Для чего кабель pci e
Разъем PCI Express: что такое интерфейс PCIe?
PCI Express, полное техническое название «Peripheral Component Interconnect Express», но зачастую воспринимаемый сокращенной аббревиатурой PCIe или PCI-E, это стандартный тип подключения для внутренних девайсов, такие как видеокарты, звуковые карты, wifi адаптеры и прочих периферийных устройств на персональном компьютере.
Разбираемся в различиях PCI-E разъема.
Как правило, данный высокоскоростной порт относится к фактическим слотам расширения на материнской плате, которые принимают платы расширения на основе традиционного PCIe и типы карт расширения.
PCI Express практически заменил AGP и PCI, оба из которых заменили старейший широко используемый тип соединения, называемый ISA. Хотя пк могут содержать различные слоты расширения, PCI Express считается стандартным внутренним интерфейсом самого быстрого разъема. Сегодня многие материнские платы для персональных компьютеров производятся только с разъемами PCI Express.
Как работает PCI Express?
Подобно старым стандартам, таким как PCI и AGP, устройство на базе Express физически переходит в высокоскоростной разъем на материнской плате.
Интерфейс этого разъема обеспечивает высокоскоростную связь между устройством и системной платой, а также другим оборудованием.
Хотя это не очень распространено, также существует внешняя версия высокоскоростного порта, что неудивительно называется External PCI Express, но часто сокращается до PCIe. Для устройств ePCIe, являющихся внешними, требуется специальный кабель для подключения любого внешнего устройства PCIe к пк через порт PCIe, обычно расположенный на задней панели пк, поставляемый либо материнской платой, либо специальной внутренней PCIe-картой.
Какие типы карт PCI Express существуют?
Благодаря требованию более быстрых, реалистичных видеоигр и инструментов редактирования видео, видеокарты были первыми типами компьютерной периферии, чтобы воспользоваться преимуществами, предлагаемыми непосредственно PCIe.
В то время как видеокарты по-прежнему остаются наиболее распространенным типом PCIe-карты, вы обнаружите, что другие девайсы, которые значительно быстрее подключаются к системной плате, процессору и ОЗУ. Также все чаще производятся PCIe-соединения вместо обычного PCI. Например, многие высококачественные звуковые карты теперь используют высокоскоростной порт, а также повышают количество проводных и беспроводных сетевых интерфейсных карт.
Карты контроллера жесткого диска могут быть наиболее полезными для PCI-E после видеокарты. Подключение высокоскоростного PCIe SSD-накопителя к этому высокоскоростному интерфейсу позволяет значительно быстрее считывать, потом записывать диск. Некоторые контроллеры жестких дисков PCIe даже включают встроенный SSD, сильно изменяя, как устройства хранения традиционно подключены внутри пк.
Конечно, замена PCIe на PCI и AGP полностью на более новые системные платы, почти каждый тип внутренней карты расширения, основанной на старых интерфейсах, перестраивается для возможности использования шины PCI Express. Это включает в себя такие вещи, как карты расширения USB, карты Bluetooth и т.д.
Каковы различные форматы PCI Express?
Часто не совсем понятно, когда вы покупаете карту расширения для своего компьютера, такую как новая видеокарта, какая из различных технологий PCIe работает с вашим пк лучше, чем другая. Однако, насколько это сложно, все выглядит довольно просто, как только вы поймете две важные части информации о высокоскоростном порте: часть, описывающую физический размер, и часть, описывающую технологическую версию, как описано ниже.
Размеры PCIe: x16, x8, x4, и x1
Как следует из заголовка, число после x указывает физический размер платы PCI-E или слота, причем x16 самый большой, а x1 наименьший.
Вот как формируются различные размеры:
Количество контактов | Длина | |
PCI Express x1 | 18 | 25 мм |
PCI Express x8 | 49 | 56 мм |
PCI Express x16 | 82 | 89 мм |
Независимо от размера высокоскоростного порта или карты, ключевой вырез, это небольшое место в карте или слоте, всегда находится на выводе 11. То есть, длина вывода 11 продолжает увеличиваться по мере перехода от PCIe x1 к PCIe x16. Это позволяет гибко использовать карты одного размера вместе со слотами другого.
Карты PCIe подходят в любом слоте высокопроизводительного порта на системной плате, который по крайней мере такой же большой. Например, карта PCIe x1 будет входить в любой слот PCIe x4, PCIe x8 или PCIe x16. Карта PCIe x8 будет входить в любой слот PCIe x8 или PCIe x16. PCIe-карты, размер которых больше, чем слот PCIe, могут входить в меньший слот, но только если этот слот PCI-E открытый (т.е. Не имеет пробки в конце гнезда).
В целом, большая плата Express или слот поддерживает большую производительность, предполагая, что две карты или слоты, которые сравниваете, поддерживают одну и ту же версию PCIe.
Версия PCIe: 4.0, 3.0, 2.0 и 1.0
Любое число после PCIe, которое вы найдете на устройстве или системной плате, указывает номер последней версии используемой спецификации PCI Express.
Вот как сравниваются различные версии контроллера PCI Express:
Пропускная способность (на полосу) | Пропускная способность (на полосу в слоте x16) | |
PCI Express 1.0 | 2 Гбит/с (250 МБ/с) | 32 Гбит/с (4000 МБ/с) |
PCI Express 2.0 | 4 Гбит/с (500 МБ/с) | 64 Гбит/с (8000 МБ/с) |
PCI Express 3.0 | 7.877 Гбит/с (984,625 МБ/с) | 126,032 Гбит/с (15754 МБ/с) |
PCI Express 4.0 | 15.752 Гбит/с (1969 МБ/с) | 252,032 Гбит/с (31504 МБ/с) |
Все версии высокоскоростного порта совместимы в обратном и обратном направлении, что означает независимо от того, какую версию поддерживает плата PCIe или ваша материнская плата, они должны работать вместе, по крайней мере, на минимальном уровне. Как можно заметить, основные обновления стандарта порта резко увеличивают пропускную способность каждый раз, значительно увеличивая потенциал того, что может сделать связанное оборудование.
Улучшения версии также устраняют ошибки, добавленные функции и улучшенное управление питанием, но увеличение полосы пропускной способности это самое важное изменение для заметок от версии к версии.
Максимизация совместимости совместно с PCIe
Например, графическая карта на высокоскоростном порту 3.0 x16 даст вам максимальную производительность, но только если материнская плата поддерживает высокоскоростной порт версии 3.0 и имеет свободный высокоскоростной порт x16. Если модель системной платы использует исключительно PCIe 2.0, карта будет работать только с поддерживаемой скоростью (например, 64 Гбит/с в слоте x16).
Большинство материнских плат и персональных компьютеров, выпущенных в 2013 году или позже, вероятно, поддерживают Express v3.0. Если вы не уверены, проверьте руководство по материнской плате или пк. Если не получается найти какую-либо окончательную информацию о версии PCI, возможности использования вашей материнской платой, я рекомендую купить самую большую и последнюю версию PCIe-карты, если она подойдет, конечно.
Что заменит PCIe?
Разработчики видеоигр всегда ищут игры, которые становятся все более реалистичными, но могут сделать это только в том случае, если они смогут передавать больше данных из своих игровых программ в гарнитуру VR или на экран пк, и для этого требуются более быстрые интерфейсы. Из-за этого PCI Express никак не будет продолжать господствовать над своими лаврами. PCI Express 3.0 удивительно быстрый, но мир стремится сделать невероятно быструю передачу.
PCI Express 5.0, который должен быть завершен к 2019 году, будет использовать пропускную способность 31,504 гигабит в секунду на полосу (3938 мегабайт в секунду), что в два раза больше, чем предлагается у высокоскоростного разъема версии 4.0. Существует ряд других стандартов интерфейса, отличных от PCIe, на которые смотрит технологическая индустрия, но поскольку для них потребуются серьезные аппаратные изменения, PCIe, похоже останется лидером в течение некоторого, очень продолжительного времени как самый быстрый из существующих когда-либо.
PCI Express 4.0, кабели и все-все-все
Раз уж мы затронули немножко в комментариях к предыдущей статье тему расширения PCI Express и вывода шины за пределы шасси, следует наверное рассказать об этом чуть подробнее.
Небольшой дисклеймер – информацию обо всем, о чем говорится ниже, можно найти используя Google. Мы, конечно, про некоторые вещи знаем гораздо больше подробностей, чем можем рассказывать исходя из условий NDA.
История
Начнем издалека – с истории PCI Express вообще и нюансов с этим связанных. Спецификация первой ревизии появилась в далеком 2003 году, при этом поддерживалась скорость в 2.5 GTs на лэйн и агрегация до 16 лэйнов на порт (кстати, это наверное единственное, что так и не изменилось – несмотря на робкие упоминания и даже официальную поддержку в версии 2.0 ширины в x32, насколько мне известно никто порты такой ширины реально так и не поддерживает до сих пор). Обратите внимание, что скорость указана в GTs (транзакций в секунду) – это не биты данных, реальная битовая скорость ниже за счет кодирования 8b/10b (для версий до 2.1 включительно).
В течение следующих лет началось эволюционное развитие стандарта:
• 2005 год – релиз спецификации 1.1, содержащей незначительные улучшения без увеличения скорости
• 2007 год – стандарт версии 2.0, скорость на лэйн выросла в два раза (до 5GTs или 4Gbps)
• 2009 год – релиз версии 2.1, содержащей множество улучшений, по сути являющихся подготовкой к переходу к третьей версии
• 2010 – существенный скачок, переход к версии 3.0, который помимо увеличения канальной скорости до 8 GTs принес переход к новой кодировке (128b/130b), что позволило значительно сократить накладные расходы на передачу собственно данных. То есть если для версии 2.0 при скорости 5 GTs реальная битовая скорость составляла всего 4 Gbps, то для версии 3.0 при скорости 8 GTs битовая скорость составляет
7.87 Gbps – разница ощутимая.
• 2014 – релиз спецификации 3.1. В него включены различные улучшения обсуждавшиеся в рамках рабочих групп.
• 2017 – ожидается релиз финального варианта спецификации 4.0.
Последствия
Далее будет большое лирическое отступление. Как видно из графика выхода спецификаций, рост скорости шины фактически остановился аж на семь лет, в то время как производительность компонентов вычислительных систем и сетей интерконнекта и не думала стоять на месте. Здесь надо понимать, что PCI Express, хоть и является независимым стандартом, развиваемым рабочей группой с огромным количеством участников (PCI Special Interest Group – PCI-SIG, мы тоже являемся членами этой группы), направление его развития тем не менее во многом определяется мнением и позицией Intel, просто потому, что подавляющее большинство PCI Express устройств стоит именно в обычных домашних компьютерах, ноутбуках и low-end серверах – царстве процессоров с архитектурой x86. А Intel – корпорация большая, и у нее могут быть свои планы, в том числе и слегка идущие в разрез с желаниями других участников рынка. И многие из этих участников были, мягко говоря, недовольны задержкой увеличения скорости (особенно те, кто вовлечен в создание систем для High Performance Computing – HPC, или, попросту — суперкомпьютеров). Mellanox например давно уже уперся в развитии InfiniBand в бутылочное горлышко PCI Express, NVIDIA тоже явно страдала от несоответствия скорости PCI Express потребностям в передаче данных между GPU. Причем чисто технически скорость увеличить можно было бы уже давно, но многое упирается в необходимость сохранения обратной совместимости. К чему это все в итоге привело:
• NVIDIA создала свой собственный интерконнект (NVLINK, первая версия имеет скорость 20 GTs на лэйн, вторая будет иметь уже 25 GTs) и объявляет о готовности лицензировать его всем желающим (к сожалению только хостовую часть, лицензирование end-point’а пока не предполагается)
• IBM добавляет в процессоры POWER8 поддержку NVLINK 1.0 (уже доступна в процессорах POWER8+)
• В POWER9 (которые появятся на рынке в 2017 году) IBM будет поддерживать NVLINK 2.0, а также на тех же самых физических портах можно будет использовать протокол OpenCAPI – когерентный интерфейс для подключения ускорителей.
• В POWER9 IBM реализует PCI Express на скорости 16 GTs, что соответствует драфту спецификации 4.0 – то есть, похоже, Intel окажется не первым, кто поддержит новый стандарт.
Roadmap по процессорам POWER
Ремарки
Кстати, относительно указания скорости есть любопытный момент. Общепринятым вариантом указания скорости работы PCI Express устройства являются обозначения типа Gen1, Gen2, Gen3. По факту же к этому надо относиться именно как к указанию поддерживаемой скорости, а не соответствия стандарту соответствующей версии. То есть, например, устройству, полностью соответствующему стандарту 3.1 никто не запрещает не уметь работать на скорости выше 5 GTs.
Собственно, чем хорош PCI Express с точки зрения разработчика – тем, что это наиболее прямой и унифицированный (поддерживаемый самыми разными платформами) способ подключить что бы то ни было к центральному процессору с минимальными накладными расходами. Конечно, у процессоров Intel есть еще QPI – но это шина, доступ к которой дают очень (ОЧЕНЬ!) ограниченному кругу особо приближенных компаний. У IBM в POWER8 это X-Bus, A-Bus и, в будущем (для POWER9) – OpenCAPI, но о стоимости лицензирования первых двух вообще лучше не думать а третьей пока еще вообще нет (хотя она как раз должна быть открытой). Ну и конечно прямое подключение через PCI Express актуально только тогда, когда хочется много, быстро и с минимальной задержкой. Для всех остальных случаев есть USB, SAS/SATA, Eth и иже с ними.
Ближе к кабелям
Несмотря на то, что PCI Express изначально задумывался именно для подключения компонентов внутри компьютера, желание подключить что-нибудь кабелем возникло достаточно быстро. В быту этого как правило не требуется (ну разве что для ноутбуков иногда хотелось бы внешнюю видеокарту подключить или что-нибудь типа того), но для серверов, особенно с появлением PCI Express коммутаторов, это стало очень актуальным – необходимое количество слотов иногда не так уж просто разместить внутри одного шасси. Да и с развитием GPU и сетей вычислительного интерконнекта, особенно с появлением технологии GPU Direct, желание иметь много устройств подключенных по PCI Express к одному хосту только возрастало.
Первые варианты кабельного подключения PCI Express были стандартизированы еще в 2007 году (спецификация 1.0), вторая ревизия вышла в 2012 году, сохранив неизменным тип разъемов и кабеля. Нельзя сказать, что такое подключение получило очень широкое распространение (все же ниша достаточно узкая), но тем не менее несколько крупных вендоров выпускали как разъемы, так и кабели, в том числе активную оптику. Одной из наиболее известных компаний, предлагающих различные варианты шасси расширения с подключением шины PCI Express кабелем, является One Stop Systems.
Кабель для внешних подключений PCI Express
Однако кабель (и разъем), выбранные изначально, сегодня уже не очень удобны. Первая (и довольно существенная) неприятность заключается в том, что невозможно разместить количество разъемов, необходимое для вывода порта шириной x16, на одной низкопрофильной карте (точнее, можно использовать специальный коннектор для x16, но при этом теряется универсальность в плане использований портов меньшей ширины, да и сам этот тип коннектора как-то не прижился). Второе неудобство происходит из того, что такой тип кабелей особо больше нигде не используется.
Между тем в индустрии существует стандарт с долгой историей использования кабелей, а именно – SAS. И текущая версия SAS 3.0 работает на скорости 12GTs, что в полтора раза превосходит скорость PCI Express Gen3, то есть SAS-кабели неплохо подходят и для подключения по ним PCI Express. Кроме того, Mini-SAS HD коннекторы еще очень удобны тем, что по одному кабелю идет сразу 4 лэйна, и существуют сборки на 2 и 4 коннектора, что позволяет использовать порты шириной x8 и x16. Размеры коннекторов при этом достаточно компактны, чтобы сборка на 4 коннектора уместилась на низкопрофильной карте. Дополнительным плюсом этих кабелей является то, что и в самом коннекторе, и в кабельной сборке сигналы Tx и Rx разнесены – это позволяет снизить их взаимное влияние. Соответственно сейчас все больше решений, где надо вывести PCI Express кабелем за пределы шасси, используют именно Mini-SAS HD.
Кабель и разъемы Mini-SAS HD
Как следствие описанного выше, а также того, что в скором будущем выйдет SAS 4.0 который будет иметь скорость 24GTs и сохранит при этом кабели того же форм-фактора (Mini-SAS HD), участники PCI-SIG решили стандартизировать использование именно этого типа кабелей для внешнего подключения PCI Express (включая ревизию 4.0 в будущем).
Что надо учитывать при передаче PCI Express по кабелю
Теперь немного о нюансах использования кабелей (любых) и проблемах, которые приходится решать. Интересующие нас кабели бывают двух типов – пассивные медные и активные оптические. С медными проблем меньше, но для них все равно нужно учитывать следующие моменты:
• при использовании пассивных кабелей из соображений обеспечения целостности сигнала необходимо на плате адаптера ставить или редрайверы, или коммутатор PCI Express; коммутатор необходим в случае, если хочется иметь возможность бифуркации порта x16, приходящего с хоста, на большее число портов (например 2×8 или 4×4), а также если удаленная сторона не поддерживает работу с раздельным 100MHz Reference Clock или необходимо обеспечить наличие непрозрачного моста (NT Bridge) между двумя хостами;
• в случае если необходим агрегированный линк (x8, x16) стоит обратить особое внимание на допустимый разброс длины кабелей конкретного производителя (он бывает особенно велик для длинных кабелей, и тогда можно получить значительный перекос длины между лэйнами одного порта, который превысит заложенные в стандарте допуски);
• нужно учитывать, что в кабеле Mini-SAS HD проходят только четыре дифф. пары и линии земли, то есть весь набор sideband сигналов, необходимых для полноценной работы PCI Express, там не протянуть; это может быть не критично, если кабель используется для связи двух коммутаторов, а вот в случае когда нужно просто удаленно подключить endpoint возможно придется использовать дополнительные кабели для проброса сигналов сброса и управления Hot Plug’ом;
• наверное излишне упоминать, что обе стороны должны быть заземлены, иначе возможно возникновение паразитного тока через линии земли кабеля, что совсем нежелательно.
Применение активных оптических кабелей позволяет не задумываться о части вопросов, которые приходится решать при использовании пассивной меди (редрайверы можно не ставить, поскольку конечной точкой прохождения электрического сигнала является сам трансивер, заземление тоже перестает волновать, так как две стороны кабеля являются гальванически изолированными), но при этом оптика не только не решает остальные проблемы присущие пассивным кабелям, но и привносит новые, присущие только ей:
• помимо ограничения на одинаковую длину кабелей появляется еще и ограничение на их идентичность – крайне нежелательно в пределах одного порта использовать кабели разных производителей, поскольку они могут иметь разную задержку на трансиверах;
• оптические трансиверы не поддерживают передачу состояния «Electrical Idle»;
• сюрприз – активные трансиверы сильно греются, и их нужно охлаждать;
также могут быть определенные нюансы, связанные с импедансом трансиверов, уровнями их сигналов и терминированием.
Альтернативы Mini-SAS HD
Конечно же Mini-SAS HD — не единственный тип кабелей и разъемов, которые можно использовать для подключения PCI Express. Можно вспомнить к примеру про классические QSFP или CXP, которые вполне подходят для этих целей, или подумать о более экзотических вариантах вроде установки оптического трансивера прямо на плату и выходе с карты сразу оптикой (у того же Avago Broadcom есть много подходящих вариантов, ну или вот например Samtec FireFly) — но все эти варианты оказываются существенно дороже или не очень удобны исходя из габаритов разъемов.
Кроме упомянутой выше инициативы по стандартизации Mini-SAS HD в качестве кабеля для внешних подключений PCI-SIG также занимается разработкой нового стандарта кабелей, который хоть и носит название OCuLink (Optical & Cuprum Link), скорее все же будет подразумевать только пассивные медные кабели, как для внутренних (в пределах шасси), так и для внешних подключений. Разъемы и кабели этого стандарта достаточно компактны, на рынке уже существуют серийные продукты, соответствующие этому, еще не выпущенному стандарту (у Molex это называется NanoPitch, Amphenol также предлагает кабели такого форм-фактора, в том числе и активные). К сожалению, эти разъемы также не подразумевают размещение четырех коннекторов на низкопрофильной карте. В сочетании с тем, что ни один вендор из тех, с кем мы общаемся, пока не планирует делать активную оптику с такими коннекторами, это вряд ли будет способствовать использованию этого типа кабелей для внешних подключений. А вот как вариант для внутренних кабелей это достаточно интересно, более того, мы уже видели проекты с их использованием и сами собираемся применять этот тип кабелей в нашем сервере для подключения дискового контроллера к материнской плате.
Внутренний кабель стандарта OCuLink
Что делаем мы
Теперь немножко про наши продукты. У нас есть проект, про него мы наверное тоже чуть позже будем подробнее рассказывать, который предполагает создание шасси с развитой коммутационной топологией PCI Express и подключение его к нескольким хостам. Понятно, что в этом случае не обойтись без вывода PCI Express через кабели, и для этого мы сделали плату адаптера на базе PCI Express коммутатора PLX (который был куплен Avago, который еще и переименовался в Broadcom после того, как и его тоже купил – в общем эти поглощения уже надоели, поэтому будем называть его по-прежнему PLX). Для нашего решения мы использовали кабели Mini-SAS HD – все же это нам кажется оптимальным вариантом, и судя по направлению работы PCI-SIG – мы не одиноки в этом убеждении.
Адаптер собственной разработки для вывода PCI Express через кабель
После получения и тестирования первых образцов мы с некоторым удивлением обнаружили, что при использовании качественных пассивных кабелей можно обеспечить работоспособность шины на скорости 8GTs (Gen3) через кабель длиной до 10 метров (длиннее пассивных кабелей мы просто не видели). А если требуется больше – то мы можем работать и с активными оптическими кабелями (проверили – работает).
На самом деле ставить достаточно дорогой чип коммутатора PCI Express в нашем проекте есть смысл только на одной стороне – стороне хоста, чтобы обеспечить возможность бифуркации порта x16 на четыре порта по x4. На другом конце кабеля достаточно поставить адаптер с редрайверами, поскольку в нашем варианте на этой стороне все будет и так подключаться к PCI Express коммутатору, который можно запрограммировать на требуемое разбиение порта.
И немножко о совместимости
При использовании Mini-SAS HD для передачи PCI Express стоит обратить внимание еще на один нюанс. Нумерация пар в коннекторе, предполагаемая SAS, не очень удобна для брейкаута в случае PCI Express. До тех пор, пока вы не предполагаете работать со сторонним оборудованием это не критично – можете подключать как вздумается вообще. Но если есть желание обеспечить совместимость с другими продуктами в будущем, то лучше придерживаться рекомендации PCI-SIG и изменить порядок подключения лэйнов.
Линии PCI-E — конфигурации платформ AMD AM4 и sTRX4, Intel LGA1200 и LGA2066
Содержание
Содержание
Линии PCI-E и не только
Линии — это дорожки, использующие две сигнальные пары для отправки и приема данных, по которым материнская плата обменивается информацией со слотами PCI-Express, процессором, контроллерами SATA, USB. PCI-E — самый быстрый слот. Кроме видеокарты, к линиям PCI-E могут подключаться твердотельные накопители, модули Bluetooth, Wi-Fi, различные адаптеры.
Каждая линия, как дорога, может пропустить только ограниченное количество трафика в секунду. Для нормального функционирования видеокарты под интерфейс PCI-E 3 и 4 поколения необходимо от 8 до 16 линий. Скоростные линии обмена данных используют и твердотельные накопители. Если установить 2 видеокарты в слоты PCI-E х16 или одну видеокарту и файловый накопитель NVMe M.2, каждое устройство будет использовать по 8 линий.
Сколько бывает линий
Материнская плата может поддерживать 64 линии PCI-E, но не все они используются для работы видеокарт. Например, процессоры AMD серии Ryzen поддерживают 24 линии и только 16 для слотов PCI-E х16, соответственно 8 линий отводится под другие устройства. Чем выше класс материнской платы, тем больше линий она поддерживает, тоже можно сказать и о процессорах. Не все линии доступны для пользователей, до 10 низкоскоростных линий 2.0 обычно используются для связи процессора с чипсетом материнской платы.
При одновременной работе нескольких накопителей часто не хватает пропускной способности линий, особенно когда они объединены в Raid. При подключении 6 SATA устройств, рекомендуется использовать адаптер для слота PCI-E. Если установлена память NVMe M.2 и заняты все SATA-порты, также желательно использовать 8 дополнительных линий, подключившись к слоту PCI-E х16.
Основные потребители линий PCI-E
PCI-E x16 — слот используется для подключения видеокарт, PCI-Express SSD, M.2.
PCI-E x4 и х8 — предназначены для скоростной передачи данных объемом 4–8 ГБ/с. В эти слоты подключают твердотельные накопители через RAID-контроллеры или карту расширения USB.
PCI-E x1 — используют в основном для подключения Wi-Fi и звуковых карт. Скорости слота третьего поколения — почти 1 ГБ/с, хватает для передачи качественного сигнала.
Сколько линий нужно современной видеокарте
Пропускная способность PCI-E первого поколения линии — 250 МБ\с, второго — 500 МБ\с, третьего — 984,6 МБ\с, четвертого — 1969 МБ\с. В последнее время второй слот PCI-E х16 все чаще используют для подключения накопителей данных M.2. Пропускная способность 8 линий третьего поколения равна 7 872 МБ\с, чего вполне достаточно для большинства современных игр и графических редакторов.
AMD AM4
Процессор
APU Bristol Ridge
Ryzen
Это новая единая платформа для бюджетных и высокопроизводительных гибридных процессоров. APU — микропроцессорная архитектура от AMD, объединяющая центральный и графический процессор в одном кристалле. Socket AM4 с микроархитектурой Zen появился в 2016 году. Платформа поддерживает память DDR4, до 24 линий PCI-E за счет материнской платы и до 64 за счет процессоров. Сокет работает с 9 наборами логики: Z2, b550, x570, x470, X370, B550, B450, B350, А320.
Чипсет
Линии PCI-E за счет процессора
Линии PCI-E за счет материнской платы
Версия PCI-E
TRX40 и X399 поддерживают наибольшее число линий — по 64, но X399 работает только с 10 линиями PCI-E, идущими с материнской платы, у TRX40 таких 24, к тому же он работает с 4 версией PCI-Express. У остальных наборов логик 24 линии от процессора и 4–16 за счет материнской платы.
AM4 кардинально отличается от архитектуры своей предшественницы AM3 Plus и больше напоминает материнские платы FMX или LGA 1150. Поддержка чипсетов PCI-E 3.0 осуществляется только за счет линий, идущих непосредственно от процессора. Минимальное количество линий с любым APU — 16. Видеокарта может использовать 16 или 8 + 8 линий в разных слотах PCI-E. На этой материнской плате можно установить высокоскоростной твердотельный накопитель без использования PCI-E-линий. Для M.2 есть 2 высокоскоростные линии, ведущие от чипсета к процессору.
Дополнительные линии: 4 для порта SATA и 4 для USB 3.0. Если отказаться от SATA, освободится 4 линии ввода-вывода для установки дополнительного NWME M.2.
sTRX4
Ryzen Threadripper 4, вышедший в ноябре 2019 года, обеспечивает работу 8–32 ядерных APU третьего поколения, созданных по 7-нанометровому техпроцессу.
Socket TR4 — первый чипсет AMD, созданный в формате LGA для домашнего использования. До этого LGA-разъемы применялись только в серверных форматах.
На новой платформе увеличено количество доступных линий контроллера PCI-E 4.0 до 64. Из них 8 используются для связи материнской платы и процессора, 48 линий могут быть задействованы под слоты PCI-E, оставшиеся 8 линий отвечают за подключение SATA, M.2 и 4 портов USB 3.2. Интерфейс DDR-памяти модернизирован до версии 4.0, Максимальным объемом 2 Тб поддерживается UDIMM, RDIMM и LRDIMM, ECC.
Работу системной логики на материнской плате обеспечивает чипсет AMD TRX40, позволяющий подключить дополнительные 16 линий PCIe 4.0 с процессорами Ryzen Threadripper. Эти линии могут быть использованы для работы портов USB, NVMe и SATA3. Таким образом, sTRX4 максимум поддерживает 72 линии.
Intel LGA1200
В Intel LGA1200, выпущенном в 2020 году, максимум можно задействовать 40 линий PCI Express 3.0. При использовании процессоров серии Coffee Lake-S Refresh и Comet Lake-S поддерживается 16 линий PCI Express, Rocket Lake-S — 20 линий. От чипсета идет 24 линии, от CPU только 16. Возможные конфигурации PCI-Express: ×16, ×8+8, ×8 + ×4х2. На SATA 3.0 + 14 USB портов приходится от 4 до 8 линий в зависимости от набора логики, 2 линии отводится на оперативную память, DMI 3.0 — 4 линии.
В основу платформы легли новые наборы логики 400-й серии: B460, H470, Q470, Z490, W480.
Наименьшее количество линий получил набор логики Intel H410. Общее число (HSIO) — 30, линий PCIe 3.0 — 22, для SATA 3.0 только 4 линии.
Intel LGA2066
LGA2066 — платформа 2017 года, поддерживающая процессоры без интегрированного графического ядра, поколения Skylake-X и Kaby Lake-X. Для работы используется набор системной логики X299. Линий PCIe 3.0 от 16 до 48.
7640X и 7740 — 16 линий.
7800X и 7820 — 28 линий.
7920X–7980 — 44 линии.
9800X–9980 — 44 линии.
10900X–10980X — 48 линий.
Младшие модели процессоров поддерживают 16 линий PCI-E. Максимальный объем памяти DDR4 — 64 Гб. С процессорами Intel Core 7800X и 7820 на PCI-E выделяется 28 линий и поддерживается до 128 Гб DDR4. С остальными процессорами чипсет позволяет активировать 44 и 48 линий, из которых 28 отводится под слот PCI Express 16, остальные на 8 портов SATA, 10 USB 3.0 или 14 USB 2.0 и интегрированный сетевой адаптер.