Для чего используют модели

Что такое модели и моделирование — 5 этапов моделирования, когда и какие модели применяются

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Что общего между девушкой на подиуме, игрушечной машинкой и изображением атома на экране монитора? Во всех случаях мы говорим о моделях.

Это понятие плотно вошло в повседневную речь, но немногие понимают его подлинное значение и умеют применять осознанно.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Без всякого занудства я расскажу о моделях и моделировании все, что нужно знать.

Что такое модель

Термин образовался от латинского слова modulus — «мера, аналог, образец».

Под «моделью» понимается образ некого объекта или явления, который отражает лишь отдельные свойства.

Например, глобус – это модель земного шара. Он статичен, а не вращается вокруг солнца. Не может похвастаться собственной силой притяжения. Не имеет атмосферы. На поверхности глобуса не живут крошечные человечки. Он воспроизводит внешний вид нашей планеты, не затрагивая другие характеристики.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Военачальник разрабатывает план сражения. Чтобы обозначить ландшафт, он создает модель поля боя на своем столе. Вот этот камень будет горой, коробок спичек – вражеским танком, а зеленый платок – лесом.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

При моделировании важна степень соответствия модели и реального объекта.

Поставив камешек не туда, можно проиграть настоящую битву.

Но избыточная схожесть также вредит делу — усложняет процесс и отвлекает от сути.

Стратег слишком увлекся, потратил время на воспроизведение полной копии танка в миниатюре. Враг начал наступление, застал военачальника врасплох, пока тот собирал макет.

Американский словарь английского языка дает такое определение:

«Модель — это упрощенное описание сложного объекта или явления».

Земля имеет шарообразную форму, но для простоты говорят, что она круглая.

Моделирование — это.

Моделирование — это метод познания. Он заключается в исследовании предметов, систем, процессов и явлений на основе их моделей.

Вот мы возвели небоскреб в зоне с высокой сейсмической активностью. Теперь хотим выяснить, выдержит ли постройка толчки земной коры. Как это сделать? Проведем эксперимент: произведем подрыв, чтобы вызвать землетрясение. Если здание устоит — все хорошо.

Но вот проблема — затея дорогостоящая, может привести к человеческим жертвам, уничтожить сам предмет исследования. Гораздо проще создать модель небоскреба в компьютерной программе, задать силу виртуального землетрясения и проверить устойчивость, не вставая с дивана.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Что можно моделировать:

5 этапов моделирования

Процесс состоит из 5 этапов:

Исследователь выбирает те части, которые его интересуют, а остальные отбрасывает, чтобы не мешались. Один объект может иметь несколько моделей, каждая из которых отображает некоторые из его особенностей.

Например, мы хотим изучить человека:

Получаются 3 разных описания человека, которые только частично замещают оригинал.

Моделирование — это циклический процесс. Исследователь возвращается к самому началу, снова строит модель, но уже более точную.

С каждым кругом он получает все больше информации о предмете изучения.

Моделирование – это воссоздание и изучение фрагмента реальности для исследовательских целей.

Метод применяется, когда необходимо:

Когда применяется моделирование

Зачем экспериментировать с моделями, когда есть оригинал?

Существуют ситуации, когда без построения модели не обойтись:

Какие бывают модели (их виды)

По своему характеру они делятся на 2 вида: материальные и информационные.

Материальные модели можно потрогать, увидеть, услышать, понюхать. Они воспроизводят физические особенности изучаемой системы, явления или процесса.

Деревянный макет здания – это изделие, которое отражает некоторые свойства реальной постройки. Плюшевый мишка – упрощенное представление большого медведя. Маленький ребенок приходит в зоопарк и легко узнает в грозном животном прообраз своей игрушки.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Информационные модели не существуют в реальном мире. Это набор информации, выраженный определенным образом – вербальным или знаковым.

Примерами знакового обозначения могут быть математические формулы, схемы, графики и рисунки. Вербальное представление – это слова или мысли. Например, модель поведения при переходе регулируемого перекрестка: посмотреть на светофор, если горит зеленый человечек, нужно убедиться, что нет машин. Только потом можно идти.

Более подробно на эту тему смотрите в видео:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

Компьютерное моделирование вряд ли сможет заменить полноценный эксперимент с физической моделью, тем более, что программу пишут люди, а они могут ошибаться. На модели же можно проверить, к примеру, аэродинамические качества объекта, поместив уменьшенную копию в аэродинамическую трубу, чего нельзя сделать с реальным объектом, например, пассажирским самолётом. Потому модели будут существовать всегда.

Раньше и дети моделированием увлекались, самолеты небольшие конструировали, а сейчас только в компьютерные стрелялки играют.

Источник

Для чего создают модели?

Для чего создают модели? Если Вы ищете ответ на этот вопрос, то после прочтения данной статьи обязательно его найдете.

Для чего используются модели?

Модели обычно применяются для нужд познания (созерцания, анализа и синтеза) и конструирования. Как модель может выступать отображения, схема, копия, макет, изображения.

Модели создают для того, чтобы изобразить, или воспроизвести определенный объект, конструкцию, которая показывает признаки, или свойства объекта. Каждый из нас видел глобус — который является уменьшенной моделью Земли. Глобус создали для знакомства с реальным миром.

Модели используются для того, чтобы воссоздать принципы внутренней организации или функционирования, определенные свойства, признаки объекта исследования или воспроизведение объекта по оригиналу.

Существует множество видов моделей, например: табличные, иерархические, графические, сетевые информационные модели, объектно-ориентированные модели и натурные модели.

Модель в конструировании (промышленный дизайн) — изделие, или деталь, которая повторяет форму и свойства определенного изделия или детали. Модель обычно стоит дешевле, и ее можно быстрее изготовить, чем моделируемое изделие.

Модель — изделие из материала, который легко подлежит обработке, с которого берется основа (форма) для воспроизведения в другом материале. Пример таких моделей — лекала, шаблоны и пр.

Модель в моделизме — уменьшенная копия определенного изделия, например, изготовленная в масштабе модель машины, сооружения, здания и тому подобное.

Модель в 3D-графике — объемный объект, созданный для отображения объектов в виртуальном мире (компьютерные игры).

Классификация моделей:

• по способу представления,
• по отраслям использования,
• по фактору времени,
• за инструментом реализации.

Источник

Что такое модель и зачем она нужна

Настало время немножко вернуться к циклу материалов, которые обсуждались прошлым летом. Это нужно для того, чтобы сегодняшним материалом поставить точку в том цикле (и со спокойной душой начать новый).

Итак, что было летом?

При этом, по удивительному стечению обстоятельств, мы обошли стороной вопрос: «А что же такое модель?».

Что такое модель?

В общем смысле модель — это некое описание процесса или события. В бизнесе наиболее известны бизнес-модели (описание того, как именно собственник заработает деньги своим бизнесом) и модели бизнес-процессов (например, описание как именно, когда, кому и почему Фатима на кассе Макдональдса должна предложить пирожок).

Моделей может быть большое количество. Но для решения прикладных задач в начале будет достаточно простых моделей.

Чтобы не усложнять себе жизнь при работе с моделями, полезно придерживаться следующих критериев:

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Для чего нужны модели?

Когда наш мозг сталкивается с хаосом, то автоматически (!) начинает создавать системы, чтобы этот хаос распознать, структурировать или хотя бы получить по возможности полную картину происходящего. Именно поэтому люди всегда находят объяснения случившемуся (что заводит в дебри мифов вроде молний с неба, как знака гнева богов). То есть это происходит независимо от нас. Люди просто не могут не реагировать. Неокортекс работает постоянно, достраивая картину будущего и постоянно стараясь предсказать будущее. Это элемент эволюции, который постоянно заводит нас в тупики инерции мышления и инструментальной слепоты.

Модели же помогают нам облегчить эту задачу. Потому что построение моделей — сознательный процесс. Он заставляет отбросить второстепенное и сконцентрироваться на самом главном.

Критики любят подчеркивать, что модели не отражают реальной действительности. Это верно. Но неправильно утверждать, что модели способствуют стандартизации мышления. Наоборот, модель — это результат логического мышления, которое требует сознательных активных усилий. И именно поэтому построение новой или применение уже существующей модели часто помогает выйти за рамки инерции мышления. В этом важность модели.

Два подхода в использовании моделей

Существует два подхода использовать модели. Так называемые «американский метод» и «европейский метод».

Американцы обожают совершать пробы и делать ошибки. Идеал такого подхода — Эдисон. Эталон такого подхода — совершить как можно большее количество ошибок в единицу времени. Это обучение полностью на практике. Попытка, неудача, выводы, новая попытка. Это далеко не всегда продуктивно (а в решении сложных задач вообще непродуктивно).

Европейцы же склонны сначала ознакомиться с теорией, а потом уже что-то сделать и потерпеть неудачу. После чего они анализируют сделанное, исправляют ошибки и повторяют попытку. Тут процесс несколько другой. Сначала читаем инструкцию, затем применяем на практике, если терпим неудачу — делаем выводы, внимательнее изучаем теорию и снова применяем на практике. Применение такого подхода в решении простых задач избыточно по ресурсам. Но зато позволяет изящнее решать сложные задачи.

Подходы не хороши и не плохи. Они просто есть. И важно помнить главное правило:
Каждая модель хороша лишь настолько, насколько хорош ее исполнитель.

Источник

Моделирование данных: зачем нужно и как реализовать

Моделирование данных ощутимо упрощает взаимодействие между разработчиками, аналитиками и маркетологами, как и сам процесс создания отчетов. Поэтому я перевела статью IBM Cloud Education о ценности моделирования и от себя добавила инфо о способах трансформации данных для моделирования.

Моделирование данных

Узнайте, как моделирование данных использует абстракцию для представления и лучшего понимания природы данных в информационной системе предприятия.

Что такое моделирование данных

Моделирование данных — это создание визуального представления о всей информационной системе либо ее части. Цель в том, чтобы проиллюстрировать типы данных, которые используются и хранятся в системе, отношения между этими типами данных, способы группировки и организации данных, их форматы и атрибуты.

Модели данных строятся на основе бизнес-потребностей. Правила и требования к модели данных определяются заранее на основе обратной связи с бизнесом, поэтому их можно включить в разработку новой системы или адаптировать к существующей.

Данные можно моделировать на различных уровнях абстракции. Процесс начинается со сбора бизнес-требований от заинтересованных сторон и конечных пользователей. Эти бизнес-правила затем преобразуются в структуры данных. Модель данных можно сравнить с дорожной картой, планом архитектора или любой формальной схемой, которая способствует более глубокому пониманию того, что разрабатывается.

Моделирование данных использует стандартизированные схемы и формальные методы. Это обеспечивает последовательный и предсказуемый способ управления данными в организации или за ее пределами.

В идеале модели данных — это живые документы, которые развиваются вместе с потребностями бизнеса. Они играют важную роль в поддержке бизнес-процессов и планировании ИТ-архитектуры и стратегии. Моделями данных можно делиться с поставщиками, партнерами и коллегами.

Преимущества моделирования данных

Моделирование упрощает просмотр и понимание взаимосвязей между данными для разработчиков, архитекторов данных, бизнес-аналитиков и других заинтересованных лиц. Кроме того, моделирование данных помогает:

Уменьшить количество ошибок при разработке программного обеспечения и баз данных.

Унифицировать документацию на предприятии.

Повысить производительность приложений и баз данных.

Упростить отображение данных по всей организации.

Улучшить взаимодействие между разработчиками и командами бизнес-аналитики.

Упростить и ускорить процесс проектирования базы данных на концептуальном, логическом и физическом уровнях.

Типы моделей данных

Разработка баз данных и информационных систем начинается с высокого уровня абстракции и с каждым шагом становится все точнее и конкретнее. В зависимости от степени абстракции модели данных можно разделить на три категории. Процесс начинается с концептуальной модели, переходит к логической модели и завершается физической моделью.

Концептуальные модели данных. Также они называются моделями предметной области и описывают общую картину: что будет содержать система, как она будет организована и какие бизнес-правила будут задействованы. Концептуальные модели обычно создаются в процессе сбора исходных требований к проекту. Как правило, они включают классы сущностей (вещи, которые бизнесу важно представить в модели данных), их характеристики и ограничения, отношения между сущностями, требования к безопасности и целостности данных. Любые обозначения обычно просты.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

    Логические модели данных уже не так абстрактны и предоставляют более подробную информацию о концепциях и взаимосвязях в рассматриваемой области. Они содержат атрибуты данных и показывают отношения между сущностями. Логические модели данных не определяют никаких технических требований к системе. Этот этап часто пропускается в agile или DevOps-практиках. Логические модели данных могут быть полезны для проектов, ориентированных на данные по своей природе. Например, для проектирования хранилища данных или разработки системы отчетности.

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

    Физические модели данных представляют схему того, как данные будут храниться в базе. По сути, это наименее абстрактные из всех моделей. Они предлагают окончательный дизайн, который может быть реализован как реляционная база данных, включающая ассоциативные таблицы, которые иллюстрируют отношения между сущностями, а также первичные и внешние ключи для связи данных.

    Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Процесс моделирования данных

Моделирование данных начинается с договоренности о том, какие символы используются для представления данных, как размещаются модели и как передаются бизнес-требования. Это формализованный рабочий процесс, включающий ряд задач, которые должны выполняться итеративно. Сам процесс обычно выглядят так:

Определите сущности. На этом этапе идентифицируем объекты, события или концепции, представленные в наборе данных, который необходимо смоделировать. Каждая сущность должна быть целостной и логически отделенной от всех остальных.

Определите ключевые свойства каждой сущности. Каждый тип сущности можно отличить от всех остальных, поскольку он имеет одно или несколько уникальных свойств, называемых атрибутами. Например, сущность «клиент» может обладать такими атрибутами, как имя, фамилия, номер телефона и т.д. Сущность «адрес» может включать название и номер улицы, город, страну и почтовый индекс.

Определите связи между сущностями. Самый ранний черновик модели данных будет определять характер отношений, которые каждая сущность имеет с другими. В приведенном выше примере каждый клиент «живет по» адресу. Если бы эта модель была расширена за счет включения сущности «заказы», ​​каждый заказ также был бы отправлен на адрес. Эти отношения обычно документируются с помощью унифицированного языка моделирования (UML).

Полностью сопоставьте атрибуты с сущностями. Это гарантирует, что модель отражает то, как бизнес будет использовать данные. Широко используются несколько формальных шаблонов (паттернов) моделирования данных. Объектно-ориентированные разработчики часто применяют шаблоны для анализа или шаблоны проектирования, в то время как заинтересованные стороны из других областей бизнеса могут обратиться к другим паттернам.

Назначьте ключи по мере необходимости и определите степень нормализации. Нормализация — это метод организации моделей данных, в которых числовые идентификаторы (ключи) назначаются группам данных для установления связей между ними без повторения данных. Например, если каждому клиенту назначен ключ, этот ключ можно связать как с его адресом, так и с историей заказов, без необходимости повторять эту информацию в таблице с именами клиентов. Нормализация помогает уменьшить объем дискового пространства, необходимого для базы данных, но может сказываться на производительности запросов.

Завершите и проверьте модель данных. Моделирование данных — это итеративный процесс, который следует повторять и совершенствовать под потребности бизнеса.

Типы моделирования данных

Моделирование данных развивалось вместе с системами управления базами данных (СУБД), при этом типы моделей усложнялись по мере роста потребностей предприятий в хранении данных.

Иерархические модели данных представляют отношения «один ко многим» в древовидном формате. В модели этого типа каждая запись имеет единственный корень или родительский элемент, который сопоставляется с одной или несколькими дочерними таблицами. Эта модель была реализована в IBM Information Management System (IMS) ​​в 1966 году и быстро нашла широкое применение, особенно в банковской сфере. Хотя этот подход менее эффективен, чем недавно разработанные модели баз данных, он все еще используется в системах расширяемого языка разметки (XML) и географических информационных системах (ГИС).

Реляционные модели данных были предложены исследователем IBM Э. Ф. Коддом в 1970 году. Они до сих пор встречаются во многих реляционных базах данных, обычно используемых в корпоративных вычислениях. Реляционное моделирование не требует детального понимания физических свойств используемого хранилища данных. В нем сегменты данных объединяются с помощью таблиц, что упрощает базу данных.

Реляционные базы данных часто используют язык структурированных запросов (SQL) для управления данными. Эти базы подходят для поддержания целостности данных и минимизации избыточности. Они часто используются в кассовых системах, а также для других типов обработки транзакций.

В ER-моделях данных используют диаграммы для представления взаимосвязей между сущностями в базе данных. ER-модель представляет собой формальную конструкцию, которая не предписывает никаких графических средств её визуализации. В качестве стандартной графической нотации, с помощью которой можно визуализировать ER-модель, была предложена диаграмма «сущность-связь» (Entity-Relationship diagram). Однако для визуализации ER-моделей могут использоваться и другие графические нотации, либо визуализация может вообще не применяться (например, только текстовое описание).

Объектно-ориентированные модели данных получили распространение как объектно-ориентированное программирование и стали популярными в середине 1990-х годов. Вовлеченные «объекты» — это абстракции сущностей реального мира. Объекты сгруппированы в иерархии классов и имеют связанные черты. Объектно-ориентированные базы данных могут включать таблицы, но могут также поддерживать более сложные связи. Этот подход часто используется в мультимедийных и гипертекстовых базах данных.

Размерные модели данных разработал Ральф Кимбалл для быстрого поиска данных в хранилище. Реляционные и ER-модели делают упор на эффективное хранение и уменьшают избыточность данных, а размерные модели упорядочивает данные таким образом, чтобы легче было извлекать информацию и создавать отчеты. Это моделирование обычно используется в системах OLAP.

Две популярные размерные модели данных — это схемы «звезда» и «снежинка». В схеме «звезда» данные организованы в факты (измеримые элементы) и измерения (справочная информация), где каждый факт окружен связанными с ним измерениями в виде звездочки. Схема «снежинка» напоминает схему «звезда», но включает дополнительные слои связанных измерений, что усложняет схему ветвления.

Инструменты для моделирования данных

Сегодня широко используются многочисленные коммерческие и CASE-решения с открытым исходным кодом, в том числе различные инструменты моделирования данных, построения диаграмм и визуализации. Вот несколько примеров:

erwin Data Modeler — это инструмент моделирования данных, основанный на языке IDEF1X, который теперь поддерживает и другие нотации, включая нотацию для размерного моделирования.

Enterprise Architect — это инструмент визуального моделирования и проектирования, который поддерживает моделирование корпоративных информационных систем и архитектур, программных приложений и баз данных. Он основан на объектно-ориентированных языках и стандартах.

ER/Studio — это программа для проектирования баз данных, совместимая с некоторыми из самых популярных СУБД. Она поддерживает как реляционное, так и размерное моделирование данных.

Бесплатные инструменты моделирования данных включают решения с открытым исходным кодом, такие как Open ModelSphere.

Для того, чтобы преобразовать данные в структуру, которая соответствует требованиям модели, можно использовать встроенный механизм регулярных запросов, которые выполняются в Google BigQuery, Scheduled Queries и AppScript. Их легко можно освоить, потому что это привычный SQL, но проводить отладку в Scheduled Queries практически нереально. Особенно, если это какой-то сложный запрос или каскад запросов.

Есть специализированные инструменты для управления SQL-запросами, например, dbt и Dataform.

dbt (data build tool) — это фреймворк с открытым исходным кодом для выполнения, тестирования и документирования SQL-запросов, который позволяет привнести элемент программной инженерии в процесс анализа данных. Он помогает оптимизировать работу с SQL-запросами: использовать макросы и шаблоны JINJA, чтобы не повторять в сотый раз одни и те же фрагменты кода.

Главная проблема, которую решают специализированные инструменты — это уменьшение времени, необходимого на поддержку и обновление. Это достигается за счет удобства отладки.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§13. Модели и моделирование.

Информатика. Учебник для 9 класса (по учебнику К. Ю. Полякова, Е.А. Еремина, базовый уровень)

§13. Модели и моделирование.

Что такое модель?

Ключевые слова:

При слове «модель» у многих, наверное, появляется мысль о моделях самолётов, кораблей, танков и другой техники, которые стоят на полках магазинов. Однако слово «модель» имеет более широкое значение. Например, игрушки, в которые играют дети всех возрастов, — это модели реальных объектов, с которыми они сталкиваются в жизни (или столкнутся в будущем).

Говоря о модели, мы всегда указываем на какой-то другой объект (процесс, явление), например: «Глобус — это модель Земли». Здесь другой объект — это Земля, он называется оригиналом. Объект становится моделью только тогда, когда есть оригинал, модели без оригинала не существует.

Зачем вообще нужны модели? Они появляются тогда, когда мы хотим решить какую-то задачу, связанную с оригиналом, а изучать оригинал трудно или даже невозможно:

• оригинал не существует; например, учебники истории — это модели общества, которого уже нет; возможные последствия ядерной войны учёные изучали на моделях, потому что ставить реальный эксперимент было бы безумием;
• исследование оригинала дорого или опасно для жизни, например, при управлении ядерным реактором, испытании скафандра для космонавтов, создании нового самолёта или корабля;
• оригинал сложно или невозможно исследовать непосредственно, например Солнечную систему, молекулы и атомы, очень быстрые процессы в двигателях внутреннего сгорания, очень медленные движения материков;
• нас интересуют только некоторые свойства оригинала; например, чтобы испытать новую краску для самолёта, не нужно строить самолёт.

Итак, модель всегда связана не только с оригиналом, но и с конкретной задачей, которую мы хотим решить с помощью модели.

Вместе с тем одна и та же модель может описывать множество самых разных оригиналов. Например, в различных задачах атом, муха, человек, автомобиль, высотное здание, даже планета Земля могут быть представлены как материальные точки (если размеры соседних объектов и расстояния между ними значительно больше).

Модель — это объект, который обладает существенными свойствами другого объекта или процесса (оригинала) и используется вместо него.

Назовите свойства самолёта, существенные с точки зрения:

а) конструктора;
б) дизайнера;
в) экономиста;
г) лётчика;
д) бортпроводника;
е) пассажира.

Практически всё, что мы делаем с помощью компьютеров, — это моделирование. Например, база данных библиотеки — это модель реального хранилища книг, компьютерный чертёж — это модель детали и т.д.

Моделирование — это создание и исследование моделей для изучения оригиналов.

С помощью моделирования можно решать задачи четырёх типов:

• изучение оригинала (в научных и учебных целях);
• анализ («что будет, если …») — прогнозирование влияния различных воздействий на оригинал;
• синтез («как сделать, чтобы …») — управление оригиналом;
• оптимизация («как сделать лучше всего …») — выбор наилучшего решения в данных условиях.

Назовите задачи, которые решаются в каждом случае.

а) Даниил считает, как купить новый планшетный компьютер по минимальной цене.
б) Кирилл выясняет, будет ли плавать в воде кусок пластика.
в) Константин проверяет, выдержит ли верёвка вес альпиниста.
г) Василий хочет сделать такой стол, который выдержит нагрузку в 200 кг.
д) Алёна изучает строение молекулы воды.

Какие бывают модели?

Существует множество классификации моделей, каждая из которых отражает какое-то одно свойство. Универсальной классификации моделей нет.

По своей природе модели делятся на материальные (физические, предметные) и информационные.

Материальные модели «можно потрогать» — это игрушки, уменьшенные копии самолётов и кораблей, чучела животных, учебные модели молекул и т. п.

Информационные модели — это информация о свойствах оригинала и его связях с внешним миром. Среди них выделяют вербальные модели (словесные, мысленные) и знаковые модели, записанные с помощью какого-то формального языка:

• графические (схемы, карты, фотографии, чертежи);
• табличные;
• математические (формулы);
• логические (варианты выбора на основе анализа условий);
• специальные (ноты, химические формулы и т. п.).

Различают статические и динамические модели.

В статических моделях предполагается, что интересующие нас свойства оригинала не изменяются во времени.

Динамические модели описывают движение, развитие, изменение.

Какие из этих моделей статические, а какие — динамические:

а) модель полёта шарика;
б) фотография;
в) видеозапись;
г) история болезни;
д) анализ крови;
е) модель молекулы воды;
ж) модель развития землетрясения;
з) модель вращения Луны вокруг Земли?

Динамические модели могут быть дискретными и непрерывными.

Модель называется дискретной, если она описывает поведение оригинала только в отдельные моменты времени. Например, модель колонии животных определяет их численность один раз в год.

Непрерывная модель описывает поведение оригинала для всех моментов времени из некоторого временного промежутка. Например, формула у = sin х и график этой функции — это непрерывные модели. Так как компьютер работает только с дискретными данными, все компьютерные модели — дискретные.

По характеру связей модели делятся на детерминированные и вероятностные.

В детерминированных моделях связи между исходными данными и результатами жёстко заданы, при одинаковых исходных данных всегда получается один и тот же результат (например, при расчёте по известным формулам).

Вероятностные модели учитывают случайность событий в реальном мире, поэтому при одних и тех же условиях результаты нескольких испытаний модели могут отличаться. К вероятностным относятся модели броуновского движения частиц, полёта самолёта с учётом ветра, движения корабля при морском волнении, поведения человека. В результате эксперимента с такими моделями определяют некоторые средние величины по результатам серии испытаний, например среднюю скорость движения частиц, среднее отклонение корабля от курса и т. п. Несмотря на случайность, эти результаты достаточно стабильны, т. е. мало меняются при повторных испытаниях.

Используя дополнительные источники, выясните, от каких иностранных слов произошли слова «вербальный», «статический», «динамический», «детерминированный».

По материалам параграфа составьте в тетради схемы различных классификаций моделей.

Имитационные модели используются в тех случаях, когда поведение сложной системы нельзя (или крайне трудно) предсказать теоретически, но можно смоделировать её реакцию на внешние условия. Для того чтобы найти оптимальное (самое лучшее) решение задачи, нужно выполнить моделирование при многих возможных вариантах и выбрать наилучший из них. Такой метод часто называют методом проб и ошибок.

Имитационные модели позволяют очень точно описать поведение оригинала, но полученные результаты справедливы только для тех случаев, которые мы моделировали (что случится в других условиях — непонятно). Примеры использования имитационных моделей:

• испытание лекарств на мышах, обезьянах, группах добровольцев;
• модели биологических систем;
• экономические модели управления производством;
• модели систем массового обслуживания (банки, магазины и т. п.). Для понимания работы процессора можно использовать его имитационную модель, которая позволяет вводить команды в определённом формате и выполнять их, и показывает изменение значений регистров (ячеек памяти) процессора. Подобные модели применяют в том случае, когда нужно написать программу для системы, на которой её невозможно отлаживать (например, для микропроцессора, встроенного в бытовую технику). Такой подход называют кросс-программированием: программа пишется и отлаживается в одной системе, а работать будет в другой. В этом случае другую систему приходится моделировать с помощью имитационной модели.

Игровые модели позволяют учитывать действия противника, например, при моделировании военных действий, соревнований, конкуренции в бизнесе. Задача игрового моделирования — найти лучшую стратегию в игре — план действий, который даёт наилучшие результаты даже в том случае, когда противник играет безошибочно. Этими вопросами занимается теория игр — раздел математики, одним из создателей которого был американский учёный Джон фон Нейман.

Адекватность моделей

Итак, при моделировании мы заменяем один объект (объект — оригинал) другим. Поэтому всегда возникает вопрос, можно ли верить полученным результатам. Иначе говоря, будет ли оригинал вести себя так же, как и модель?

Адекватность модели — это совпадение существенных свойств модели и оригинала в рассматриваемой задаче.

Используя дополнительные источники, выясните, от какого иностранного слова произошло слово «адекватный».

Адекватность означает, что результаты моделирования:

• не противоречат выводам теории, например законам сохранения (вещества, энергии и т. п.);
• подтверждаются экспериментом с оригиналом.

Таким образом, адекватность модели окончательно можно доказать только экспериментом: если результаты нашего моделирования близки к наблюдаемым на практике, это означает, что модель адекватна.

Для того чтобы вычислить ошибку моделирования, нужно модуль разности между результатом моделирования X и результатом эксперимента X* разделить на результат эксперимента и умножить на 100%:

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Величина «дельта икс» — называется относительной ошибкой. На практике модель обычно считается адекватной, если относительная ошибка не превышает 10%.

Феофан построил математическую модель, которая позволяет прогнозировать изменение веса кошки. Для какого периода времени модель Феофана адекватна?

Для чего используют модели. Смотреть фото Для чего используют модели. Смотреть картинку Для чего используют модели. Картинка про Для чего используют модели. Фото Для чего используют модели

Нужно понимать, что любая модель отличается от оригинала, поэтому она может быть адекватна только при определённых условиях — в той задаче, для решения которой она создавалась. Например, модель деления амёб (через некоторый интервал времени каждая амёба делится надвое) адекватна только при малом количестве амёб и небольших интервалах наблюдения, иначе амёбы заполнили бы всё пространство.

Во многих случаях результаты моделирования — это некоторые числа, измеренные или рассчитанные по результатам эксперимента с моделью. Это могут быть, например, сила, расстояние, скорость, ускорение, давление и др. Чаще всего эти величины для модели и оригинала будут различаться, поэтому нужно уметь пересчитывать «модельные» данные в соответствующие значения для оригинала. Этими вопросами занимается теория подобия. Простейший пример — работа с картой. Расстояние, измеренное по карте, нужно умножить на масштабный множитель, тогда получится соответствующее расстояние на реальной местности.

Выводы

Модель — это объект, который обладает существенными свойствами другого объекта, процесса или явления (оригинала) и используется вместо него.

Моделирование — это создание и исследование моделей для изучения оригиналов.

С помощью моделирования можно решать задачи четырёх типов:

1) изучение оригинала;
2) анализ — прогнозирование влияния различных воздействий на оригинал;
3) синтез — управление оригиналом;
4) оптимизация — выбор наилучшего решения в данных условиях.

Универсальной классификации моделей нет. По своей природе модели делятся на материальные и информационные.

Адекватность модели — это совпадение существенных свойств модели и оригинала в рассматриваемой задаче. Проверить адекватность можно только путём эксперимента с оригиналом.

Нарисуйте в тетради интеллект-карту этого параграфа.

Вопросы и задания

1. Что вы думаете по поводу другого определения модели: «Модель — это упрощённое представление реального объекта, процесса или явления»?
2. Приведите примеры разных моделей человека. Для решения каких задач они предназначены?
3. Приведите примеры моделей, с которыми мы работаем на компьютерах.
4. К какому типу (типам) можно отнести следующие модели?

Используйте разные классификации.

5. Какую модель — вероятностную или детерминированную — вы рекомендуете выбрать для исследования движения судна в шторм? Почему?
6. Сравните достоинства и недостатки имитационных и теоретических моделей (например, записанных в виде формул).
7. Верно ли, что модели, используемые при создании компьютерных игр, это игровые модели? Обоснуйте вашу точку зрения.
8. Как можно доказать, что модель неадекватна?
9. Почему ни одна модель не может быть полностью адекватна оригиналу?
10. Выполните по указанию учителя задания в рабочей тетради.

Подготовьте сообщение

а) «Анализ и синтез»
б) «Детерминированные и вероятностные модели»
в) «Игровые модели»
г) «Адекватность моделей»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *