искали «змею» чаще, чем «Тимати».
Python — это уникальное совмещение простоты и мощи
Такое способен продемонстрировать далеко не каждый инструмент для программирования.
Где используется язык Python
Мировой размах применения обусловлен не только синтаксисом и мощью, но и философией языка. Принципы Python доступны каждому — достаточно ввести в любом интерпретаторе код import this и узнать основные положения, которые лежат в основе «Питона».
Возможности Python опробованы десятками организаций.
Мощь и гибкость языка находит применение у следующих мировых брендов:
Как видно, возможности Python используются в решении разносторонних задач. Рядовые пользователи Всемирной сети обожают YouTube, который частично написан на языке Python, в то время как гиганты информационных технологий Intel или IBM активно используют «змею» для тестирования и исследований.
Помимо указанных организаций, алгоритмы Python также используются в следующих брендах:
Возможности Python активно внедряются и в отечественны проекты. Mail.ru и Яндекс используют алгоритмы, которые написаны на данном языке программирования.
Что можно написать на Python
Чрезвычайная гибкость Python позволяет использовать язык программирования во многих областях человеческой деятельности. Python как профессиональный инструмент актуален в следующих отраслях:
В 2021 году, компания JetBrains провела опрос — для каких задач программисты используют Python? Лидирующие места занимают — веб разработка, анализ данных, машинное обучение, программирование скраперов и системное администрирование.
Возможности языка отнюдь не ограничиваются перечисленными сферами. Начинающим программистам и рядовым пользователям нет нужды изучать машинное обучение, чтобы удостовериться в пользе Python.
Вещи, которые будут полезны каждому и которые может создать любой человек на Python:
Постоянное создание и переименование файлов, обновление электронных таблиц — от такой скучной работы никто не застрахован. «Питон» может выполнять все процессы за пользователя, оставляя последнему только чистое творчество.
Профессиональные области использования языка Python стоит рассмотреть подробнее. Явное лучше, чем неявное.
Девопс
DevOps — технология взаимодействия специалистов по разработке со специалистами по информационно-технологическому обслуживанию + взаимная интеграция их рабочих процессов. Около 30% всех вакансий по Development and Operations требуют знания «Питона». «Змеиный язык» сместил Perl и стал лидером в отрасли. Девопс требует четкого сценария, и язык программирования Python — идеальный инструмент для такой работы.
Тестирование
Королем тестирования остается Java, но Python постепенно захватывает все больше жизненного пространства. Адекватный специалист должен владеть обоими инструментами для правильной и всесторонней автоматизации тестирования. Данную особенность прекрасно понимает Google, который активно использует Python в своей деятельности.
Скраппинг
«Питон» оснащен всем необходимым для веб-скраппинга: библиотекой Requests, фреймворком Scrapy и специальным АПИ для Selenium. Возможности языка позволяют оптимизировать работу любого веб-сайта. Функционал позволяет разрабатывать генераторы отзывов, спам-машины и скрипты для парсинга.
Машинное обучение
Современный информационные технологии делают акцент на развитие искусственного интеллекта. Машинное обучение — это Альфа и Омега разработки ИИ. Специальные библиотеки «змеиного языка» позволяют составлять прогнозы и ориентироваться в науке данных:
Создание визуализации, распознавание речи и лица — все это доступно с помощью инструментария, который предоставляет Python. Для работы в области машинного обучения требуется не только отличный инструмент, но и умная голова. От специалиста необходимо доскональное знание математики и статистики.
Веб-разработка
«Питон» входит в тройку лидеров, которые регулярно используются для разработки сайтов и различных веб-приложений. В отличие от PHP (этот язык ругает множество профессионалов), Python позволяет создать адекватную и читаемую программу, для которой не будут требоваться «костыли».
Мощь Python — в быстрой и качественной разработке сложных веб-приложений. Арсенал «Питона» включает множество модулей, которые подходят для статистики и аналитических исследований. Отдельного внимания заслуживает возможность разрабатывать ГИС-сервисы, так как Python предоставляет все необходимое для работы с геоданными.
Веб-разработка остается перспективным направлением для Python. Начинающим специалистам имеет смысл не только изучать стандартные PHP/CSS/JavaScript, но и приглянуться к возможностям «Питона».
Геймдев
Что не стоит писать на Питоне
Несмотря на огромный потенциал, язык слабо подходит для ряда отраслей. Яркий пример — область микроконтроллеров ➖. Отечественные «питонисты» убедительно демонстрировали возможности инструмента MicroPython, но реальный список микроконтроллеров, которые поддерживает «Питон» — практически нулевой.
Другая область — кросс-платформенные GUI приложения ➖. У Python есть инструменты, которые позволяют писать такие программы:
На практике ни один инструмент не позволяет разработать полностью кросс-платформенное приложение. Постоянно встречаются несостыковки, ошибки и другие «подводные камни». Коммерческий Desktop — это еще одна сомнительная область для работы на «Питоне».
Отдельным особняком стоит разработка мобильных приложений ➖. Реальной работы в области Mobile Development, которая требует знаний «Питона», на рынке не найти. Лучше изучать другие, более традиционные инструменты (пример — Java).
Проблема малой пригодности Python кроется не в возможностях самого языка программирования, а в рыночных тенденциях и человеческих привычках. Программисты привязаны к классическим инструментам, которые ничуть не хуже возможностей «Питона». Тем не менее Python остается одним из самых перспективных языков программирования, которые стоит изучать начинающим специалистам.
HeadHunter красноречиво демонстрирует нарастающую востребованность как «Питона», так и отраслей, где применяется данный язык программирования.
Где перспективно и адекватно использовать Python
В прошлой статье мы уже обсудили с вами причины, по которой Python нельзя назвать идеальным языком для новичков, хотя на том же Хабре бытует мнение, что Python – это выбор номер один и вообще топчик.
В этой статье мы с вами обсудим тот перечень направлений Питона, который я выделяю наиболее перспективными для приложения своих сил и времени для молодых специалистов. Данный вывод делается на основе моего анализа – изучение областей и инструментов питона и сравнивать их эффективность с аналогами на других платформах.
Что ты можешь сделать на Питоне
Хотя питон является языком общего назначения, и как говорится, все двери перед тобой открыты, на самом деле использование языка сильно ограничивается теми инструментами и технологиями, которые были в нем разработаны в ходе эволюционной борьбы с другими технологиями. Поэтому приступаем к обзору.
Микроконтроллеры (весьма сомнительно)
Хотя Андрей Власовских на прошедшем PYCON Russia 2017 в своей фирменной манере с энтузиазмом рассказывал о том, как программировать микроконтроллеры на таком инструменте, как MicroPython, а Кирилл Борисов даже предлагал изучить некоторую зарубежную литературу, ситуация в общем никакая.
Список микроконтроллеров, которые поддерживаются Python, стремится к нулю, коммерческая эффективность и наличие предложений по работе практическая нулевая. С учетом того, что есть более традиционные способы инструменты программирования, пока какая-то большая компания не вложится в этом направление, тут делать нечего.
Девопс (адекватно)
Анализ рынка показывает, что примерно треть всех вакансий, где упоминается Python, относятся к сфере DevOpsa. Однако Python идет не основным инструментом, а той технологией, которую знать желательно. Это связано с тем, что Python практичности полностью сместил Perl для Linux, и неплохо так подвинул Bash в области написания крупных скрипов и более крупных серверных компонентов. Также к этому добавляется то, что интерфейс многих тулзов принимает Python в качестве языка сценариев.
Если вы хотите развиваться в сфере Девопса, то знание Питон вам будет большим плюсом, все остальные проходят эту сферу стороной.
Что касается коммерческой перспективы (стартапа) данного направления, то сложно представить человека, который бы смог написать и монетизировать какой-то инструмент, не имея опыта 5+ лет в области девопса.
Тестирование (адекватно)
Хотя главным инструментом автоматизации тестирования является кровавая Java, которая имеет огромный набор фреймворков и готовых решений, порой небольшие компании используют Python для полноценного тестирования, либо написания сценариев для тулзов, типа Яндекс.Танк с его BFG.
Практика показывает, что хотя Python может полноценно справиться с задачей тестирования, использование Java является более прямолинейным и надежным решением.
Но если говорить в общем, то адекватный специалист по тестированию должен одинаково хорошо использовать Python и Java для своей области.
Вакансий под тестирование примерно также треть от общей массы, часто в вакансиях указывают знание и Python и Java одновременно.
Desktop development (сомнительно)
В настоящий момент язык Python имеет 5 кросc-платформенных инструментов, которые позволяют писать «полноценные» приложения под Windows/Linux/Mac
Поэтому можно с уверенностью сказать, что писать коммерческий Desktop на питон – это весьма сомнительная затея, и компании этим редко занимаются (либо переписывают при первой же возможности, как это сделал DropBox).
Что касается внутренних инструментов, то использование небольших GUI-приложений применяется, но искать целенаправленно Desktop Python разработчиков не будут.
Кто же хочется заняться этой сферой более полно, прошу к Игорю Новикову, который нашел неплохой способ сшить Франкенштейна с помощью абстракционного слоя – ссылка
Mobile Development (весьма сомнительно)
Все плохо, в качестве pet проектов можно использовать Kivy, для реальной разработки весьма сомнительно, вакансий на Kivy нет.
Т.е. как, я лично разговаривал с рядом людей, которые имели свой веб-проект на Python и для захвата большой аудитории писали приложения на Kivy, и у них его даже использовали, но это имеет вид «Программист пишет то, на чем хочет».
Машинное обучение и Data science (адекватно и перспективно)
Это одна из самых хайповы областей современного IT-мира, где используется Python в качестве инструмента апробации. Python имеет ряд удобных библиотек машинного обучения и научных расчетов: Pandas, NumPy, SciPy, Scikit-Learn, которые позволяют достаточно быстро построить рабочие модели. И они на самом деле неплохо работают.
Что касается использования, то Python используется в качестве инструмента апробации, либо на небольших задачах. Если проект большой, то обычно модель пишут на Java/Scala/C++, а специалист по обучению уже выступает в качестве консультанта/аналитика.
Сложность этого направления заключается в том, что у вас должны быть высокие знания в области математики и статистики, практически всегда будет спрашиваться высшее технические, математическое образование.
По вакансиям все довольно неплохо, но в таких вакансиях требуется не знание Python, а ваша голова.
Тем, кто хочет быстренько пощупать данное направление, советую прочитать книгу: «Vvedenie_v_mashinnoe_obuchenie_s_pomoschyu_Python_-_A_Myuller_S_Gvido_2017» — есть на торрентах, читается быстро, представление дает хорошее.
Веб-скрапинг (возможно, но сомнительно)
Питон имеет три вещи, которые делают его весьма эффективными в области веб-скраппинга, бибиотеку Requests, beautifulsoup и АПИ для Selenium. Если сюда подключиться библиотеки для компьютерного зрения и Машинное обучение, то получаются весьма эффективные инструменты.
Проблема заключается в том, что вакансий в этой сфере мало, основные клиенты сидят на фрилансе, которые предлагают за фикс написать им скрипты парсинга для их говно-сайтов, спам-машин, и изредка генераторов отзывов.
Область интересная, но денег в ней мало.
Компьютерное зрение (сомнительно)
В питоне есть ряд инструментов, которые позволяют писать инструменты компьютерного зрения, они даже используются местами в коммерческих продуктах, либо в качестве компонентов, например, для веб-скраппинга. Однако Питон явно нельзя назвать подходящим инструментов, поэтому использование крайне ограничено, вакансий практически нет.
GameDev (сомнительно)
Практически в каждом обсуждении разработки игры на Python приводят в качестве примера eve online и WarGaming. Однако в первом случае используется stateless python, а во втором случае все ограничивается языком написания сценариев.
Что же касается реального использования, то у вас появляется три движка Kivy, PyGame, Panda3D, если первые два больше подходят для пет-проектов, то третий реально использовался на боевых проектах неплохого качества, правда эти проекты были 2004 года. Что как бы намекает, что использование проверенных движков на других языках типа Unity или Game Maker выглядит более убедительно.
Однако незаметно сюда крадется движок Ren’Py, который внезапно стал лучшим движков для написания визуальных романов (страдальческих историй для девочек), которые неплохо окупаются даже в рамках РФ. Серия «7 демонологов Петра Великого», тому доказательство.
Вакансий в GameDev для питона естественно нет, но деньги на «стартапе» поднять можно при должной сноровке. Но надежней взять другой язык и проверенные движки.
Веб-разработка (адекватно и перспективно)
Сила Python заключается в том, что он позволяет быстро разрабатывать комплексные веб-приложения, имеет огромное число качественных модулей, прекрасно подходит для сервисов статистики и аналитики (где, в общем, и идет для него большая часть вакансий). Данное направление занимает оставшуюся треть всех вакансий.
Отдельно хочется отметить написание ГИС сервисов на Python, которые хотя и имеют вполне адекватный инструментарий для работы с геоданными, но все же использование Java для этих целей выглядит перспективней.
Выводы об использовании питона
1) Что касается сферы девопса и тестирования, то Питон является ключевым инструментом профессии, который обязателен для каждого адекватного специалиста. Питон в данном случае не учат, к нему приходят по необходимости.
2) Наиболее перспективными выглядят сферы веб-разработки и машинного обучения (аналитики), которые явно выделяют питон на фоне его конкурентов в виде PHP и Ruby. И если вы хотите изучить питон, то вам желательно сосредоточится именно на этих сферах и не тратить свое время на что-то другое. Под это есть вакансии, на этом можно построить стартап.
3) Все остальные сферы, хотя и предлагают определенные инструменты для решения проблем, но перспективность использования этих инструментов выглядит весьма сомнительно. И главное, найти оплачиваемую работу на эти сферы практически невозможно.