Для чего используют тиристоры
Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности
Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).
Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.
Устройство тиристора и области применения
В состав прибора входят 3 электрода:
В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).
Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.
Принцип работы тиристоров
В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:
Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:
При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.
Классификационные признаки
По способу управления различают следующие виды тиристоров:
Диодные (динисторы)
Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.
Триодные (тринисторы)
Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.
Симисторы
Выполняют функции двух включенных параллельно тиристоров.
Оптотиристоры
Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.
По обратной проводимости тиристоры разделяются на:
Основные характеристики тиристоров, на которые стоит обратить внимание при покупке
Проверка тиристора на исправность
Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:
Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.
Заключение
Тиристор — принцип работы, параметры, схемы
Тиристор — это устройство, состоящее из полупроводника и имеющее, как правило, лишь два активных положения: “закрытое” и “открытое”. В первом случае монокристаллический полупроводник пребывает в состоянии наименьшей электропроводности, а во втором — в наибольшей.
Стоит отметить, что в двух этих устойчивых состояниях переходная фаза осуществляется при определенных обстоятельствах, но при этом процесс проходит довольно быстро.
По принципу работы прибор следует соотнести с электронным переключателем, однако между ними есть небольшие различия: тиристор может перемыкаться благодаря давлению, а выключаться лишь с помощью сброса наполнения и подачи тока. Таким образом, принцип действия полупроводникового датчика не является каким-то сложным процессом.
В большинстве своем, тиристор используется в качестве ключа или электронного выключателя, которые применяются в электрических механических системах.
Устройство тиристора
Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться:
На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена:
Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу.
Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи.
Принцип работы тиристора
По принципу работы, как мы уже говорили ранее, устройство следует сравнить с электронным переключателем, ведь они оба способны пропускать ток лишь в одном направлении (к катоду от анода). При этом заметим — это будет возможно лишь в устойчивом «открытом» положении.
Перейдем теперь непосредственно к рассмотрению механизма действия тиристора. Начальное состояние прибора — «закрытое». Знаком или сигналом начала переходного процесса к «открытому» можно считать возникновение напряжения, появляющееся промеж положительного электрода и управляющего вывода. Провернуть обратное действие можно следующими методами:
В строениях с не постоянным током используется второй вариант. Но этому можно найти свое объяснение, ведь переменный ток в электросети представлен в синусоидоподобном виде, где величина его стремится к нулевому показателю и очень часто сбрасывается. Говоря о структурах с постоянным током, то чаще применяется первый вариант.
Раскрытое и замкнутое положение
Итак, как мы поняли, принцип действия нашего прибора различен. В строениях постоянного напряжения, уже после его кратковременного повышения, осуществляется переход из начального состояния в «открытое». Затем рассматривается два возможных варианта:
Таким образом, в системах, где ток = constant, существует несколько способов эксплуатации нашего электроприбора:
Стоит заметить — чаще всего используется способ под 1-м номером. Условия работы тиристора в конструкциях, где напряжение не равно константе, имеют отличия. Там возврат в начальное положение проходит в автоматическом порядке, то бишь вследствие уменьшения силового тока. В том случае, когда напряжения к плюсу и минусу, подносить часто, на выводе получится так, что произойдет образование P тока некоторой частоты. Вот таким образом и настроены системы импульсного питательного корпуса, который способен формализовать синусоиду в P.
Основные параметры тиристора
Пришла очередь разобраться в ключевых параметрах тиристора. Безусловно, о них важно сказать и их необходимо понять.
Начнем с отпирающего постоянного напряжения управления “Vy” – это есть минимальная постоянная величина напряжения на электроде управления. “Vy” вызывает некоторый переходный процесс тиристора из “закрытого” положения в “открытое”. Таким образом, именно наличие отпирающего постоянного напряжения объясняет открытие прибора и присутствия в электроцепи постоянного или переменного тока.
Вторым важным параметром является величина обратного напряжения “V обр max”. Именно этот элемент демонстрирует такое значение напряжения, которое Ну и последнее – “I ср” – средняя величина тока. “I ср” показывает, какое количество тока может протекать через полупроводниковое устройство.
Характеристики тиристоров
Выбор тиристоров по технико-механическим свойствам определяется зависимостью напряжений в электроцепи от требуемого электротока. Рассмотрим ключевые механические характеристики тиристоров:
Технические свойства тиристора
Теперь перейдем к техническим свойствам:
Виды тиристоров
Есть несколько образов тиристоров, которые можно классифицировать следующими методами:
Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях.
Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным.
По электропроводности
Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид).
По режиму работы
Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах:
Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз).
Регулятор тиристора
Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим:
Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт.
Перейдем к составу, регулятор мощности в данном случае включает в себя:
Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт.
Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода.
Способности тиристора
Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения).
К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода.
Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части.
Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента.
Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”).
Виды регуляторов мощности
Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому:
Применение тиристоров
Итак, как вам стало известно ранее, основным назначением тиристоров является их способность управлять мощностью нагрузки.
Кроме того, они имеют ряд других достоинств, а именно: быть “выпрямителем”, иметь два номинально-устойчивых положения, служить в качестве усилителя тока. Именно из-за вышеназванных качественных особенностей, полупроводниковый прибор нашел достаточно широкое применение.
Тиристор используют в роли включателя/выключателя/переключателя в электрических коммутационных устройствах, ведь он способен замыкать и размыкать электроцепь.
Также его активно задействуют как аппарат преобразования (так как тиристор способен генерировать постоянный ток в переменный) в солнечных батареях, в системах бесперебойного питания и в других областях, связанных с электроснабжениях.
Следует сказать и о возможностях тиристора в электронном зажигании, ведь устройство эксплуатируют в двигателях внутреннего сгорания, трамблерах и аккумуляторах для работы стартера.
Если говорить про быт, то надо напомнить, что полупроводниковое устройство применяется в сварке или машиностроении в качестве все того же инвертора.
Где купить тиристор?
Очевидно, что тиристор является достаточно эффективным электрическим аппаратом, который востребован в нынешнее время. Вы спросите: “А где его приобрести?”.
Я, конечно же, посоветую вам Aliexpress. Очень крутой интернет-магазин, выручающий практически всегда. Там не только все легко и понятно, а главное дешево и разнообразно (в плане выбора товара). Что касается тиристоров, то на Aliexpress их огромное количество видов типов, есть и аналоги. В общем, пользуйтесь и приобретайте!
Как работают мощные силовые тиристоры
В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.
Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.
Фото — Cхема гирлянды бегущий огонь
Бывают:
Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.
Фото — Тиристор
Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).
Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.
Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.
Фото — применение Тиристора вместо ЛАТРа
Не стоит забывать и про тиристор зажигания для мотоциклов.
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.
Фото — Тиристор КУ221ИМ
Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Типичные тиристорные ВАХ
Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:
Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.
Фото — ВАХ тиристора
Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:
Фото — тестер тиристоров
Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.
Фото — схема тестера для тиристоров
Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Технические характеристики
Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.
На чертеже ниже представлена цоколевка и основные детали тиристора.
Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.
Тиристоры: принцип работы, проверка и характеристики
Что такое тиристор, его устройство и обозначение на схеме
Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.
По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.
Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.
Суть устройства
Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:
То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).
Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.
Характеристики и параметры
Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:
Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.
На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.
Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:
Конструкция прибора
Любой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.
Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых. При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт). Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.
Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.
В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.
Назначение устройства
По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый. “Ключевой” характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле.
Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью – сотни и тысячи раз в секунду, а если нужно – еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.
Виды тиристоров
Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:
Принцип работы
Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.
В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.
Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.
Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.
Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.
При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.
Режимы работы тиристора
Тиристор имеет три режима работы:
Блокировка вперед
В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.
Обратная блокировка
В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.
Прямая проводимость
При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.
Цепь постоянного тока
В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:
Здесь самое важное, чтобы в сети, где установлен данный прибор, не произошло резкое возрастание напряжения. В этом случае может произойти самопроизвольное включение тиристора, а сигнал управления будет в это время отсутствовать
Цепь переменного тока
В этой сети тиристорный ключ работает немного по-другому. Этот прибор дает возможность проводить несколько видов операций. К примеру:
Тиристор в цепи переменного тока.
Но имейте в виду, что тиристорный ключ может пропускать сигнал только в одном направлении. Поэтому сами тиристоры устанавливаются в цепь, так сказать, во встречно-параллельном включении.
Двухтранзисторная аналогия тиристора
Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.
Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.
Два транзисторных аналога тиристора
Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.
Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.
Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.
Классификационные признаки
По способу управления различают следующие виды тиристоров:
Диодные (динисторы)
Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.
Триодные (тринисторы)
Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.
Симисторы
Выполняют функции двух включенных параллельно тиристоров.
Оптотиристоры
Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.
По обратной проводимости тиристоры разделяются на:
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.
Фото — применение Тиристора вместо ЛАТРа
Не стоит забывать и про тиристор зажигания для мотоциклов.
Схема включения
Зачем нужны тиристоры, можно понять, разобравшись в их принципе работы. Для этого есть смысл рассмотреть включение элемента в простейшей схеме. Тиристор в ней используется как электронный ключ.
К аноду тиристора подсоединяется лампочка L, служащая нагрузочным сопротивлением. К ней через кнопку К2 подключается положительная клемма источника питания GB, а его минус подводится к катоду полупроводникового элемента. Подача тока на управляющий электрод выполняется через ограничительный резистор R и кнопку K1.
При замыкании переключателя К2 к аноду и катоду полупроводника будет приложено напряжение, соответствующее величине ЭДС источника питания. При этом прибор будет заперт, ток через него не потечёт, а лампочка не загорится. Чтобы в цепи VS – L появился ток, понадобится отпереть тиристор.
Дальнейшее нажатие кнопки K1 никоим образом не будет влиять на состояние схемы. Для того чтобы потушить лампочку, понадобится разорвать цепь кнопкой K2 или отсоединить источник питания. Но при этом тиристор может закрыться и при снижении напряжения на аноде до определённой величины, определяемой параметрами тиристора.
Таким образом, тиристор — это полупроводниковый элемент, использующийся в схемах как электронный ключ. Это возможно благодаря свойствам p-n переходов. При этом, осуществляя коммутацию больших токов, сам прибор имеет небольшие габариты, а его корпус может выдерживать значительную тепловую мощность. Но всё же для предотвращения его повреждения тепловым пробоем часто совместно с элементом используется теплоотвод, представляющий собой, в зависимости от мощности нагрузки, простую алюминиевую пластинку или массивного вида радиатор.