Функции, значение и строение плазматической мембраны
Клеточная мембрана (плазматическая мембрана) представляет собой тонкую полупроницаемую оболочку, которая окружает цитоплазму клетки.
Функция и роль клеточной мембраны
Ее функция заключается в том, чтобы защитить целостность внутренней части клетки, впуская некоторые необходимые вещества в клетку, и не позволяя проникать другим.
Он также служит основой привязанности к цитоскелету у одних организмов и к клеточной стенке у других. Таким образом, плазматическая мембрана также обеспечивает форму клетки. Еще одна функция мембраны заключается в регулировании роста клеток через баланс эндоцитоза и экзоцитоза.
При эндоцитозе липиды и белки удаляются из клеточной мембраны по мере усвоения веществ. При экзоцитозе везикулы, содержащие липиды и белки, сливаются с клеточной мембраной, увеличивая размер клеток. Животные, растительные и грибковые клетки имеют плазматические мембраны. Внутренние органеллы, например, ядро, также заключены в защитные мембраны.
Структура клеточной мембраны
Плазматическая мембрана в основном состоит из смеси белков и липидов. В зависимости от расположения и роли мембраны в организме, липиды могут составлять от 20 до 80 процентов мембраны, а остальная часть приходится на белки. В то время как липиды помогают придать мембране гибкость, белки контролируют и поддерживают химический состав клетки, а также помогают в переносе молекул сквозь мембрану.
Липиды мембран
Фосфолипиды являются основным компонентом плазматических мембран. Они образуют липидный бислой, в котором гидрофильные (притянутые к воде) участки “головы” спонтанно организуются, чтобы противостоять водному цитозолю и внеклеточной жидкости, тогда как гидрофобные (отталкиваемые водой) участки “хвоста” обращены от цитозоля и внеклеточной жидкости. Липидный бислой является полупроницаемым, позволяя только некоторым молекулам диффундировать через мембрану.
Гликолипиды расположены с наружной поверхности клеточных мембран и соединяются с ними углеводной цепью. Они помогают клетке распознавать другие клетки организма.
Белки мембран
Клеточная мембрана содержит два типа ассоциированных белков. Белки периферической мембраны являются внешними и связаны с ней путем взаимодействия с другими белками. Интегральные мембранные белки вводятся в мембрану, и большинство проходит сквозь нее. Части этих трансмембранных белков расположены по обе ее стороны.
Белки плазматической мембраны имеют ряд различных функций. Структурные белки обеспечивают поддержку и форму клеток. Белки рецептора мембраны помогают клеткам контактировать со своей внешней средой с помощью гормонов, нейротрансмиттеров и других сигнальных молекул. Транспортные белки, такие как глобулярные белки, переносят молекулы через клеточные мембраны посредством облегченной диффузии. Гликопротеины имеют прикрепленную к ним углеводную цепь. Они встроены в клеточную мембрану, помогая в обмене и переносе молекул.
Мембраны органелл
Некоторые клеточные органеллы также окружены защитными мембранами. Ядро, эндоплазматический ретикулум, вакуоль, лизосома и аппарат Гольджи являются примерами окруженных мембраной органелл. Митохондрии и хлоропласты покрыты двойной мембраной. Мембраны различных органелл различаются по молекулярному составу и хорошо подходят для выполнения своей роли. Они важны для нескольких жизненно важных функций клеток, включая синтез белка, производство липидов и клеточное дыхание.
Мембрана клетки = цитоплазматическая мембрана = плазматическая мембрана = плазмалемма
Строение клеточной мембраны
Мембрана клеток частично проницаема. Это значит, что любое вещество не может в нее проникнуть, однако и закрытой ее назвать нельзя. Так как существуют константы гомеостаза ( гомеостаз – постоянство внутренней среды ), определяющие содержание веществ внутри клетки, то клетка выводит ненужные ей вещества и пропускает нужные. Для этого в клетках есть разные приспособления:
Белки, образующие «тоннели» в клеточной мембране для пассивного тока воды и некоторых неорганических ионов.
Мембрана клетки не представляет их себя непрерывную цепь липидов, она имеет включения в виде белков разных конфигураций. Они могут быть на поверхности мембраны, проходить сквозь нее, образовывать каналы, находиться в наружном или внутреннем слое липидов.
Мембрана ядра состоит из двух оболочек, пронизанных ядерными порами. Внешняя оболочка ядра шероховатая, она связана с эндоплазматической сетью клетки.
Строение двухроматидной хромосомы
Транспортная функция подразумевает под собой то, что через мембрану в клетку и из нее проходит некоторые вещества, молекулы, ионы.
Задание EB21495 Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ФУНКЦИИ
СТРУКТУРЫ
А) осуществляет активный транспорт веществ
Б) изолирует клетку от окружающей среды
В) обеспечивает избирательную проницаемость веществ
Г) образует секреторные пузырьки
Д) распределяет вещества клетки по органеллам
Е) участвует в образовании лизосом
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А
Б
В
Г
Д
Е
На первой картинке изображена мембрана, которую легко узнать по билипидному слою, а на второй — комплекс Гольджи, состоящий из продолговатых цистерн.
Мембрана защищает и осуществляет транспорт.
Комплекс Гольджи отвечает как бы за пищеварение клетки, но не участвует в непосредственном расщеплении.
Задание EB0501 Установите соответствие между структурами клеток и их функциями.
ФУНКЦИИ
СТРУКТУРА КЛЕТОК
В) разделение клетки на отделы (компартменты)
Г) активный транспорт молекул
Д) пассивный транспорт молекул
Е) формирование межклеточных контактов
1) клеточная мембрана
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Странная аббревиатура ЭПС — Эндоплазматическая сеть. Приставка «Эндо-» обозначает то, что она находится внутри. Исходя из вариантов представим себе клетку из мембраны и сети внутри.
Прикинем варианты ответов:
Пока пропустим все синтезы, о них подумаем и узнаем потом.
Разделение клетки на отделы. Очевидно, что это деление внутри клетки. Видимо, это ЭПР.
Активный или пассивный транспорт молекул. Кроме барьерной функции, мембрана еще и отвечает за транспорт веществ, как активный, так и пассивный. Казалось бы, мембрана такая устойчивая структура, но не стоит забывать о фаго- и пиноцитозе (захват мембраной твердых и жидких частиц)
Одно из свойств клеточной мембраны — выборочная проницаемость.
Формирование межклеточных контактов. Сделаем наше представление о клетке еще проще. Представим себе ткань, не важно какую. Много маленьких клеточек, которые соприкасаются своими мембранами и взаимодействуют между собой. Таким образом, в формировании межклеточных контактов участвует именно мембрана.
Вернемся к синтезу. Просто порассуждаем снова. Мембрана — это лишь оболочка клетки, структура, безусловно, важная, но именно внутри клетки, внутри мембраны находятся органоиды, каждый из которых выполняет свою функцию. Вероятнее всего, за синтезы и прочие сложные вещи будет отвечать органоид, а не мембрана, поэтому, за синтез белка и липидов отвечает ЭПC.
В схеме вопрос стоит о двумембранных органоидах. Мы знаем, что к двумембранным относятся митохондрии и пластиды. Рассуждаем: пропуск всего один, а варианта два. Это не просто так. Нужно внимательно перечитать вопрос. Есть два типа клеток, но нам не сказано, о каком идет речь значит, ответ должен быть универсален. Пластиды характерны только растительным клеткам, следовательно, остаются митохондрии.
Плазменная мембрана – определение, структура, функции
Определение плазменной мембраны
Плазматическая мембрана клетка представляет собой сеть липидов и белков, которая образует границу между содержимым клетки и наружной частью клетки. Это также просто называется клеточная мембрана, Основной функцией плазматической мембраны является защита клетки от окружающей ее среды. Он является полупроницаемым и регулирует материалы, которые входят и выходят из ячейки. Клетки всего живого имеют плазматические мембраны.
Функции плазменной мембраны
Физический барьер
Плазматическая мембрана окружает все клетки и физически отделяет цитоплазма, который является материалом, из которого состоит клетка, из внеклеточной жидкости вне клетки. Это защищает все компоненты клетки от внешней среды и позволяет отдельным действиям происходить внутри и снаружи клетки.
Селективная проницаемость
Плазматические мембраны избирательно проницаемы (или полупроницаемы), что означает, что через них могут проходить только определенные молекулы. Вода, кислород и углекислый газ могут легко проходить через мембрану. Обычно ионы (например, натрий, калий) и полярные молекулы не могут проходить через мембрану; они должны проходить через определенные каналы или поры в мембране, а не проходить сквозь них. Таким образом, мембрана может контролировать скорость, с которой определенные молекулы могут входить и выходить из клетки.
Эндоцитоз и экзоцитоз
Эндоцитоз это когда клетка поглощает относительно большее содержимое, чем отдельные ионы или молекулы, которые проходят через каналы. Через эндоцитоз клетка может принимать большое количество молекул или даже целых бактерии из внеклеточной жидкости. Экзоцитоз – это когда клетка высвобождает эти материалы. Клеточная мембрана играет важную роль в обоих этих процессах. Форма самой мембраны изменяется, чтобы позволить молекулам входить или выходить из клетки. Он также образует вакуоли, маленькие пузырьки мембраны, которые могут транспортировать много молекул одновременно, чтобы транспортировать материалы в разные места клетки.
Сотовая Сигнализация
Другой важной функцией мембраны является облегчение связи и передачи сигналов между клетками. Это достигается за счет использования различных белков и углеводов в мембране. Белки на клетке «помечают» эту клетку, чтобы другие клетки могли ее идентифицировать. Мембрана также имеет рецепторы, которые позволяют ей выполнять определенные задачи, когда молекулы, такие как гормоны, связываются с этими рецепторами.
Структура плазменной мембраны
Белки
Белки вклиниваются между липидами, которые составляют мембрану, и эти трансмембранные белки позволяют молекулам, которые иначе не могли бы проникнуть в клетку, образовать каналы, поры или ворота. Таким образом, клетка контролирует поток этих молекул, когда они входят и выходят. Белки в клеточной мембране играют роль во многих других функциях, таких как клеточная сигнализация, распознавание клеток и активность ферментов.
углеводы
Углеводы также находятся в плазматической мембране; в частности, большинство углеводов в мембране являются частью гликопротеинов, которые образуются, когда углевод присоединяется к белку. Гликопротеины играют роль во взаимодействиях между клетками, включая клетки адгезия процесс, посредством которого клетки прикрепляются друг к другу.
Жидкая мозаичная модель
Технически клеточная мембрана представляет собой жидкость. При комнатной температуре он имеет примерно такую же консистенцию, что и растительное масло. Липиды, белки и углеводы в плазматической мембране могут свободно диффундировать через клеточную мембрану; они по существу плавают по всей его поверхности. Это известно как модель жидкой мозаики, который был придуман S.J. Певец и Г. Л. Николсон в 1972 году.
викторина
1. Какой тип молекулы образует двойной слой плазматической мембраны?A. ФосфолипидыB. Ионные КаналыC. РибосомыD. Дезоксирибонуклеиновая кислота
Ответ на вопрос № 1
верно. Фосфолипиды образуют двойной слой плазматической мембраны, самопроизвольно располагаясь таким образом, когда они находятся в воде (воде). решение, Ионные каналы также находятся в мембране, но они не ответственны за формирование двойного слоя. Рибосомы и дезоксирибонуклеиновая кислота находятся внутри клетки; рибосомы образуют белки, а дезоксирибонуклеиновая кислота – это ДНК, генетический материал.
2. Какое предложение лучше всего описывает модель «Мозаика жидкости»?A. Плазматическая мембрана позволяет жидкости проходить между внеклеточной жидкостью и цитоплазмой.B. Слишком много жидкости приведет к взрыву клеток животных.C. Компоненты мембраны помещаются на место, как плитки в мозаике.D. Липиды, белки и углеводы плазматической мембраны свободно перемещаются по ее поверхности.
Ответ на вопрос № 2
D верно. Модель Fluid Mosaic описывает жидкоподобное движение липидов, белков и углеводов, которые составляют плазматическую мембрану. Эти компоненты свободно перемещаются по его поверхности.
3. Что НЕ является функцией плазматической мембраны?A. Для генерации энергии для питания клетокB. Для защиты клетки от окружающей средыC. Для облегчения сотовой связиD. Чтобы контролировать скорость определенных молекул, входящих и выходящих из клетки
Ответ на вопрос № 3
верно. Варианты B, C и D являются функциями плазматической мембраны. митохондрия является частью клетки, которая генерирует энергию.
Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.
Органеллы клетки
Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:
Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.
Общее строение мембраны
Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.
Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:
Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).
Жидкостно-мозаичная модель строения
Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).
Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно «гулять» по мембране, меняя местоположение.
Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.
Белки плазматической мембраны
Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.
1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:
Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:
2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также «заякоренными» белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.
Существует два типа пронизывания липидного слоя:
Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.
Липиды плазмалеммы
Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:
Функции перечисленных соединений следующие:
Сфингофосфолипиды и гликолипиды мембраны
Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.
Холестерол (стерин мембраны)
Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.
Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.
В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.
Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.
Углеводы мембраны
Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.
Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.
Основные функции плазмалеммы
Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.
Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.
Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.
Содержание
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Функции биомембран
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Мембранные органеллы
Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.