Для чего нужен балластный резистор
Баластники в сварке: как, зачем и для чего?
Ведь что такое проводник? Это материал с минимальным сопротивлением, чтобы через них проходил электрический ток с такими же минимальными потерями. Это обычная практика. Исключением являются случаи с задачами «наоборот»: когда сопротивление нужно повысить.
Такая нужда возникает при завышенных показателях тока, которые необходимо регулировать. Именно для таких целей и существует сварочный баластник. Он делает сварку проще и быстрее.
Как это работает?
По своей сути это баластный реостат – специальное устройство для формирования повышенного сопротивления для сварочного электричества. Этот реостат отличается своей простотой. Он встроен во многие продвинутые и дорогие модели сварочных аппаратов, также его можно купить отдельно.
Кроме того, баластник можно соорудить самостоятельно без особых проблем. Нужно заметить, что каждый уважающий себя мастер сварки имеет в своих запасниках такое устройство.
По принципу своего действия сварочный баластник является точкой препятствия на пути перемещения электрического тока, это «пункт» высокого сопротивления. С внешней точки зрения он похож на сложную толстую пружину.
Эта пружина всегда снабжена подвижным контактом, который при передвижении вдоль пружины изменяет длину пути, который ток проходит по баластнику.
Особым разнообразием моделей это устройство похвастаться не может.
Некоторые различия есть, они определяются следующими критериями:
На деле выходит следующим образом: без баластного реостата ток имел бы силу в 250 А. Если подключить к этой цепи баластник, электрический поток начнет терять силу и на выходе имел бы всего 10 А.
Конечно, регулятором можно изменить длину пути по спирали, по который проходит поток. Потери в этом случае были бы другими.
Как сделать баластник своими руками?
Первым делом нужно найти подходящую проволоку из металла. Она может быть, к примеру, медная. Дополнительно понадобится цилиндрическая форма, например, труба и амперметр. Нужно продумать, из чего сделать подвижный контакт, это может быть провод.
Прямую проволоку нужно превратить в тугую пружину. Для этого ее наматывают на цилиндрическую форму, стараясь расположить витки максимально близко друг к другу. Конец скрученной проволоки нужно подсоединить к проводу для тока. Также присоединяем подвижный контакт.
Следующий этап очень важный: нужно проверить работу нового реостата с помощь. Амперметра. Дело в том, что домашний самодельный баластник для сварочного аппарата не такой точный, как заводские модели.
Следующий нюанс заключается в том, что наш реостат не снабжен корпусом, поэтому соблюдение правил техники безопасности делается еще более обязательным.
Настройки балластного реостата
Главное в качественном процессе сварки – стабильные показатели работы электрической дуги, вернее – ее вольтамперных характеристик. С этим требованием отлично справляются современные инверторы.
Делаются это за счет преобразования тока в два этапа и переключения самого инвертора. Все остальные сварочные аппараты такими характеристиками похвастаться не могут. Поэтому рядом с ними должен обязательно присутствовать балластный реостат.
Он предназначен для ступенчатого контроля работы дуги и компенсации составляющей тока во время подпитки от трансформатора. Нихромовая проволока в схеме параллельного соединения – основной составляющий элемент. Важно, что каждая секция реостата подключается к сети автономно, с помощью рубильника.
У такого реостата всего две рабочие функции:
Производительность и общая эффективность балластного реостата напрямую зависят от количества витков или секций спирали. Ведь каждая из них является элементом цепи, которая разрывается с помощью рубильника.
Цепь последовательная, а соединение секций – параллельное. Такая комбинация дает отличный результат: периодическое подключение к работе каждого из элементов, чтобы регулировать напряжение в сварочном аппарате.
Подключение реостата к сварочной цепи должны быть последовательным к источнику питания.
Кнопки управления всегда выводятся на внешнюю стенку защитного металлического корпуса. В самых продвинутых реостатных моделях имеются внутренние вентиляторы, охлаждающие элементы устройства во время работы с током высоких значений.
Если вентиляторов нет, нужно обязательно следить за последовательным включением нескольких реостатов.
Популярнее всех на рынке линейка балластных реостатов под аббревиатурой РБ: их всего пять опций для разных значений тока – его диапазона — минимального и максимального значений.
Предлагаем легкую прогулку по самым востребованным моделям, чтобы ознакомиться с их техническими характеристиками подробнее:
РБ-302
Отличный аппарат в роли компаньона к сварочным агрегатам для регулирования силы тока в процессах полуавтоматической или ручной сварки. Работает параллельно со сварочными выпрямителями и генераторами.
Эта версия предназначена для диапазона электропитания в пределах 27 – 30 В с предельным максимумом до 70 А и минимумом при падении в 30 А.
Реостат снабжен системой воздушного охлаждения. У него неплохой показатель ПВ – продолжительность включения в 60%. Это означает, что длительность сварки не должна превышать 10-ти минут. В противном случае ПВ необходимо снизить.
В этом аппарате регулировка сварочного тока представлена шестью ступенями, которые циклически включаются и выключаются.
Структурные элементы выполнены из самых современных материалов: изоляция, к примеру, сделана из керамических профилированных пластинок, а плато сформировано их специальных жаропрочных проволок фехралевой природы.
РБ-302У2
Эта модель является разновидностью материнского реостата для работы в условиях повышенной влажности или жесткого ультрафиолетового излучения. В итоге с ним можно работать на открытом воздухе в неблагоприятных для обычной аппаратуры условиях.
РБ-306
Эта модель посерьезнее: он не перегревается и намного точнее в регулировании сварочного электропитания, чем РБ-302. Реостат снабжен усовершенствованной системой охлаждения: в корпусе больше отверстий жалюзи, поэтому обдув резисторов интенсивный и эффективный.
Все элементы сопротивления расположены в виде модульной системы. Такой расклад делает диагностику и замену элементов намного легче и точнее. Диапазон значений силы тока значительно шире, а регулировать показатели можно с намного большей точностью.
Это специальные Блоки Балластных Реостатов. Они собираются из элементов РБ-306 для резки металлов электродуговым методом. Это отличное решение для контроля сварочного тока от выпрямителя в аппаратах – автоматах.
Правила работы с балластными реостатами
Несмотря на простоту конструкции и применения балластные реостаты требуют выполнения определенных правил эксплуатации:
При перегреве реостатов нужно подключать к дуге несколько реостатов – в последовательном порядке. Ну а если сварочный ток меньше, то сопротивление следует повышать.
В работе с алюминием, к примеру, переменный ток нужно регулировать в очень небольших пределах, всего лишь до 20%. В этом случае происходит неполная компенсация постоянной составляющей тока.
Если вести речь о полной компенсации, то нужно использовать аппараты марок УКДН или УДГУ, которые оснащены батареями конденсаторов.
Что такое балластное сопротивление
При обзоре различных электротехнических устройств, очень часто возникает вопрос: что такое балластное сопротивление?
Балластное сопротивление
Представляет собой специальные нагрузочные устройства, предназначенные для создания определенной электрической нагрузки с целью тестирования генераторов и других устройств бесперебойного питания. Оно совершенно точно имитирует реальную нагрузку, которую планируется применять в рабочих условиях.
Во многих нагрузочных устройствах установлены резистивные элементы, изготовленные из хромированного сплава и обеспечивающие долговременную и надежную работу без затрат времени на охлаждение. Таким образом, с помощью балластного сопротивления возможно на практике произвести проверку системы, не прерывая критические нагрузки.
Балластное сопротивление включает в себя нагрузочные устройства трех типов
Резистивное
С помощью него обеспечивается соответствующая нагрузка на генератор и первичный двигатель. Резистивное устройство поглощает энергию всей системы: устройство забирает энергию от генератора, генератор, в свою очередь берет энергию от первичного двигателя, а двигатель получает энергию сгоревшего топлива. В результате работы забирается и дополнительная энергия: тепло, отводимое системой охлаждения, потери при выхлопе, потери в самом генераторе, а также энергия, которая потребляется вспомогательными элементами. Способно учитывать все стороны работы генератора. Создается преобразованием электроэнергии в тепловую. Тепло отводится при помощи воздушного или водяного охлаждения.
Реактивное
Представляет собой индуктивную нагрузку с использованием железных сердечников. Составляет примерно 75% от такой же резистивной нагрузки. Возможны и другие соотношения, для того, чтобы получить другие значения мощности. При помощи индуктивных нагрузок реально моделируются комплексные, наиболее часто встречающиеся на объектах: освещение, отопление, трансформаторы, двигатели. При этом происходит полное тестирование всей электрической системы, собирается информация о реактивных токах генераторов и регуляторов напряжения.
Емкостное
По своей мощности и назначению очень похоже на реактивное. Его единственное отличие, в обеспечении нагрузки с током, опережающим напряжение. С помощью емкостных нагрузок моделируются, относящиеся к электронным и нелинейным, таким как компьютерные сети, телевизионные коммуникации и т.д.
Реактивное сопротивление конденсатора
Активное и реактивное сопротивление
Расчет реактивного сопротивления
Активное и индуктивное сопротивление кабелей – таблица
Что такое балластный резистор?
Существует несколько различных типов балластных резисторов, в том числе постоянный, переменный и реактивный. В то время как наиболее распространенное использование балластного резистора заключается в регулировании тока к нагрузке с отрицательным сопротивлением, они также могут использоваться в других ситуациях. Фиксированные балластные резисторы обычно используются в устройствах с низким энергопотреблением, таких как светодиоды (LED) и неоновые лампы. Светодиоды являются одним из примеров нагрузки с положительным сопротивлением, которая может выиграть от балластного резистора.
Переменные резисторы работают аналогично лампам накаливания, так как их сопротивление имеет тенденцию к увеличению в ответ на увеличение тока. Некоторые ртутные лампы содержат нить накаливания, которая может действовать как внутренний балласт. Эти типы переменных балластов имеют определенные преимущества перед постоянными резисторами, потому что они могут динамически реагировать на изменения тока. Лампы с более высокой мощностью часто будут использовать реактивный балласт, такой как встроенный индуктор.
Электронные балласты включают использование твердотельных компонентов для повышения эффективности. Использование электронного балласта в элементе, таком как люминесцентная лампа, также может иметь другие преимущества, такие как уменьшение или устранение эффекта мерцания, который может быть вызван изменениями частоты питания. Электронные балласты также используются во многих других продуктах, таких как ЖК-мониторы.
Балластное сопротивление: познаем по порядку
У этого термина существуют и другие значения, см. Балласт.
Балласт — устройство, предназначенное для ограничения тока в электрической цепи. Существует большое количество реализаций балласта, различаясь по сложности реализации. В простейших случаях это могут быть последовательно соединённые с нагрузкой резисторы, например, для ограничения электрического тока через светодиод или неоновую лампу. В случае же более мощной нагрузки они не подходят ввиду больших тепловых потерь при использовании активного сопротивления, в связи с этим применяют реактивное сопротивление конденсаторов и/или катушек индуктивности (дросселей). Управляемый электроникой балласт также может включать в себя микроконтроллер, образуя так называемый «цифровой балласт».
Балластный резистор
Балластный резистор — резистор, включенный в электрическую цепь, поглощающий излишнее напряжение, а также выравнивающий напряжения или токи в отдельных ветвях цепи. Например, при последовательном включении нескольких электронных ламп с различными токами накала параллельно нитям накала, потребляющим меньший ток, включаются резисторы. Ток, протекающей по всей цепи накала, ответвляется в эти резисторы, что приводит к выравниванию токов и обеспечивает необходимое напряжение накала каждой лампы.
Балластные резисторы образуют вместе с терморезисторами ЧЭ измерительную мостовую схему. При отсутствии расхода воздуха подстроечным балластным резистором 2 проводится балансировка мостовой схемы, определяющая температуру разогревания измерительного резистора Rw и уровень начального выходного сигнала преобразователя.
Балластный резистор, установленный параллельно выходу на схеме рис. 5.16, разряжает конденсатор за несколько секунд в условиях отсутствия нагрузки. Это полезно, так как если конденсатор источника питания остается заряженным после того, как источник выключен, то легко можно повредить какие-нибудь схемные элементы, ошибочно считая, что напряжения в схеме нет.
Балластный резистор RQ ограничивает ток в обмотках дросселей при их насыщении.
Балластный резистор Re ограничивает ток от источника при насыщении дросселей.
Балластный резистор Re ограничивает ток в обмотках дросселей при их насыщении.
Балластный резистор Кб ограничивает ток от источника при насыщении дросселей.
Балластные резисторы Rll, R12, R19 на выходе УН задают начальный ток ( примерно 100 мкА) источника второго анода, улучшая его нагрузочную характеристику и увеличивая стабильность размера изображения при изменении яркости изображения. Одновременно эти резисторы обеспечивают быстрый спад высокого напряжения при выключении телевизора, что предотвращает паразитное свечение экрана кинескопа.
Балластный резистор RQ ограничивает ток от источника при насыщении дросселей.
Однако балластный резистор ограничивает ток при насыщении дросселя и нижний предел его ограничен допустимым током в ДН. Из-за больших потерь в балластном резисторе такой стабилизатор применяется редко и только на малые мощности в нагрузке.
Однако балластный резистор ограничивает ток при насыщении дросселя и нижний предел его ограничен допустимым током в ДН. Из-за больших потерь в балластном резисторе такой стабилизатор применяется редко и только на малые мощности в нагрузке.
На балластном резисторе RB, включенном в цепь последовательно соединенных обмоток возбуждения тяговых электродвигателей, выделяется тепло, на образование которого затрачивается до 15 % мощности дизеля.
Страницы: 1 2 3 4 5
Ограничение тока
Балласты используются в случае, если электрическая нагрузка не может эффективно ограничивать используемый электрический ток. Это бывает в случаях, когда цепь или устройство обладает дифференциальным отрицательным сопротивлением по отношению к источнику питания. Если такое устройство будет подключено к источнику напряжения (то есть к источнику электропитания с малым внутренним сопротивлением, например к электросети), то через него будет протекать всё больший ток до тех пор, пока оно или источник не выйдут из строя. Для предотвращения этого используют балласт, обеспечивающий активное или реактивное сопротивление, ограничивающее ток на приемлемом уровне. Одним из примеров устройств с отрицательным сопротивлением являются газоразрядные лампы.
Балластное сопротивление включает в себя нагрузочные устройства трех типов
Резистивное
С помощью него обеспечивается соответствующая нагрузка на генератор и первичный двигатель. Резистивное устройство поглощает энергию всей системы: устройство забирает энергию от генератора, генератор, в свою очередь берет энергию от первичного двигателя, а двигатель получает энергию сгоревшего топлива. В результате работы забирается и дополнительная энергия: тепло, отводимое системой охлаждения, потери при выхлопе, потери в самом генераторе, а также энергия, которая потребляется вспомогательными элементами. Способно учитывать все стороны работы генератора. Создается преобразованием электроэнергии в тепловую. Тепло отводится при помощи воздушного или водяного охлаждения.
Реактивное
Представляет собой индуктивную нагрузку с использованием железных сердечников. Составляет примерно 75% от такой же резистивной нагрузки. Возможны и другие соотношения, для того, чтобы получить другие значения мощности. При помощи индуктивных нагрузок реально моделируются комплексные, наиболее часто встречающиеся на объектах: освещение, отопление, трансформаторы, двигатели. При этом происходит полное тестирование всей электрической системы, собирается информация о реактивных токах генераторов и регуляторов напряжения.
Емкостное
По своей мощности и назначению очень похоже на реактивное. Его единственное отличие, в обеспечении нагрузки с током, опережающим напряжение. С помощью емкостных нагрузок моделируются, относящиеся к электронным и нелинейным, таким как компьютерные сети, телевизионные коммуникации и т.д.
Электрический балласт
Знакомым и широко используемым примером является индуктивный балласт, используемый в люминесцентных лампах для ограничения тока через лампу, который в противном случае поднялся бы до разрушительного уровня из-за отрицательного дифференциального сопротивления вольт-амперной характеристики лампы.
СОДЕРЖАНИЕ
Текущее ограничение [ править ]
Балласты также можно использовать просто для ограничения тока в обычной цепи с положительным сопротивлением. До появления твердотельного зажигания автомобильные системы зажигания обычно включали в себя балластный резистор для регулирования напряжения, подаваемого на систему зажигания.
Последовательные резисторы используются в качестве балластов для управления током через светодиоды.
Резисторы [ править ]
Постоянные резисторы [ править ]
Иногда этот балластный резистор выходил из строя, и классическим признаком этой неисправности было то, что двигатель работал при проворачивании (в то время как резистор был обойден), но останавливался сразу после прекращения запуска (и резистор был повторно подключен в цепи через переключатель зажигания). Современные электронные системы зажигания (используемые с 1980-х или конца 1970-х годов) не требуют балластного резистора, поскольку они достаточно гибкие, чтобы работать при более низком пусковом напряжении или нормальном рабочем напряжении.
В некотором бытовом электронном оборудовании, особенно в телевизорах в эпоху ламп (электронных ламп ), а также в некоторых недорогих проигрывателях, ламповые нагреватели были подключены последовательно. Поскольку падение напряжения на всех последовательно включенных нагревателях обычно было меньше полного напряжения сети, необходимо было предусмотреть балласт, чтобы сбросить избыточное напряжение. Для этой цели часто использовался резистор, поскольку он был дешевым и работал как с переменным током (AC), так и с постоянным током (DC).
Саморегулирующиеся резисторы [ править ]
Это свойство может привести к более точному регулированию тока, чем простой выбор подходящего постоянного резистора. Потери мощности в резистивном балласте также снижаются, поскольку в балласте падает меньшая часть общей мощности по сравнению с тем, что может потребоваться с фиксированным резистором.