Для чего используются экспертные системы

Кому нужны экспертные системы

Что такое экспертная система (ЭС)? Все слышали этот термин, он часто воспринимается как устаревший, немодный, далекий от мэйнстрима и в науке, и в технике. «Это очень специальная область программирования, не имеющая широкого применения». ЭС проходят в институте и потом благополучно забывают.

Они появились в конце 60-х годов как самое многообещающее, практичное направление развития науки об искусственном интеллекте. Несмотря на множество интересных разработок, ЭС не только не получили широкого распространения, но нет даже ни одной коммерчески успешной разработки.

Если анализировать концепции этого направления информатики – ЭС, становится ясно, что, хотя направление не получило заметного развития, проблемы здесь лежат в самой основе развития компьютеров.
Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы

Когда появились первые электронный вычислительные машины (ЭВМ), их называли электронным мозгом и с опаской ожидали скорого прихода машин, заменяющих человека. Машин стало много, их мощность возросла в миллионы раз, но человека они заменить не смогли. Появление «электронного мозга» в ближайшие годы не прогнозируется, несмотря на то, что уже прошло более 60 лет со времени появления первых вычислительных машин.

Одна из основных причин слабого развития ЭС – алгоритмическая парадигма мышления разработчиков прикладных программ. Эта парадигма настолько глубоко проникла во все, что касается компьютеров, что мы этого не замечаем. Кажется, все замечательно – человек дает команды (нажимает мышкой нужные кнопки на экране) – машина исполняет, чего еще желать? Если же копнуть глубже – какие команды отдает человек? Вместо того, чтобы давать машине задание – сказать ЧТО надо сделать, что хочет пользователь, человек дает инструкции – КАК делать, какую последовательность операций выполнить машине, чтобы получить нужный результат.

Первая проблема в общении пользователя с машиной – надо учиться, обучиться пользованию нужными прикладными программами – т.е. выучить, когда и какие кнопки в программе нажимать, чтобы получить нужный результат. Как и любую машину, ее надо освоить, понять как с ней обращаться, запомнить способы управления и освоить их, так же как с автомобилем или кофеваркой.

Противоречивость этой ситуации никто не замечает. Компьютер – не просто очередная машина для облегчения жизни человеку, компьютер – машина для усиления интеллекта, для выполнения умственных операций. (Как то уже забылось, что арифметические операции и процедуры – умственные операции, которые существуют только в сознании человека). Поскольку современные компьютеры выполняют только алгоритмизованные операции, вся остальная часть умственной деятельности остается за человеком.

В результате, чем больше программ должен применять человек, тем больше он должен запомнить и выучить. Компьютер не «разгружает», а «нагружает».

Вместо квалифицированного, умного, знающего «помощника», которому можно поручить работу, не беспокоясь о результате, мы имеем сильного и неумного «раба», который сделает только то, что прикажут и ни на йоту больше, который не имеет ни усердия, ни знаний, ни творческой устремленности на результат.

Чтобы добиться от него результата, человек – пользователь должен хорошо потрудиться — выучить программу, постоянно ею управлять, готовить исходные данные для программы и еще обрабатывать результаты работы.

Возьмем, для примера, электронную бухгалтерию. Бухгалтерские программы можно сравнить со счетоводом – специалистом низшей квалификации в иерархии бухгалтерских специальностей. Бухгалтерская программа не может заменить бухгалтера, она заменяет лишь счетовода – заполняет графы в журналах и подсчитывает итоговые суммы. Электронная бухгалтерия имеет много полезных свойств, но без бухгалтера она бесполезна.

Какой может быть интеллектуальная программа – бухгалтерская ЭС? Такая программа полностью заменяет специалиста-бухгалтера – автоматически и безошибочно классифицирует и кодирует денежные операции, знает, автоматически собирает и применяет все необходимые нормативные и правовые акты и может консультировать директора по текущим операциям и по общим бухгалтерским вопросам.

Если взять наши текстовые редакторы – они облегчают труд машинисток, избавляя от необходимости перепечатывать страницу при обнаружении ошибок. В результате мы перестали писать ручкой и сами стали машинистками. Есть ли от этого выигрыш в производительности труда?

Интеллектуальный текстовый редактор должен сам создавать тексты документов по указаниям пользователя. Например: «На это письмо надо ответить согласием», «На эту претензию надо подготовить возражение», «Вот это письмо надо переписать в более мягкой форме».

А если взять электронные таблицы – сама по себе мощная парадигма электронных таблиц могла бы быть намного более массовой и эффективной, если бы не сложность ее освоения. Большинство пользователей не используют и половины функций электронных таблиц и текстовых редакторов из-за трудностей полного освоения этих программ.

Всякая современная прикладная программа может быть дополнена или заменена ЭС для кардинального повышения эффективности использования компьютера. Если перейти от обработки символов и чисел к обработке смысловой информации, можно получить настоящего помощника – семантический компьютер.

Достаточно заменить традиционный хелп на базу знаний по использованию программы, чтобы значительно повысить эффективность и освободить пользователя от напряжения, которое возникает при работе с новой программой.

Одно из важных отличий ЭС – ориентация на язык пользователя, поскольку в ЭС пользователь формулирует описание своей задачи – ЧТО он хочет, а не инструкции машине – КАК выполнить его задание.

Существует один пробел в современном программировании из-за которого в сознании программистов нет установки на смысловую обработку информации – нет формальной основы – языков программирования для представления и обработки смысловой информации, хотя все необходимые языковые средства описаны в соответствующих публикациях. Система концептуального программирования разрабатывается в НПФ «Семантикс Рисеч».

Созданию прикладных ЭС массового применения мешает инерция алгоритмического подхода. Многое можно сделать и на существующей технологической базе. Надо лишь вспомнить, что машина является средством усиления интеллекта человека и может выполнять не только арифметические операции.

Замена существующих прикладных программ экспертными системами кардинально повысит эффективность компьютеров и улучшит современный мир. Приведем лишь несколько возможных примеров.

Создание ЭС массового применения могли бы сильно повысить производительность труда во всех областях деятельности человека.

ЭС для юриста могла бы помогать ему в составлении и анализе документов, консультировать по текущему законодательству.

ЭС может принципиально изменить природу школьного и вузовского образования, а также значительно улучшить полезность системы электронного правительства. ЭС налогового инспектора могла бы автоматически проверять налоговые декларации и другие документы.

В не очень далекой перспективе развития ЭС, можно представить, что каждый человек сможет получить неограниченные возможности заинтересованного и активного персонального общения, которые сегодня обеспечивают коммерческий успех социальный сетей и поисковых программ Интернет. Общение с виртуальными интеллектуальными личностями кардинально изменят не только парадигму общения человека с компьютером, но и сами основы экономической деятельности общества.

Источник

Представления знаний в интеллектуальных системах, экспертные системы

Введение

Экспертная система (далее по тексту — ЭС) — это информационная система, назначение которой частично или полностью заменить эксперта в той или иной предметной области. Подобные интеллектуальные системы эффективно применяются в таких областях, как логистика, управление воздушными полетами, управление театром военных действий. Основною направленной деятельностью предсказание, прогнозирование в рамках определенного аспекта в предметной области.

Экскурс в историю экспертных систем

История экспертных систем берет свое начало в 1965 году. Брюс Бучанан и Эдвард Фейгенбаум начали работу над созданием информационной системы для определения структуры химических соединений.

Результатом работы была система под названием Dendral. В основе системы формировалась последовательность правил подобных к «IF – THEN». Информационная система не перестала развиваться и получила множество наследников, таких как ONCOIN – информационная система для диагностики раковых заболеваний, MYCIN – информационная система для диагностики легочных инфекционных заболеваний.

Следующим этапом стали 70-е годы. Период не выделялся особыми разработками. Было создано множество разных прототипов системы Dendral. Примером служит система PROSPECTOR, областью деятельности которой являлась геологические ископаемые и их разведка.
В 80-ых годах появляются профессия – инженер по знаниям. Экспертные системы набирают популярность и выходят на новый этап эволюции интеллектуальных систем. Появились новые медицинские системы INTERNIS, CASNE.

С 90-ых годов развитие интеллектуальных систем приобретает новые и новые методы и особенности. Нововведением становится парадигма проектирования эффективных и перспективных систем. Гибкость, четкость решения поставленных задач дало новое название – мультиагентных систем. Агент – фоновый процесс который действует в целях пользователя. Каждый агент имеет свою цель, «разум» и отвечает за свою область деятельности. Все агенты в совокупности образуют некий интеллект. Агенты вступают в конкуренцию, настраивают отношения, кооперируются, все как у людей.

В 21 век, интеллектуальной системой уже не удивишь никого. Множество фирм внедряет экспертные системы в области своей деятельности.

Быстродействующая система OMEGAMON разрабатывается c 2004 года с IBM, цель которой отслеживание состояния корпоративной информационной сети. Служит для моментального принятия решений в критических или неблагоприятных ситуациях.

G2 – экспертная система от фирмы Gensym, направленная на работу с динамическими объектами. Особенность этой системы состоит в том, что в нее внедрили распараллеливание процессов мышления, что делает ее быстрее и эффективней.

Структура экспертной системы

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы

1. База знаний
Знания — это правила, законы, закономерности получены в результате профессиональной деятельности в пределах предметной области.
База знаний — база данных содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. Другими словами, это набор таких закономерностей, которые устанавливают связи между вводимой и выводимой информацией.

2. Данные
Данные — это совокупность фактов и идей представленных в формализованном виде.
Собственно на данных основываются закономерности для предсказания, прогнозирования. Продвинутые интеллектуальные системы способные учиться на основе этих данных, добавляя новые знания в базу знаний.

3. Модель представления данных
Самая интересная часть экспертной системы.
Модель представления знаний (далее по тексту — МПЗ) — это способ задания знаний для хранения, удобного доступа и взаимодействия с ними, который подходит под задачу интеллектуальной системы.

4. Механизм логического вывода данных(Подсистема вывода)
Механизм логического вывода(далее по тексту — МЛВ) данных выполняет анализ и проделывает работу по получению новых знаний исходя из сопоставления исходных данных из базы данных и правил из базы знаний. Механизм логического вывода в структуре интеллектуальной системы занимает наиболее важное место.
Механизм логического вывода данных концептуально можно представить в виде :
А — функция выбора из базы знаний и из базы данных закономерностей и фактов соответственно
B — функция проверки правил, результатом которой определяется множество фактов из базы данных к которым применимы правила
С — функция, которая определяет порядок применения правил, если в результате правила указаны одинаковые факты
D — функция, которая применяет действие.

Какие существуют модели представления знаний?

Распространены четыре основных МПЗ:

Продукционная МПЗ

Пример

ДиагнозТемператураДавлениеКашель
Грипп39100-120Есть
Бронхит40110-130Есть
Аллергия38120-130Нет

Пример продукции:
IF Температура = 39 AND Кашель = Есть AND Давление = 110-130 THEN Бронхит

Продукционная модель представления знаний нашла широкое применение в АСУТП

Среды разработки продукционных систем(CLIPS)

CLIPS (C Language Integrated Production System) — среда разработки продукционной модели разработана NASA в 1984 году. Среда реализована на языке С, именно потому является быстрой и эффективной.
Пример:

Подобное правило будет активировано только тогда, когда в базе данных появится факт симптома с подобными параметрами.

Семантическая сеть МПЗ

В основе продукционной модели лежит ориентированный граф. Вершины графа — понятия, дуги — отношения между понятиями.
Особенностью является наличие трех типов отношений:

По количеству типов отношений выделяют однородные и неоднородные семантические сети. Однородные имею один тип отношения между всеми понятиями, следовательно, не однородные имею множество типов отношений.

Все типы отношений:

Пример

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы
Недостатком МПЗ является сложность в извлечении знаний, особенно при большой сети, нужно обходить граф.

Фреймовая МПЗ

Предложил Марвин Мински в 1970 году. В основе фреймовой модели МПЗ лежит фрейм. Фрейм — это образ, рамка, шаблон, которая описывает объект предметной области, с помощью слотов. Слот — это атрибут объекта. Слот имеет имя, значение, тип хранимых данных, демон. Демон — процедура автоматически выполняющаяся при определенных условиях. Имя фрейма должно быть уникальным в пределах одной фреймовой модели. Имя слота должно быть уникальным в пределах одного фрейма.

Слот может хранить другой фрейм, тогда фреймовая модель вырождается в сеть фреймов.

Пример

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы

Пример вырождающейся в сеть фреймов

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы
На своей практике, мне доводилось встречать системы на основе фреймовой МПЗ. В университете в Финляндии была установлена система для управления электроэнергией во всем здании.

Языки разработки фреймовых моделей (Frame Representation Language)

FRL (Frame Representation Language) — технология создана для проектирования интеллектуальных систем на основе фреймовой модели представления знаний. В основном применяется для проектирования вырождающихся в сеть фреймовой модели.

Запись фрейма на языке FRL будет иметь вид:

Существуют и другие среды: KRL (Knowledge Representation Language), фреймовая оболочка Kappa, PILOT/2.

Формально логическая МПЗ

В основе формально логической МПЗ лежит предикат первого порядка. Подразумевается, что существует конечное, не пустое множество объектов предметной области. На этом множестве с помощью функций интерпретаторов установлены связи между объектами. В свою очередь на основе этих связей строятся все закономерности и правила предметной области. Важное замечание: если представление предметной области не правильное, то есть связи между объектами настроены не верно или не в полной мере, то правильная работоспособность системы будет под угрозой.

Пример

A1 = A2 = A3 = ; IF A1 AND A2 THEN
Банальней примера и не придумаешь.
Важно: Стоит заметить, что формально логическая МПЗ схожа с продукционной. Частично это так, но они имеют огромную разницу. Разница состоит в том, что в продукционной МПЗ не определены никакие связи между хранимыми объектами предметной области.

Важно

Любая экспертная система должна иметь вывод данных и последовательность «мышления» системы. Это нужно для того чтобы увидеть дефекты в проектировании системы. Хорошая интеллектуальная система должна иметь право ввода данных, которое реализуется через интеллектуальный редактор, право редактора на перекрестное «мышление» представлений при проектировании системы и полноту баз знаний(реализуется при проектировки закономерностей предметной области между инженером по знаниям и экспертом).

Заключение

Экспертные системы действительно имеют широкое применение в нашей жизни. Они позволяют экономить время реальных экспертов в определенной предметной области. Модели представления знаний это неотъемлемая часть интеллектуальных систем любого уровня. Поэтому, я считаю, что каждый уважающий себя IT-специалист, должен иметь даже поверхностные знания в этих областях.

Источник

Коротко и понятно об экспертных системах

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы

Система является интеллектуальной, если она обладает знаниями и умеет использовать их для достижения сформулированной цели. Знания – это то, без чего нет интеллектуальной системы. Экспертные системы явились первыми действительно интеллектуальными системами и, в конечном счете, интеллектуальность определила их коммерческий успех.

Разработки универсальных программ, использующих общие методы решения широкого класса задач, существенных практических результатов не принесли, но появилось понимание крайней ограниченности применения формально-математических методов в этой области. В 70-е годы была разработана и принята принципиально новая концепция: чтобы сделать систему интеллектуальной, ее нужно снабдить множеством высококачественных специальных знаний о некоторой предметной области. Процесс создания экспертных систем на первых этапах заключается в специфическом взаимодействии эксперта (экспертов) и инженера по знаниям с целью «извлечения» из эксперта и встраивания в систему процедур, стратегий эмпирических правил, которые он использует для решения задач.

Эксперт – это человек, который благодаря обучению и опыту может делать то, что мы все, остальные люди делать не умеем; эксперты работают не просто профессионально, но быстро и эффективно. Они хорошо умеют распознавать в проблемах, с которыми сталкиваются, примеры тех типовых проблем, с которыми они уже знакомы. Очень важно подчеркнуть, что эксперт должен не только знать, но и уметь. Именно этим свойством отличаются базы данных от баз знаний – базы знаний активны.

Экспертные системы как отдельное направление выделилось из общего русла исследований по искусственному интеллекту в начале 80-х г.г. Основным предметом исследований нового направления являются знания – их приобретение, представление и использование. Специалисты, работающие в этой области все чаще используют для ее наименования термин «инженерия знаний».

Очень значимым отличием экспертных систем от классических программ, работа которых основана на точных данных является то, что экспертные системы могут ошибаться. Причина ошибок лежит в том, что знания специалистов, как и знания, заложенные в экспертные системы, не точны. Важно, по крайней мере, чтобы экспертные системы ошибались не чаще, чем ошибается человек-эксперт.

Т.о. можно сформулировать следующее определение экспертной системы. Экспертная система – это вычислительная система, в которую включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Экспертные системы должны уметь принимать решения вместо специалиста в заданной предметной области.

Характерными чертами экспертной системы являются:

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают прозрачностью, т.е. могут, быть объяснены пользователю на качественном уровне (в отличие от решений, полученных с помощью числовых алгоритмов, и в особенности от решений полученных статистическими методами). Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

Источник

Экспертная система. Классификация. Обзор существующих экспертных систем

Для чего используются экспертные системы. Смотреть фото Для чего используются экспертные системы. Смотреть картинку Для чего используются экспертные системы. Картинка про Для чего используются экспертные системы. Фото Для чего используются экспертные системы

Рубрика: Информационные технологии

Дата публикации: 21.10.2016 2016-10-21

Статья просмотрена: 11922 раза

Библиографическое описание:

Дошина, А. Д. Экспертная система. Классификация. Обзор существующих экспертных систем / А. Д. Дошина. — Текст : непосредственный // Молодой ученый. — 2016. — № 21 (125). — С. 756-758. — URL: https://moluch.ru/archive/125/34485/ (дата обращения: 17.12.2021).

Keywords: expert system, structure expert system, classification of expert systems.

Экспертная система (ЭС, англ.expert system) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы взяли свое начало в 1970-х годах с трудов исследователей искусственного интеллекта, а в 1980-х получили коммерческое подкрепление. Первые подобия экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие отыскать решения по некоторым условиям. Примером такой системы является система, позволяющая подбирать необходимые медицинские препараты по симптомам заболевания пациента.

В сфере информационных технологий экспертные системы рассматриваются в совокупности с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Подобные задачи выполняет программный продукт, называемый «Мастер» (англ. Wizard). Мастера применяются в прикладных и системных программах для упрощения интерактивного общения с пользователем. Основным отличием данных программ — это отсутствие базы знаний — все действия запрограммированы.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. Они предоставляют релевантные, т. е. подходящие запросу пользователя, разделы базы статей.

В настоящее время «классическая» концепция экспертных систем 70–80 годов переживает серьезный кризис, связанный с её сильной ориентацией на текстовый человеко-машинный интерфейс, почти полностью вытесненный графическим интерфейсом (GUI). Помимо этого, «классическая» концепция экспертных систем плохо согласуется с реляционной моделью данных, что создает сложности в работе с современными промышленными системами управления базами данных (СУБД). Время от времени энтузиастами предпринимаются попытки объединить «классический» и современный подход к построению пользовательского интерфейса, но они не находят поддержки среди крупных компаний-производителей.

Структура ЭС

В состав ЭС входят следующие элементы:

‒ Интеллектуальный редактор базы знаний

‒ Инженер по знаниям

‒ Рабочая (оперативная) память

‒ Решатель (механизм вывода)

База знаний содержит в себе правила анализа информации по проблеме, полученной от пользователя. ЭС анализирует эту информацию и дает рекомендации по разрешению конкретной проблемы.

База знаний состоит из двух составляющих:

 факты — статические сведения о предметной области;

 правила — набор инструкций, который позволяет выводить новые факты, исходя из уже известных.

В рамках логической модели базы знаний формируются на языке Пролог с помощью предикатов для описания фактов и правил логического вывода.

Обычно факты в базе знаний описывают те явления, которые являются постоянными для данной предметной области. Данные, зависящие от условий конкретной задачи, ЭС получает от пользователя в процессе работы и сохраняет в рабочей памяти.

База знаний ЭС создается при помощи трех групп людей:

Режимы функционирования

ЭС может функционировать в 2-х режимах:

Классификация ЭС

По решаемой задаче:

По связи среальным временем:

 Статические — решающие задачи в условиях, не изменяющихся во времени исходных данных и знаний.

 Квазидинамические — интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

 Динамические — решающие задачи в условиях изменяющихся во времени исходных данных и знаний.

Этапы разработки ЭС

‒ Этап идентификации проблем — определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

‒ Этап извлечения знаний — проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

‒ Этап структурирования знаний — выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

‒ Этап формализации — осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

‒ Реализация ЭС — создается один или несколько прототипов ЭС, решающие требуемые задачи.

‒ Этап тестирования — производится оценка выбранного способа представления знаний в ЭС в целом.

Наиболее известные ЭС

CLIPS — весьма популярная оболочка для построения ЭС. CLIPS является продукционной системой. Реализация вывода использует алгоритм Rete. CLIPS является одной из наиболее широко используемых инструментальных сред для разработки экспертных систем благодаря своей скорости, эффективности и бесплатности.CLIPS разработан для применения в качестве языка прямогологического вывода(forward chaining) и в своей оригинальной версии не поддерживает обратного вывода (backward chaining). Как и другие экспертные системы, CLIPS имеет дело с правилами и фактами.

OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов. OpenCyc является сокращенным открытый вариантомбазы знаний Cyc. В БД OpenCyc содержится 47000 понятий и 300000 фактов.

WolframAlpha — база знаний и набор вычислительных алгоритмов, интеллектуальный «вычислительный движок знаний». Wolfram Alpha вычисляет ответы на большое количество разнообразных вопросов. Для подбора ответов механизм использует встроенные модели из разных областей знаний, заполненные данными и алгоритмами, которые и представляют собой реальные познания.

MYCIN — наиболее известная диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Также Mycin использовалась для диагностики заболеваний свертываемости крови. MYCIN оперировала с помощью довольно простоймашины вывода, и базы знаний из

HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в Тихом океане по данным акустических систем слежения. Данные имеют вид сонограмм, являющихся аналоговыми записями спектров принятой датчиками звуковой энергии. Для их интерпретации система применяет знания о характерных особенностях сонограмм различных типов кораблей.

Акинатор — интернет-игра. Игрок должен загадать любого персонажа, а Акинатор должен его отгадать, задавая вопросы. База знаний автоматически пополняется, поэтому программа может отгадать практически любого известного персонажа. На каждом вопросе Акинатор пытается выбрать такой вопрос, который отсеет наибольшее количество вариантов. Каждый раз после вашего ответа у Акинатора «в голове» остаётся список персонажей, которые соответствуют вашим ответам.

IBMWatson — суперкомпьютер фирмы IBM, способный понимать вопросы, сформулированные на естественном языке, и находить на них ответы в базе данных. В первую очередь Watson стали учить медицине, а конкретно, онкологии. Архитектура Watson такова, что позволяет осуществлять параллельные и распределенные вычисления, т. е. сразу работать с множеством задач в параллельном режиме. Watson способен работать с супербольшими данными, т. е. структурированной и неструктурированной информацией.

Вывод

В настоящее время экспертные системы используются во многих областях нашей жизни: банковское дело, бухгалтерский учет, медицинские обследования и т. д. Но использование экспертных систем неоднозначно. Наряду с тем, что они облегчают работу, при неумелом и не спланированном использовании экспертные системы могут только усложнить ситуацию. Это обусловлено тем, что универсальная экспертная система, не включающая в себя спецификации определенных компаний, не может дать гарантированно правильный ответ.

Несмотря на некоторые недостатки, за экспертными системами будущее. Постоянное совершенствование подобных систем неизбежно приведет к активному их использованию во всех сферах человеческой жизни. Конечно, компьютер не сможет полностью заменить человека, потому что только человек способен находить творческие, нестандартные решения, но сможет сильно облегчить работу эксперта.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *