Для чего клеточная стенка в клетке
Строение и основные функции клеточной стенки растений
Клеточная стенка представляет собой жесткий, полупроницаемый защитный слой в некоторых типах клеток. Это внешнее покрытие расположено рядом с клеточной (плазматической) мембраной в большинстве клеток растений, грибов, бактерий, водорослей и некоторых археев. Тем не менее, животные клетки не имеют клеточной стенки. Она выполняет множество важных функций, включая защиту и структурную поддержку.
Особенности строение клеточной стенки зависят от вида организма. К примеру, у растений, она обычно состоит из сильных волокон углеводной полимерной целлюлозы, которая является главным компонентом хлопка и древесины, а также используется в производстве бумаги.
Структура клеточной стенки растений
Клеточная стенка растений многослойная и включает три секции: внешний слой или средняя пластинка, первичная и вторичная клеточные стенки. Хотя все растительные клетки имеют среднюю пластинку и первичную клеточную стенку, не у всех есть вторичная клеточная стенка.
Средняя пластинка – внешней слой клеточной стенки, который содержит полисахариды, называемые пектинами. Пектины помогают в адгезии клеток, связывая стенки соседних клеток друг с другом.
Первичная клеточная стенка – слой, образованный между средней пластинкой и плазматической мембраной в растущих клетках растений. Он состоит в основном из целлюлозных микрофибрилл, содержащихся в гелеобразной матрице из гемицеллюлозных волокон и пектиновых полисахаридов. Первичная клеточная стенка обеспечивает прочность и гибкость, необходимые для роста клеток.
Вторичная клеточная стенка – слой, образованный между первичной стенкой клетки и плазматической мембраной в некоторых растительных клетках. Когда первичная клеточная стенка перестает делиться и расти, она может сгущаться, образуя вторичную клеточную стенку. Этот прочный слой укрепляет и поддерживает клетку. Кроме целлюлозы и гемицеллюлозы, некоторые вторичные клеточные стенки включают лигнин, который усиливает их и обеспечивает водопроводимость клеток сосудистой ткани растений.
Функции клеточной стенки
Основные функции клеточной стенки заключаются в том, чтобы сформировать каркас для клетки и предотвратить ее расширение. Целлюлозное волокно, структурные белки и другие полисахариды придают клеткам форму и обеспечивают поддержку. К дополнительным функциям клеточной стенки относятся:
Жесткий слой, окружающий клетки бактерий, архей, грибов ирастений, называется клеточной стенкой. Стенка находится вне пределов цитоплазмической мембраны (клеточной мембраны) ивыполняет целый ряд функций. Уживотных ибольшинства простейших клеточной стенки ненаблюдается.
Вданной статье охарактеризована клеточная стенка (строение ифункции), кратко для каждого вида клеток.
Клеточные стенки высших растений
Растительная клеточная оболочка, строение ифункции которой здесь рассматриваются, имеет многослойную структуру.
Это внешний слой (средняя пластинка), первичная клеточная стенка ивторичная клеточная стенка. Вторичная клеточная стенка имеется неувсех растений.
Основная функция клеточной стенки состоит вформировании каркаса клетки ипредотвращении еерасширения. Кроме того, клеточная стенка:
Клеточные стенки водорослей
Как иклетки высших растений, клетки водорослей имеют соответствующие стенки. Они содержат целлюлозу идругие гликопротеины.
Вклеточных стенках зеленых инекоторых видов красных водорослей встречаются манозиловые микроволокна. Авклеточных стенках бурых водорослей встречается альгиновая кислота.
Агарозы, карагинан, порфиран, фурселеран ифуноран встречаются практически вовсех видах водорослей. Группа диатомовых водорослей синтезирует свою клеточную стенку изкремнезема, что вкакой-то мере способствует быстрому росту водорослей.
Клеточные стенки грибов
Грибная клеточная стенка меняет свой состав, свойства иформу помере роста гриба.
Клеточные стенки бактерий
Бактериальные клеточные стенки, как иурастений, впервую очередь защищают ячейку отвнутреннего тургора. Упрокариот клеточная стенка отличается составом основного компонента— онсостоит изпептидогликана, размещающегося сразу зацитоплазматической мембраной.
Различают два вида бактериальных клеточных стенок, поэтому признаку бактерии делятся награмотрицательные играмположительные.
Вграмположительных бактериях клеточная стенка имеет толстый слой пептидогликана. Такая стенка имеется уопределенного типа организмов, вклетках которых формируется липотейхоевая кислота, благодаря наличию фосфодиестерных связей между мономерами которой клетка получает отрицательный электрический заряд.
Соответственно грамотрицательные бактерии имеют очень тонкий слой пептидогликана клеточной стенки иимеют вторую, внешнюю, мембрану, находящуюся снаружи отклеточной стенки икомпонующую фосфолипиды илипополисахариды насвоей внешней стороне.
Уважаемые читатели, хотелосьбы знать былали вам полезна информация, описывающая строение ифункции клеточной оболочки, кратко, ноемко характеризующая разные виды клеток.
Особенности, функции и структура клеточной стенки
клеточная стенка Это толстая и устойчивая структура, которая ограничивает определенные типы клеток и окружает плазматическую мембрану. Это не рассматривается как стена, которая избегает контакта с внешней стороной; Это динамичная, сложная структура, которая отвечает за значительное количество физиологических функций в организмах..
Клеточная стенка содержится в растениях, грибах, бактериях и водорослях. Каждая стена имеет структуру и типичный состав группы. Напротив, одной из характеристик клеток животных является отсутствие клеточной стенки. Эта структура в основном отвечает за придание и поддержание формы клеток.
Клеточная стенка действует как защитный барьер в ответ на осмотический дисбаланс, который может иметь клеточная среда. Кроме того, он играет роль в общении между клетками.
Общие характеристики
-Клеточная стенка представляет собой толстый, стабильный и динамический барьер, обнаруживаемый у разных групп организмов..
-Наличие этой структуры жизненно важно для жизнеспособности клетки, ее формы и, в случае вредных организмов, участвует в ее патогенности.
-Хотя состав стенки варьируется в зависимости от каждой группы, основная функция заключается в поддержании целостности клетки от осмотических сил, которые могут разрушить клетку.
-В случае многоклеточных организмов, это помогает формированию тканей и участвует в клеточной коммуникации
Клеточная стенка у растений
Структура и состав
Клеточные стенки растительных клеток состоят из полисахаридов и гликопротеинов, организованных в трехмерной матрице.
Наиболее важным компонентом является целлюлоза. Он состоит из повторяющихся звеньев глюкозы, связанных вместе β-1,4 связями. Каждая молекула содержит около 500 молекул глюкозы.
Остальные компоненты включают в себя: гомогалактуронан, рамногалактуронан I и II и полисахариды гемицеллюлозы, такие как ксилоглюканы, глюкоманнаны, ксиланы и другие..
Гемицеллюлоза связана водородными связями с целлюлозой. Эти взаимодействия очень стабильны. Режим взаимодействия не очень хорошо определен для остальных компонентов.
Его можно дифференцировать между первичной и вторичной клеточными стенками. Основное тонкое и несколько податливое. После остановки роста клеток происходит отложение вторичной стенки, которая может изменить свой состав относительно первичной или остаться неизменной и добавить только дополнительные слои.
В некоторых случаях лигнин является компонентом вторичной стенки. Например, деревья показывают значительное количество клетчатки и лигнина.
синтез
Процесс биосинтеза стенки сложен. Он включает в себя около 2000 генов, участвующих в построении структуры.
Целлюлоза синтезируется в плазматической мембране для осаждения непосредственно снаружи. Для его образования требуется несколько ферментативных комплексов.
Остальные компоненты синтезируются в мембранных системах, расположенных внутри клетки (например, аппарат Гольджи) и выводятся с помощью везикул..
функция
Клеточная стенка у растений выполняет функции, аналогичные тем, которые внеклеточный матрикс выполняет в клетках животных, такие как поддержание формы и структуры клеток, соединение тканей и передача сигналов клеткам. Далее мы обсудим наиболее важные функции:
Регулировать тургор
В клетках животных, у которых отсутствует клеточная стенка, внеклеточная среда представляет собой серьезную проблему с точки зрения осмоса..
Когда концентрация среды выше, чем внутри клетки, вода в клетке имеет тенденцию выходить. И наоборот, когда клетка подвергается воздействию гипотонической среды (более высокая концентрация внутри клетки), вода попадает и клетка может взорваться.
В случае растительных клеток растворенные вещества, обнаруженные в клеточной среде, ниже, чем во внутренней части клетки. Однако клетка не взрывается, потому что клеточная стенка нажата. Это явление вызывает появление некоторого механического давления или клеточного тургора.
Тургорное давление, создаваемое клеточной стенкой, помогает сохранить ткани растений жесткими.
Связи между клетками
Растительные клетки могут общаться друг с другом через серию «каналов», называемых плазмодемами. Эти маршруты позволяют соединять цитозоль как клеток, так и обмениваться веществами и частицами..
Эта система позволяет обмен продуктов обмена, белков, нуклеиновых кислот и даже вирусных частиц.
Сигнальные дороги
В этой сложной матрице присутствуют молекулы, полученные из пектина, такие как олигогалактурониды, которые способны запускать сигнальные пути в качестве защитных реакций. Другими словами, они работают как иммунная система у животных.
Хотя клеточная стенка образует барьер против патогенов, она не является полностью непроницаемой. Поэтому, когда стена ослаблена, эти соединения высвобождаются и «предупреждают» растение о нападении..
В ответ происходит высвобождение активных форм кислорода и производятся метаболиты, такие как фитоалексины, которые являются антимикробными веществами..
Клеточная стенка у прокариот
Структура и состав в эубактерии
Клеточная стенка эубактерии имеет две фундаментальные структуры, которые дифференцируются знаменитым окрашиванием по Граму..
Первая группа состоит из грамотрицательных бактерий. У этого типа мембрана двойная. Клеточная стенка тонкая и с обеих сторон окружена внутренней и внешней плазматической мембраной. Классическим примером грамотрицательной бактерии является Кишечная палочка.
В свою очередь, грамположительные бактерии имеют только плазматическую мембрану, а клеточная стенка намного толще. Они обычно богаты тейхоевой кислотой и миколевой кислотой. Примером является патоген Золотистый стафилококк.
Основным компонентом обоих типов стен является пептидогликан, также известный как мурейн. Единицами или мономерами, которые его составляют, являются N-ацетилглюкозамин и N-ацетилмураминовая кислота. Он состоит из линейных цепочек полисахаридов и небольших пептидов. Пептидогликан образует прочные и стабильные структуры.
Некоторые антибиотики, такие как пенициллин и ванкомицин, действуют, предотвращая образование бактериальных связей клеточной стенки. Когда бактерия теряет клеточную стенку, полученная структура называется сферопластом..
Структура и состав в архее
Археи различаются по составу стенки относительно бактерий, главным образом потому, что они не содержат пептидогликана. Некоторые археи имеют слой псевдопептидогликана или псевдомуреина.
Этот полимер имеет толщину 15-20 нм и похож на пептидогликан. Компонентами полимера являются 1-N-ацетилталозаминуроновая кислота, связанная с N-ацетилглюкозамином..
Они содержат ряд редких липидов, таких как изопреновые группы, присоединенные к глицерину, и дополнительный слой гликопротеинов, называемый слоем S. Этот слой часто ассоциируется с плазматической мембраной..
Есть несколько видов архей, таких как Ферроплазма ацидофильная и Thermoplasma spp., которые не имеют клеточной стенки, несмотря на то, что живут в экстремальных условиях окружающей среды.
И эубактерии, и археи представляют большой слой белков, таких как адгезины, которые помогают этим микроорганизмам колонизировать различные среды.
синтез
У грамотрицательных бактерий компоненты стенки синтезируются в цитоплазме или во внутренней мембране. Строительство стены происходит снаружи клетки.
Образование пептидогликана начинается в цитоплазме, где происходит синтез нуклеотидных предшественников компонентов стенки.
Впоследствии синтез продолжается в цитоплазматической мембране, где синтезируются соединения липидной природы..
Процесс синтеза заканчивается внутри цитоплазматической мембраны, где происходит полимеризация пептидогликановых звеньев. Различные ферменты участвуют в этом процессе.
функции
Как и клеточная стенка у растений, эта структура у бактерий выполняет аналогичные функции по защите этих одноклеточных организмов от лизиса перед лицом осмотического стресса..
Внешняя мембрана грамотрицательных бактерий помогает транслокации белков и растворенных веществ и передаче сигнала. Он также защищает организм от патогенов и обеспечивает клеточную стабильность.
Клеточная стенка у грибов
Структура и состав
Большинство клеточных стенок у грибов имеют довольно схожий состав и структуру. Они образуются из гелеобразных углеводных полимеров, перепутанных с белками и другими компонентами..
Отличительным компонентом грибковой стенки является хитин. Он взаимодействует с глюканами, образуя волокнистую матрицу. Хотя это прочная структура, она обладает определенной степенью гибкости.
синтез
Другие компоненты синтезируются в аппарате Гольджи и в эндоплазматической сети. Эти молекулы выводятся в клеточную поверхность путем выделения с помощью везикул..
функции
Клеточная стенка грибов определяет ее морфогенез, жизнеспособность и патогенность. С экологической точки зрения он определяет тип среды, в которой может жить определенный грибок или нет.
Клеточная стенка
Клеточная стенка
Клеточная стенка (оболочка) является неотъемлемым компонентом клеток растений и грибов и представляет собой продукт их жизнедеятельности. Она придаёт клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды|воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.
Клеточная стенка, формирующаяся во время деления клеток и их роста|роста путём растяжения, называется первичной. После прекращения роста|роста клетки на первичную клеточную стенку изнутри откладываются новые слои, и образуется прочная вторичная клеточная оболочка.
В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов), компоненты матрикса (гемицеллюлоза, пектин, белки|белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск).
Молекулы целлюлозы за счёт водородных связей объединяются в пучки —микрофибриллы. Переплетённые микрофибриллы составляют каркас клеточной оболочки. У большинства грибов микрофибриллы клеточной стенки состоят из хитина.
Микрофибриллы погружены в матрикс клеточной стенки. Матрикс состоит из смеси|смеси различных химических веществ, среди которых преобладают полисахариды (гемицеллюлозы и пектиновые вещества).
Гемицеллюлозы — это группа полисахаридов (полимеры пен-тоз и гексоз — ксилозы, галактозы, маннозы, глюкозы и др.). Молекулы гемицеллюлоз, как и целлюлозы, имеют форму цепи, но в отличие от последней их цепи короче, менее упорядочены и сильно разветвлены. Они легче растворяются и разрушаются ферментами.
Пектиновые вещества — это полимеры, построенные из моносахаридов (арабинозы и галактозы), галактуроновой кислоты|кислоты (сахарной кислоты|кислоты) и метилового спирта. Длинные молекулы пектиновых веществ могут быть линейны ми или разветвлёнными. Молекулы пектиновых веществ содержат большое количество карбоксильных групп и поэтому способны соединяться с ионами Mg2+ и Са2-. При этом образуются клейкие, студнеобразные пектаты магния и кальция, из которых затем складываются срединные пластинки, скрепляющие стенки двух соседних клеток.
Ионы двухвалентных металлов могут обмениваться на другие катионы (Н-, К+ и т. д.). Это обусловливает катионообменную способность клеточных оболочек.
Пектиновыми веществами и пектатами богаты оболочки клеток многих плодов. Так как при их извлечении из оболочек и добавлении сахара|сахара|сахара образуются гели, пектины используют как желе-образующие вещества для изготовления мармелада и др.
Помимо углеводных компонентов, в состав матрикса клеточной стенки входит структурный белок|белок экстенеин —гликонроте-ин, который по своему составу близок к межклеточным белкам|белкам животных —коллагенам.
На долю матрикса приходится до 60% сухого вещества клеточной оболочки. Матрикс оболочки не просто заполняет промежутки между микрофибриллами, а образует прочные химические (водородные и ковалентные) связи между макромолекулами и микрофибриллами, что обеспечивает прочность клеточной стенки, её эластичность и пластичность.
Основным инкрустирующим веществом оболочки клеток растений является лигнин — полимер с неразветвленной молекулой, состоящей из ароматических спиртов.
Интенсивная лигнификация (пропитка слоёв целлюлозы лигнином) клеточных оболочек начинается после прекращения роста|роста клетки. Лигнин может откладываться отдельными участками — в виде колец, спиралей или сетки, как это наблюдается в оболочках клеток проводящей ткани — ксилемы, или сплошным слоем, за исключением тех мест, где осуществляются контакты между соседними клетками в виде плазмодесм.
Лигнин скрепляет целлюлозные волокна|волокна и действует как очень твёрдый и жёсткий каркас, усиливающий прочность клеточных стенок на растяжение и сжатие. Он же обеспечивает клеткам дополнительную защиту от физических и химических воздействий, снижает водопроницаемость. Содержание лигнина в оболочке достигает 30%. Инкрустация им клеточных оболочек приводит к их одревеснению, которое часто влечёт за собой отмирание живого содержимого клетки.
Лигнин в сочетании с целлюлозой придаёт особые свойства древесине, которые делают её незаменимым строительным материалом.
На клеточную оболочку могут откладываться также жиропо-добные вещества — суберин, кутин и воск.
Суберин откладывается на оболочку изнутри и делает её практически непроницаемой для воды|воды и растворов. В результате протопласт клетки отмирает и клетка заполняется воздухом. Такой процесс называется опробковением. Наблюдается опробковение оболочки клеток в покровных тканях многолетних древесных растений — перидерме, корке, а также в эндодерме корня.
Поверхность эпидермальных клеток растений защищена гидрофобными веществами — кутином и восками. Предшественники этих соединений секретируются из цитоплазмы на поверхность, где и происходит их полимеризация. Слой кутина обычно пронизан полисахаридными компонентами (целлюлозой и пектином) и образует кутикулу. Воск часто откладывается в кристаллической форме на поверхности частей растений (листьев, плодов), образуя восковой налёт.
Кутикула и восковой налёт защищают клетки от повреждений и проникновения инфекции, уменьшают испарение воды|воды с поверхности органов|органов.
В оболочках эпидермальных клеток некоторых растений (злаков, осок и др.) накапливается большое количество минеральных веществ (минерализация), в первую очередь карбоната кальция и кремнезёма. При минерализации листья и стебли растений становятся жёсткими, твёрдыми и в меньшей степени поедаются животными.
Таким образом, клеточная стенка играет важную роль в жизни клеток растений и грибов и выполняет ряд специфических функций.
Клеточная стенка
Клеточная стенка растительной клетки: общие сведения
Клеточная стенка (нередко в качестве синонима термина «клеточнаястенка» в учебной и научной литературе используется термин»клеточная оболочка».) у растений — это структурное образование,располагающееся по периферии клетки, за пределамиплазмалеммы, придающее клетке прочность, сохраняющее её форму и защищающеепротопласт.
Клеточная стенка растений противостоит высокому осмотическому давлениюбольшой центральнойвакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточныхстенок выполняет роль своеобразного внешнего скелета, поддерживающего формурастения и придающего ему механическую прочность. Клеточная стенка, обладаябольшой прочностью, в то же время способна к росту, и прежде всего к ростурастяжением. Эти два в известной степени противоположных требованияудовлетворяются за счёт особенностей её строения и химического состава.
Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечныйсвет. Через неё легко проникают вода и низкомолекулярные вещества, но длявысокомолекулярных веществ она полностью или частично непроницаема. Умногоклеточных организмов стенки соседних клеток скреплены между собойпектиновыми веществами, образующими срединную пластинку.
При специальной обработке растительных тканей некоторыми веществами(крепкие щелочи|щелочи|щёлочи, азотная кислота) стенки соседних клеток разъединяются врезультате разрушения срединной пластинки. Этот процесс называетсямацерацией. Естественная мацерация происходит у перезрелых плодов груши, дыни,персика и др.
В результате тургорного давления стенки соседних клеток в углах могутокругляться и между ними образуются межклетники.
Стенка клетки представляет собой продукт жизнедеятельности еёпротопласта. Поэтому стенка может расти, только находясь в контакте с протопластом.Однако при отмирании протопласта стенка сохраняется и мёртвая клетка можетпродолжать выполнять функции проведения воды|воды или играть роль механическойопоры.
Основу клеточной стенки составляют высокополимерные углеводы: молекулыцеллюлозы (клетчатки), собранные в сложные пучки — фибриллы, образующие каркас, погружённый воснову (матрикс), состоящий изгемицеллюлоз,пектинов игликопротеидов (рис. 21). Молекулыцеллюлозы состоят из большого числа|числа линейно расположенных мономеров — остатковглюкозы. Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже вконцентрированных щелочах. Эластичный целлюлозный скелет придаёт клеточнойоболочке механическую прочность. Первоначально число микрофибрилл,образованных молекулами целлюлозы, в клеточной стенке относительноневелико, но с возрастом оно увеличивается и клетка теряет способность крастяжению.
Помимополисахаридов, в матриксе стенок многих клеток часто обнаруживаются неуглеводныекомпоненты. Наиболее обычен из нихлигнин — полимерное вещество полифенольной природы. Содержание его в стенкахнекоторых видов клеток может достигать 30%.
Клеточная стенка
Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.
Содержание
Клеточные стенки прокариот
Клеточные стенки бактерий состоят из пептидогликана (муреина) и бывают двух типов: грамположительного и грамотрицательного. Клеточная стенка грамположительного типа состоит исключительно из толстого слоя пептидогликана, плотно прилегающего к клеточной мембране и пронизанного тейхоевыми и липотейхоевыми кислотами. При грамотрицательном типе слой пептидогликана существенно тоньше, между ним и плазматической мембраной находится периплазматическое пространство, а снаружи клетка окружена ещё одной мембраной, представленной т. н. липополисахаридом и являющаяся пирогенным эндотоксином грамотрицательных бактерий.
Клеточные стенки грибов
Клеточные стенки грибов состоят из хитина и глюканов.
Клеточные стенки водорослей
Большинство водорослей имеют клеточную стенку из целлюлозы и различных гликопротеинов. Включения дополнительных полисахаридов имеют большое таксономическое значение.
Диатомовые водоросли синтезируют свою клеточную стенку из кремнезёма.
Клеточные стенки высших растений
Клеточные стенки высших растений построены в основном из целлюлозы, гемицеллюлозы и пектина. В них существуют углубления — поры, через которые проходят плазмодесмы, осуществляющие контакт соседних клеток и обмен веществами между ними. Растительные клеточные стенки выполняют целый ряд функций: они обеспечивают жесткость клетки для структурной и механической поддержки, придают форму клетке, направление её роста и в конечном счете морфологию всему растению. Клеточная стенка также противодействует тургору, то есть осмотическому давлению, когда дополнительное количество воды поступает в растения. Клеточные стенки защищают от патогенов, проникающих из окружающей среды, и запасают углеводы для растения. Растительные клеточные стенки строятся прежде всего из углеводного полимера целлюлозы.
См. также
Полезное
Смотреть что такое «Клеточная стенка» в других словарях:
КЛЕТОЧНАЯ СТЕНКА — бактерий, специфическая по химич. составу оболочка, окружающая протопласт и тесно связанная структурно функциональными взаимоотношениями с цитоплазматич. мембраной. Толщ. 10 50 нм. Составляет 10 50% сухой массы клеток. У большинства бактерий в… … Биологический энциклопедический словарь
клеточная стенка — Структура, обеспечивающая жесткость структуры клетки и ее механическую прочность, является осмотическим барьером. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики… … Справочник технического переводчика
клеточная стенка — Синонимы: клеточная оболочка продукт жизнедеятельности протопласта растительной клетки, образующийся за пределами плазмалеммы. Обеспечивает защиту клетки, придает ей определенную форму, участвует в проведении, поглощении и выделении веществ… … Анатомия и морфология растений
клеточная стенка — cell wall, cytoderm клеточная стенка (оболочка). Внешняя структурная оболочка растительной клетки, придающая ей форму и прочность и состоящая в основном из полисахаридов, синтезируемых аппаратом Гольджи ; различают… … Молекулярная биология и генетика. Толковый словарь.
КЛЕТОЧНАЯ СТЕНКА — см. клеточная оболочка … Словарь ботанических терминов
клеточная стенка бактерий — специфическая по хим. составу оболочка, окружающая протопласт и тесно связанная структурно–функциональными взаимоотношениями с цитоплазматической мембраной. Толщина К. с. – 150 нм; составляет 10 5°% сухой массы клеток. У большинства бактерий в… … Словарь микробиологии
Клеточная стенка (оболочка) бактерий — структура бактерий и грибов, располагающаяся между цитоплазматической мембраной и капсулой (если таковая имеется) или ионизированным слоем внешней среды. Защищает бактерии от осмотического шока (10 25 атм и более) и др. факторов, определяет форму … Словарь микробиологии
клеточная стенка (оболочка) — Внешняя структурная оболочка растительной клетки, придающая ей форму и прочность и состоящая в основном из полисахаридов, синтезируемых аппаратом Гольджи; различают первичную (у растущих клеток) и вторичную К.с. (у клеток, достигших… … Справочник технического переводчика
вторичная клеточная стенка — внутренняя часть клеточной стенки, образующаяся после завершения роста клетки; растет путем аппозиции внутрь клетки, тем самым уменьшая ее полость. Содержит значительно меньше воды, чем первичная клеточная стенка. В сухом веществе преобладает… … Анатомия и морфология растений
первичная клеточная стенка — тонкая (0,1–0,5 мкм) стенка делящихся и растущих клеток. Содержит до 90 % воды, в сухом веществе у однодольных растений преобладает гемицеллюлоза, у двудольных – гемицеллюлоза и пектины в равном соотношении; содержание целлюлозы не превышает 30 % … Анатомия и морфология растений