Для чего на электровозах и моторных вагонах используют тяговые двигатели

Тяговый электродвигатель

Тяговый электродвигатель — электрическая машина, преобразующая электрическую энергию в механическую для привода в движение колёсных пар вагонов. Тяговые двигатели используют также для торможения поезда, переводя их в генераторный режим. При этом механическая энергия движущегося поезда преобразуется в электрическую.

Содержание

Общие сведения

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.

Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х — 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями — «Яуза» 81-720.1/721.1 в 1998 году.

Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.

Коллекторные тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена. Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов. Длина тягового двигателя ограничена габаритными размерами тележки. На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления. Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна, пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.

Асинхронные тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741. Их основные параметры:

Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».

Конструкция тяговых двигателей

Устройство тягового двигателя постоянного тока

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюсы

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья — подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюсы

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном — для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса — изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления — форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники — надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей — четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим — в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

Устройство асинхронного двигателя с короткозамкнутым ротором

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.

Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.

Характеристики тяговых двигателей

В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:

Тип двигателяДПМ-151ДК-102А…ГSL-104nUSL-421ДК-104АДК-104Г, ДДК-108АДК-108А1ДК-108ГДК-108ДДК-112АДК-115ГДК-116АДК-117АДК-117ДМДК-120АМ
Тип вагоновАГВ2В3В1ДЕЕЕжИЕж381-717/71481-717.5/714.581-720/721
Год начала производства19351940193019301948194919591959197019731973197519871991
Часовая мощность, кВт1538310070807364686666689072110112-114115
Номинальное напряжение, В750375750375375375375375375375375375375375
Рабочее ослабление поля, %6544,540403528
Часовой ток, А225248220220195210202205210270218330330-340345
Часовая частота вращения, об/мин950 / 9681160130013551530145015101600160016001360148014801500
Длительный ток, А173205185175182178178185230185295290295
Длительная частота вращения, об/мин1075132014551580160017401220
Наибольший ток, А450500440420420440
Масса, кг23401490700615630630625625765760770
Число пар полюсов2222222222222
Число коллекторных пластин185238141175175175175175175210210
ВозбуждениеПосл.Посл.Посл.Посл. с подм.Посл. с подм.Посл.Посл. с подм.Посл.Посл.Посл.
Число витков обмотки ГП3816+163330С+530Ш30С304040322626
Сопротвиление обмотки якоря, Ом0,0660,0410,0680,0860,0780,0920,0920,0920,0660,0340,0285
Сопротивление обмотки возбуждения, Ом0,06150,02690,0640,062+1650,067+?0,0670,1080,0980,0440,0480,0312
Сопротивление добавочных полюсов, Ом0,03380,02150,0280,0350,0340,0370,0490,0490,0220,0150,0103
Воздушный зазр под центром/краем полюса, мм5 / 92,2 / 51,5 / 5,73,25 / 92,92,54 / 9

Конструкция используемых в настоящее время коллекторных тяговых двигателей ДК-117 и ДК-120 регламентируется техническими условиями ТУ 3355-029-05758196-02.

Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте:

Источник

Принципы устройства и работы тягового подвижного состава

Электрический подвижной состав

К электрическому подвижному составу относятся электровозы и электропоезда. В зависимости от рода применяемого тока различают электроподвижной состав постоянного (рис. 12.1) и переменного (рис. 12.2) тока, также двойного питания.

Электрический подвижной состав включает в себя механическую часть, пневматическое и электрическое оборудование.

К механической части относятся кузов и тележки (экипажная часть).

Электрическое оборудование — это тяговые электродвигатели, аппараты управления и устройства защиты, токоприемники, вспомогательные электрические машины, аккумуляторная батарея, а на электровозах и электропоездах переменного тока и двойного питания — также тяговый трансформатор и преобразователи тока (выпрямители). Расположение оборудования на электровозе ВЛ10 приведено на рис. 12.3.

Кузов электровоза служит для размещения в нем кабины машиниста, электрических машин и аппаратов. Каркас кузова выполняют из металла, его наружная обшивка обычно состоит из стальных

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

* Вагоны: М — моторный, П — прицепной, Пг — прицепной головной, Мг — моторный головной.

*** При 12-вагонном исполнении длина вагона равна 21,6 м.

листов, а кабина машиниста имеет также внутреннюю обшивку с тепло- и звукоизоляцией.

У четыре х- и шестиосных электровозов кабины машиниста расположены с обеих сторон кузова, а у двухсекционных — на одном конце каждой секции.

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Рама кузова опирается на тележки через специальные опорные устройства.

Тележка электровоза (рис. 12.4) состоит из рамы, колесных пар с буксами, рессорного подвешивания и тормозного оборудования. К тележкам крепят тяговые электродвигатели. У электровозов с несочлененными тележками тяговые усилия передаются упряжными приборами (автосцепками), расположенными на раме кузова.

Рама тележки представляет собой конструкцию, состоящую из двух продольных балок — боковин и соединяющих их поперечных балок. Рама воспринимает вертикальную нагрузку от кузова и через рессорное подвешивание передает ее на колесные пары. Рама тележки, передающая также тяговые и тормозные усилия, должна обладать высокой прочностью.

Колесные пары воспринимают вес электровоза, на них передается крутящий момент тяговых электродвигателей. Кроме того, на колеса воздействуют удары от неровностей пути. Поэтому качеству изготовления колесных пар и содержанию их в исправном состоянии уделяют особое внимание. Колесную пару формируют из отдельных элементов; оси, двух колесных центров с

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

бандажами (или безбандажных для цельнокатаных колес) и зубчатых колес тяговой передачи (рис. 12.5). Оси колесных пар заканчиваются шейками, на которые опираются буксы с роликовыми подшипниками.

Рессорное подвешивание является промежуточным звеном между рамой тележки и буксами. Оно служит для смягчения толчков и ударов при прохождении колесами неровностей пути и равномерного распределения нагрузки между колесными парами. Основные элементы рессорного подвешивания таковы: листовые рессоры, пружины, балансиры, амортизаторы различной конструкции и связующие элементы. Чтобы повысить эффективность рессорного подвешивания, в него вводят резиновые элементы, гасящие небольшие толчки и колебания.

На современных электровозах применяют, как правило, индивидуальный привод. При этом различают два вида подвески тяговых электродвигателей — опорно-осевую и рамную.

При опорно-осевой подвеске одна сторона остова тягового электродвигателя опирается на ось колесной пары с помощью двух моторно-осевых подшипников, а другая подвешена к поперечной балке рамы тележки с помощью пружинного устройства. Передача тягового усилия осуществляется через зубчатое зацепление.

При рамной подвеске двигатель расположен над осью колесной пары и прикреплен к раме тележки.

Такая подвеска позволяет уменьшить динамические силы, действующие на тяговые двигатели, особенно при прохождении колесной пары через неровности пути, а также облегчает доступ ж двигателям для осмотра. В то же время при рамной подвеске усложняется передача тягового усилия от вала двигателя к колесной паре, так как необходимы специальные шарнирные или упругие элементы, компенсирующие перемещения колесной пары относительно рамы тележки.

В качестве тяговых электродвигателей на электровозах постоянного тока применяют в основном двигатели с последовательным возбуждением. Они рассчитаны на номинальное напряжение 1500 В.

Скорость движения электровоза постоянного тока можно регулировать изменением напряжения, подаваемого на тяговые двигатели, или соотношения тока якоря и тока возбуждения.

Напряжение варьируют включением последовательно с тяговыми электродвигателями резисторов и перегруппировкой тяговых электродвигателей. При перегруппировке двигателей их соединяют друг с другом последовательно, последовательно-параллельно или параллельно.

В последние годы выполнены работы по осуществлению импульсного регулирования напряжения с использованием управляемых полупроводниковых вентилей — тиристоров.

Основными аппаратами управления электровозом являются контроллеры машиниста, устанавливаемые в каждой кабине управления.

Контроллер непосредственно не связан с силовой цепью электровоза. Все переключения в силовой цепи осуществляются приборами, имеющими пневматические или электромагнитные приводы, связанные низковольтными электрическими цепями с контроллером.

Такая система позволяет управлять с одного поста несколькими локомотивами и исключает попадание высокого напряжения на аппараты управления. Включение и выключение вспомогательных машин, получающих питание от контактной сети, производится кнопками и тумблерами, установленными на панели в кабине машиниста.

Устройства защиты от перегрузок и коротких замыканий цепи тяговых электродвигателей представлены быстродействующим выключателем, дифференциальным реле и реле перегрузки.

Токоприемник соединяет силовую цепь электровоза с контактным проводом. Электровозы имеют по два токоприемника, при движении в нормальных условиях работает один из них. В некоторых случаях, например при разгоне с тяжелым составом или при гололеде, поднимают одновременно оба токоприемника.

Мотор-вентилятор служит для воздушного охлаждения пусковых резисторов и тяговых электродвигателей, что способствует более полному использованию их мощности.

Мотор-компрессор питает тормозную систему поезда и пневматические устройства электровоза сжатым воздухом.

Мотор-генератор применяют на электровозах с рекуперативным торможением для питания обмоток возбуждения тяговых электродвигателей при их работе в режиме рекуперации.

Генератор тока управления предназначен для питания цепей управления, наружного и внутреннего освещения и заряда аккумуляторной батареи, являющейся резервным источником питания тех же цепей.

Вспомогательные машины электровоза приводятся в действие от контактной сети.

Трансформаторы выполняют с интенсивным циркуляционным масловоздушным охлаждением.

В качестве выпрямителей обычно применяют полупроводниковые (кремниевые) вентили — диоды (рис. 12.6, а), а в последнее время — также управляемые кремниевые вентили — тиристоры (рис. 12.6, б), которые позволяют отказаться от механических коммутирующих аппаратов.

Скорость электровоза переменного тока регулируют изменением напряжения, подводимого к тяговым электродвигателям, путем подключения их к различным выводам вторичной обмотки трансформатора или выводам автотрансформаторной обмотки. При таком способе регулирования отсутствует необходимость в использовании пусковых реостатов и перегруппировке двигателей. На электровозах переменного тока тяговые электродвигатели все время соединены друг с другом параллельно. Это улучшает тяговые свойства электровоза и упрощает электрические цепи.

В качестве вспомогательных машин на электровозах переменного тока чаще всего применяют трехфазные асинхронные электродвигатели. Трехфазный ток получают из однофазного с помощью преобразователей, называемых расщепителями фаз.

Расположение оборудования в кузове электровоза переменного тока показано на рис. 12.7.

В ряде случаев целесообразно применение электровозов двойного питания, у которых возможно переключение электрического оборудования для работы на участках постоянного и переменного тока. Двойное питание предусмотрено на электровозах ВЛ82 и ВЛ82М.

Для пригородного и междугородного пассажирского сообщения на электрифицированных линиях используют электропоезда, состоящие из моторных и прицепных вагонов. В зависимости от пассажиропотоков поезда формируют из 4, 6, 8, 10 или 12 вагонов.

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

Механическая часть вагона состоит из кузова, тележек, сцепных приборов и тормозного оборудования. Сцепные приборы размещают на раме кузова. На моторных вагонах электропоездов обычно устанавливают по четыре тяговых электродвигателя с рамной подвеской. В отличие от электровозных тяговые электродвигатели моторных вагонов имеют вентилятор, расположенный на валу якоря.

Электрическое оборудование электропоездов в основном аналогично оборудованию электровозов. Чтобы увеличить площадь для перевозки пассажиров, его размещают под кузовом и частично на крыше вагона. Управляют электропоездом с помощью контроллера из кабины машиниста. Принцип управления тяговыми электродвигателями тот же, что и на электровозе, однако в электропоездах предусматривают устройство автоматического пуска, в котором специальное реле ускорения обеспечивает постепенное выключение пусковых резисторов или переключение выводов вторичной обмотки трансформатора одновременно с поддержанием заданного пускового тока.

В 1975 г. Рижским вагоностроительным заводом начат выпуск 14-вагонных электропоездов постоянного тока ЭР200 (рис. 12.8), имеющих конструкционную скорость 200 км/ч. Такие электропоезда, предназначенные для пассажирского сообщения на высокоскоростных железных дорогах, в настоящее время курсируют на линии Санкт-Петербург —Москва.

В последние годы в России проводится разработка нового электроподвижного состава, отвечающего современным требованиям.

С 1994 г. на ряде железных дорог, электрифицированных на постоянном токе, эксплуатируются пригородные поезда производства Демиховского (ЭД2Т) и Торжокского (ЭТ 2 ) вагоностроительных заводов, а с 1996 г. — электропоезда переменного тока ЭД9Т.

Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть фото Для чего на электровозах и моторных вагонах используют тяговые двигатели. Смотреть картинку Для чего на электровозах и моторных вагонах используют тяговые двигатели. Картинка про Для чего на электровозах и моторных вагонах используют тяговые двигатели. Фото Для чего на электровозах и моторных вагонах используют тяговые двигатели

В 1997 г. на Демиховском вагоностроительном заводе начат выпуск электропоездов ЭД 4 и ЭД4М. На Тихвинском заводе Транс-маш построен первый электропоезд Сокол, рассчитанный на скорость до 250 км/ч. В 2003 г. завершено создание электропоезда нового поколения ЭМ 4 Спутник.

Проводятся научно-исследовательские работы по созданию электропоездов нового поколения с применением асинхронных тяговых электродвигателей и импульсным регулированием скоростного движения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *