Для чего нужен бск
Для чего нужен бск
Электрические соединения конденсаторов осуществляются гибкими многожильными проводами и жесткой ошиновкой. Соединение гибких проводников с выводами конденсаторов осуществляется при помощи специально разработанного плашечного зажима, имеющего специальное покрытие во избежание окисления в результате создания гальванической пары с материалом выводов и проводников. Для обеспечения минимального переходного сопротивления контактные соединения обрабатываются специальной электропроводной смазкой.
Для сигнализации о возможных неисправностях конденсаторы БСК соединяются между собой по схеме «двойная звезда» или по схеме «Н-типа». При возникновении пробоя секции конденсатора в аварийных и предаварийных режимах перегорает внутренний предохранитель этой секции, в результате чего изменяется емкость одного из плеч батареи. После чего в проводнике, соединяющем нейтральные точки звезд (для схемы «двойная звезда») или соединяющем средние точки двух параллельных ветвей каждой фазы, протекает ток небаланса, который контролируется специальным реле небаланса, отделенным от силовой цепи трансформатором тока небаланса. Реле небаланса в свою очередь сигнализирует о наступлении нестандартного состояния в работе БСК или подает сигнал на отключение высоковольтного выключателя питающей линии.
Наименьшее значение тока естественного небаланса достигается путем формирования планов расстановки и подбора конденсаторов индивидуально для каждой батареи.
Комплектация БСК зависит от требований заказчика. В состав БСК входят металлические каркасы для установки конденсаторов покрытые методом горячего или холодного оцинковывания, полимерные или фарфоровые опорные и шинные изоляторы, ошиновка электрических связей, измерительные трансформаторы тока, устройства защиты батареи от тока небаланса, токоограничивающие реакторы и комплект крепежных изделий.
БСК в зависимости от типа поставляются в собранном или разобранном виде, окончательная сборка осуществляется непосредственно на объекте эксплуатации под надзором шеф- инженера ТОО «УККЗ». Многолетний опыт производства БСК позволяет обеспечить максимальную простоту монтажа и сократить время и затраты на монтаж.
Сборка БСК на объекте эксплуатации
Для ограничения пусковых токов в момент коммутации и сокращения возмущений в питающей сети последовательно с БСК устанавливаются демпфирующие реакторы.
БСК с демпфирующими реакторами
Обозначение типономинала | Номинальное напряжение, кВ | Максимальное напряжение, кВ | Номинальная емкость фазы, мкФ | Тип конденсатора |
БСК-110-26УХЛ1 | 110 | 130 | 6,84 | КЭПФ-11,55-430-2УХЛ1 |
БСК-110-52УХЛ1 | 13,9 | КЭПФ-11.55-430-2УХЛ1 | ||
БСК-110-50,4УХЛ1 | 13,26 | КЭПФ-10-555-2УХЛ1 | ||
БСК-110-55,7 УХЛ1 | 15,12 | КЭПФ-11,55-475-2УХЛ1 | ||
БСК-110-40 УХЛ1 | 10,27 | КЭПФ-11.55-430-2УХЛ1 | ||
БСК-35-11,9УХЛ1 | 35 | 40.5 | 30,8 | КЭПФ-11.55-430-2УХЛ1 |
БСК-35-15.8УХЛ1 | 41,06 | КЭПФ-11,55^30-2УХЛ1 | ||
БСК-35-18.2УХЛ1 | 47,75 | КЭПФ-11.55-500-2УХЛ1 | ||
БСК-35-17.3УХЛ1 | 44,88 | КЭПФ-11,55-470-2УХЛ1 | ||
БСК-35-10УХЛ1 | 26,86 | КЭПФ-11,55-375-2УХЛ1 | ||
БСК-10,5-12,5 УЗ | 10,5 | 12,0 | 164,3 | КЭПФ-11.55-430-2УХЛ1 |
БСК-7,26-7,17УХЛ1 | 7,26 | 8,0 | 433,3 | КЭПФ-5-310-2УХЛ1 |
БСК-7,88-8,ЗУХЛ1 | 7,88 | 8,7 | 428,0 | КЭПФ-5-420-2УХЛ1 |
БСК-8,35-3,46УХЛ1 | 8,35 | 9,2 | 158,0 | КЭПФЧ2-300-2УХЛ1 |
БСК-62,35-43,9УХЛ1 | 62,35 | 68,6 | 36,0 | КЭПФ-9-610-2УХЛ1 |
БСК-52-51.8УХЛ1 | 52,00 | 57,2 | 61,2 | КЭПФ-10-640-2УХЛ1 |
БСК-46,8-43,9УХЛ1 | 46,80 | 51,5 | 64,0 | КЭПФ-9-610-2УХЛ1 |
БСК-62,35-73,2 УХЛ1 | 62,35 | 68,6 | 60,0 | КЭПФ-9-610-2УХЛ1 |
БСК-52-103.7УХЛ1 | 52,00 | 57,2 | 122,3 | КЭПФ-10-640-2УХЛ1 |
БСК-46,8-82,ЗУХЛ1 | 46,80 | 51,5 | 119,9 | КЭПФ-9-610-2УХЛ1 |
БСК-12,64-7,2 УХЛ1 | 12,64 | 13,9 | 143,4 | КЭПФ-7,3-300-2УХЛ1 |
БСК-12,64-64,8 УХЛ1 | 12,64 | 13,9 | 1290,0 | КЭПФ-7,3-300-2УХЛ1 |
Структура условного обозначения БСК:
БСК — | БСК — | — батарея статических конденсаторов |
ХХ — | 110 — | — номинальное напряжение, кВ; |
ХХ — | 52 | — номинальная мощность, МВАр; |
Х — | УХЛ | — климатическое исполнение по ГОСТ 15150-69; |
Х — | 1 | — категория размещения по ГОСТ 15150-69. |
Например: БСК-110-52 УХЛ1 –батарея статических конденсаторов, номинальным напряжением 110 кВ, номинальной мощностью – 52 МВАр, климатическое исполнение и категория размещения по ГОСТ 15150-69 – УХЛ1.
ОТЛИЧИТЕЛЬНЫЕ ЧЕРТЫ БСК ТОО «УККЗ»:
Реализованные проекты
Если вы заинтересовались данными установками, то свяжитесь с нами по указанным номерам, для заказа или уточнения возникших вопросов по нашей продукции. Ниже можно скачать каталог продукции, в котором можно найти батареи статических конднесаторов.
Батареи Статических Конденсаторов (БСК)
Источники реактивной мощности это практически все электродвигатели, как большие, так и маленькие (например, вентилятор в компьютерном блоке). Более сложными устройствами-источниками реактивной мощности являются нелинейные элементы — например, полупроводниковые устройства (регуляторы, выпрямители, импульсные блоки питания и др.), которые широко применяются в современных электроустановках потребителей.
В большинстве электроустановок потребителей генерируется значительная индуктивная реактивная мощность. Это относится как к промышленным предприятиям, так и офисным и бытовым центрам нагрузки.
Реактивная мощность не только бесполезно отнимает часть энергии, произведённой генераторами в сети. С ростом индуктивной мощности происходит снижение напряжения на шинах подстанций потребителей электроэнергии. А особенностью современных полупроводниковых регуляторов является то, что со снижением напряжения, они начинают потреблять больший ток. Что в свою очередь приводит к ещё большему росту реактивной мощности. Это может вести к каскадной аварии — так называемой лавины напряжения. Когда снижение напряжения во внешней сети (например, в результате ремонта или аварии) ведёт к взрывному росту реактивной нагрузки у потребителя и к аварийному снижению напряжения в сети.
Поэтому, компенсация реактивной мощности это не только средство повысить эффективность работы оборудования, качество электрической энергии, но и средство обеспечить надёжность электроснабжения.
Поскольку большая часть электроустановок потребителей генерирует индуктивную мощность, её можно компенсировать при помощи специальных конденсаторных установок — батарей статических конденсаторов (БСК). Электрически БСК представляет собой конденсатор, чья мощность примерно равна эквивалентной индуктивной мощности электроустановки потребителя. БСК компенсирует снижение напряжения на шинах и увеличивает коэффициент мощности.
Батарея статических конденсаторов (шунтовая конденсаторная батарея) – электроустановка, состоящая из конденсаторов, вспомогательного электрооборудования и ошиновки, предназначенная для компенсации реактивной мощности и повышения напряжения. БСК устанавливаются в электрических сетях переменного тока напряжением 0,4 – 500 кВ.
Принцип работы и область применения БСК
Несмотря на простоту принципа действия, БСК является технически сложной системой.
Во-первых, потребление и генерация реактивной мощности отличается в разных режимах сети. В некоторых случаях БСК может быть неуправляемой, а в некоторых требуется осуществлять переключения внутри батареи, изменяя её мощность (управляемая БСК).
Во-вторых, в зависимости от режимов работы БСК должна быть рассчитана на разный уровень токов. Поэтому выбор параметров БСК и характеристик её регулирования должен базироваться на исследовании существующей сети и проектной проработке (расчётах).
В третьих, электрическое сопротивление конденсатора уменьшается с ростом частоты тока, поэтому через батарею могут протекать значительные токи высокой частоты. В четвёртых, как было сказано выше, конденсатор накапливает в себе электрический заряд. При возмущениях в сети (коммутациях, коротких замыканиях) конденсатор возвращает эту энергию в сеть, что может приводить к броскам токов и перенапряжениям, которые опасны для электроустановок. Всё это требует включения в состав БСК демпфирующих реакторов, предупреждающих эти явления. Параметры демпфирующих реакторов должны выбираться на основе расчётов переходных режимов сети.
БСК генерируют реактивную мощность, тем самым компенсируя потребление реактивной мощности электродвигателями и активно-индуктивной нагрузкой, а также потери реактивной мощности в индуктивном сопротивлении элементов электрических сетей. В ряде случаев за счёт применения БСК удаётся повысить пропускную способность линий электропередачи и силовых трансформаторов. Снижение полной мощности позволяет пропускать по элементам сети более высокие значения активной мощности без увеличения номинальной мощности трансформаторов и строительства новых линий.
Конструкция БСК
Конструктивно БСК состоит из конденсаторных блоков, установленных в оцинкованные кассеты на опорных изоляторах, соединенных между собой для обеспечения требуемой емкости и наибольшего рабочего напряжения. При высоких значениях тока ударного короткого замыкания на шинах подстанции или при установке на подстанции двух и более БСК в состав конденсаторных батарей также входят токоограничивающие (демпфирующие) реакторы.
Конденсаторы открытого типа, которые сейчас наиболее востребованы, размещают в прочных оцинкованных металлических конструкциях с антикоррозионным покрытием, которые устойчивы к различным атмосферным явлениям.
Комплектация БСК определяется классом напряжения и режимом заземления нейтрали сети, а также техническими требованиями.
Компания «КПМ» имеет собственное производство воздушных демпфирующих реакторов, что позволяет снизить затраты и срок поставки БСК. Специалисты компании «КПМ» готовы осуществить полное сопровождение проекта: технические расчеты, производство, комплектацию, монтаж и наладку оборудования.
Многолетний опыт работы строительства объектов электроэнергетики и наличие собственной производственной базы позволяют собирать БСК с учётом индивидуальных технических требований, пожеланий заказчика и условий эксплуатации.
Батареи статических конденсаторов (БСК)
НАЗНАЧЕНИЕ
Основное назначение БСК это: компенсация реактивной мощности и регулирование уровня напряжения в сетях 6-220 кВ.
БСК – батарея, собранная из единичных конденсаторов, путем их параллельно-последовательного соединения, а также комплект вспомогательного оборудования и металлоконструкций.
Конструктивно БСК — это группы силовых высоковольтных конденсаторов, собранные в стальные несущие блоки. Блоки устанавливаются на ОРУ или в ЗРУ на опорных изоляторах.Блоки соединены между собой токоведущими шинами, а конденсаторы в блоках гибкими связями. Для ограничения тока при включении, БСК оснащаются токоограничивающими реакторами, а для защиты – трансформаторами тока или напряжения.
Возможно изготовление БСК с параметрами лежащими в следующих диапазонах: напряжение 6….220кВ, мощность 1…150 Мвар, как наружной (У1, УХЛ1), так и внутренней (У3) установки. Также возможно изготовление БСК с антирезонансными (фильтровыми) реакторами для сетей с повышенным содержанием токов высших гармоник, а также фильтров высших гармоник.
ПРЕИМУЩЕСТВА БСК ООО «СКЗ «КВАР»
Наше предприятие имеет многолетний опыт разработки, изготовления и поставки батарей статических конденсаторов. За это время реализованы десятки проектов поставки БСК. Основываясь на этом опыте можно уверенно говорить о том, что БСК нашего производства обладают следующими преимуществами:
— быстрая окупаемость;
— простой монтаж;
— удобство обслуживания и эксплуатации;
— высокая надежность,
— аттестация ПАО «Россети».
Для более оптимального выбора, проектирования и ввода в эксплуатацию БСК, специалисты нашего предприятия оказывают следующие услуги:
— помощь в определении параметров БСК и мест их установки;
— помощь при проектировании;
— шеф-монтаж и шеф-ПНР (по отдельному договору);
— проектирование, монтаж и ПНР (по отдельному договору).
Проект РЗА
Сайт о релейной защите и цифровых технологиях в энергетике
Защита и автоматика БСК 6(10) кВ
Батарея статических конденсаторов (БСК) предназначена для компенсации реактивной мощности в сети. Иногда БСК обозначается как устройство компенсации реактивной мощности (УКРМ), что по-сути одно и то же.
Среди защит и автоматики БСК 6(10) кВ есть интересные функции. Давайте их рассмотрим.
Защита от перегрузки
Зачем защищать БСК от перегрузки, если она изготавливается строго определенной мощности и сама выдает ее в сеть?
Здесь имеется ввиду перегрузка токами высших гармоник, которые могут превышать ток промышленной частоты, 50 Гц. Откуда берутся эти токи?
Все просто, БСК — это большая емкость, а распределительная сеть, в которой она устанавливается, имеет активно-индуктивный характер (основная нагрузка сети — это двигатели). БСК и сеть создают колебательный контур, в котором возможен резонанс. Происходит он на определенной частоте, которая может не совпадать с 50 Гц.
Обычная цифровая защита измеряет только токи основной частоты, фильтруя высшие гармоники. Это делается для точности и стабильности работы алгоритмов. В этом случае защита может не устранить существующую перегрузку БСК из-за того, что просто не увидит ее.
Для защиты БСК от перегрузки токами высших гармоник применяется специальный алгоритм, который имеет большую полосу пропускания по частоте (до 12-20 гармоники).
Защита от повышения напряжения (ЗПН)
БСК 6(10) кВ может иметь различную внутреннюю конструкцию. Обычно в ней имеется множество конденсаторов на низкое напряжение, соединенные последовательно. После эти цепочки включаются параллельно для увеличения мощности. Далее группы цепочек собираются в треугольник или звезду для организации трехфазной системы.
Так вот, если самые маленькие конденсаторы при аварии могут оказаться под напряжением более 110% от номинала, то вся БСК оснащается защитой от повышения напряжения с действием на отключение. Защита работает с выдержкой времени.
Считайте, что ЗПН обязательна потому, что на стадии проектирования сложно разобраться с тонкостями конструкции БСК. Легче установить защиту.
Блокировка от включения на неразряженные конденсаторы
Когда вы отключаете большую емкость, то на ней длительное время остается напряжение. Это происходит всегда, независимо от причины отключения (от защит, от автоматики или вручную).
Если вы попробуете включить неразряженный конденсатор в сеть, то напряжение сети (текущая полуволна) может совпасть по знаку с оставшимся напряжением на БСК. При этом произойдет перенапряжение, со значением до 2*Uном. Это плохо.
Для того, чтобы это избежать делают блокировку включения выключателя БСК на время не менее 5 минут, чтобы конденсаторы успели разрядиться через встроенные резисторы.
Интересно, что данную блокировку часто не предусматривают в алгоритмах цифровых терминалов РЗА, что заставляет реализовывать ее в гибкой логике. Это не всегда удобно.
Защита минимального напряжения (ЗМН)
Защита выполняет те же функции блокировки от включения на неразряженные конденсаторы, только при АВР. В этом случае, после исчезновения напряжения, питание на секцию будет подано через СВ, что терминал защит БСК контролировать не может.
Для того, чтобы исключить перенапряжения нужно отключать БСК после исчезновения напряжения на секции.
Автоматика управления БСК
В современных проектах чаще всего применяют регулируемые БСК, которые изменяют мощность в зависимости от режима сети.
Конструктивно это выглядит как сборки конденсаторов определенной мощности, которые подключаются к сети через силовые контакторы. Контакторы управляются специальными регулятором реактивной мощности. Все эти элементы обычно устанавливаются в контейнер, который и является БСК. БСК подключается к подстанции через выключатель, который осуществляет защиту всей установки от КЗ, перегрузки, повышения напряжения и т.д.
Регулятор управляет выдаваемой БСК мощностью путем измерения на подстанции cos(fi) нагрузки или непосредственно реактивной мощности. Для этого он измеряет напряжение на шинах и ток через ввод. Регулятор является цифровым устройством, аналогичным терминалу релейной защиты.
Также стоит отметить, что регулятор обычно дублирует часть защит терминала, например, защиту от повышения напряжения.
Разработчик ООО «НТЦ «Механотроника», www.mtrele.ru
БМРЗ-152-БСК содержит все перечисленные в статье защиты
Батареи статических конденсаторов 6-220 кВ. Эффективное управление реактивной мощностью и уровнем напряжения.
За последние годы во многих регионах России выросло потребление электроэнергии. Большая часть трансформаторов и подстанций работают с предельной загрузкой или перегрузкой, что связано с превышением разрешенной мощности, установленной в технических условиях, а также недостаточной компенсацией реактивной мощности (РМ). До недавнего времени в связи с отсутствием нормативной базы предприятия не спешили компенсировать РМ и перестали участвовать в поддержании коэффициента мощности на шинах нагрузок. В итоге это привело к возрастанию потоков РМ, увеличению потерь, снижению управляемости режимами работы распредсетей и ухудшению качества и надежности электроснабжения потребителей. Сейчас ситуация изменилась.
Согласно приказу РАО ЕЭС № 893 от 11.12.2006 проблеме компенсации реактивной мощности в распредсетях и на стороне потребителей будет уделено особое внимание.
Батареи статических конденсаторов БСК 6—10—35—110—220 кВ — эффективное средство управления потоками реактивной мощности и нормализации уровней напряжения. Компания «Матик-электро» разрабатывает и производит БСК и конденсаторные установки на напряжения от 0,4 до 220 кВ. В ряду производимого оборудования как конденсаторные установки 0,4—0,66 кВ контакторные и тиристорные для предприятий-потребителей, так и регулируемые высоковольтные КРМ-6—10 кВ (регулирование по tg φ и по напряжению), а также БСК 110—220 кВ мощностью до 200 МВАр.
Регулирование напряжения с помощью БСК
Величина напряжения в различных точках энергосистемы изменяется в зависимости от нагрузки и схемы сети. Этот параметр согласно ГОСТ 13109—87 должен находиться в пределах от 5 до 20% (таблица 1).
Номинальное напряжение (линейное) UНОМ, кВ | 6 | 10 | 20 | 35 | 110 | 220 | 330 | 500 | 750 | 1 150 |
---|---|---|---|---|---|---|---|---|---|---|
Наибольшее рабочее напряжение (линейное), кВ | 7,2 | 12 | 24 | 40,5 | 126 | 242 | 363 | 525 | 787 | 1 200 |
Превышение наибольшего рабочего напряжения над номинальным напряжением, % | 20 | 20 | 20 | 15 | 15 | 10 | 10 | 5 | 5 | 5 |
Кроме того, ограничение по наибольшему рабочему напряжению электрооборудования диктуется надежностью работы изоляции электрооборудования, т. к. постоянно повышенное напряжение вызывает ускоренное старение изоляции и выход ее из строя. У большинства потребителей электроэнергии допускаются длительные отклонения напряжения от номинального не более чем на ±5%. Превышение номинального напряжения приводит к сокращению срока службы оборудования, уменьшение снижает производительность и экономичность электроприемников, пропускную способность линий электропередачи, может нарушить устойчивость работы синхронных и асинхронных электродвигателей.
Как видно из таблицы 1, с повышением номинального напряжения допустимые повышения напряжения уменьшаются с 20 до 5%. Это связано с ростом стоимости изоляции в установках более высоких напряжений, минимизацией затрат на изоляцию и выполнением оборудования практически на номинальное напряжение.
Как известно, напряжение у потребителя определяется формулой:
где: UЦП — напряжение центра питания;
РН и QН — активная и реактивная мощность нагрузки потребителя;
RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем.
Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов.
Снижение потерь при передаче электроэнергии с помощью БСК
Доля технологических потерь электроэнергии в распределительных электрических сетях напряжением 6—10 кВ в среднем составляет 8—12% от величины электроэнергии, отпущенной в сеть данного напряжения. Величина потерь электроэнергии определяется параметрами электрической схемы, конструкцией сетей и режимом нагрузки. Как показали расчеты для реальных сетей 10 кВ, потери электроэнергии существенно зависят от величины реактивной мощности, передаваемой потребителям по элементам сети. Например, при изменении коэффициента мощности (tg φ) от 0,5 до 0,8 потери электроэнергии увеличиваются примерно на 20%.
Анализ показаний счетчиков активной и реактивной электроэнергии показал, что значения коэффициентов мощности на шинах 10 кВ источников питания и на подстанциях 35—110/10 кВ изменяются в процессе эксплуатации и достигают значений 0,77—0,85. То есть, потери электроэнергии при передаче реактивной мощности становятся существенными.
Номенклатура БСК и КРМ | Мощность |
---|---|
КРМ 0,4—0,66 кВ | 50—2000 кВАр |
БСК 6—10 кВ | 5—50 МВАр |
БСК 35 кВ | 10—50 МВАр |
БСК 110 кВ | 20—60 МВАр |
БСК 220 кВ | 52—104 МВАр |
Эффективным способом снижения потерь электрической энергии в сетях 10 кВ является установка батарей статических конденсаторов.
Выбор мощности и мест установки компенсирующих устройств проводится по условию минимума приведенных затрат с учетом стоимости компенсирующих устройств и ожидаемой экономии от снижения потерь электрической энергии.
Батареи статических конденсаторов (БСК)
Батареи статических конденсаторов на напряжения 6, 10, 35, 110 × 220 кВ мощностью от 5 до 200 МВАр производятся на базе косинусных однофазных конденсаторов, путем параллельно-последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали.
Внедрение батарей статических конденсаторов позволяет увеличить напряжение на шинах подстанций на 3—4%, снизить потери в сетях 6—110 кВ, скорректировать перетоки энергии и урегулировать напряжение в энергосистеме.
Кроме того, при превалировании тяговой нагрузки, вследствие ее неравномерности и обусловленной тем самым неравномерной загрузки линий, возникает необходимость регулировать показатели качества передаваемой электроэнергии применением компенсирующих устройств (БСК или реакторов, в зависимости от режима).
Конструкция
БСК состоит из групп силовых конденсаторов, собранных в стальные несущие блоки, закрепленные на полимерных изоляторах. БСК выполняется на трех стойках с размещенными на них конденсаторами, токоограничивающими реакторами и трансформаторами тока. Между стойками БСК предусмотрены 6-метровые проезды для автокрана, предназначенные для монтажа блоков конденсаторов.
Трансформаторы тока ТФЗМ (по 1 на фазу) подключены первичной обмоткой в разрыв двух параллельных групп, и в случае разбаланса выдают сигнал на устройства РЗА для отключения головного выключателя. Токоограничивающие реакторы (по 1 на фазу) ограничивают ток при включении БСК. Соединения выполнены гибкой медной шиной, для предотвращения повреждения изоляторов при температурном расширении/сжатии либо при воздействии электродинамических сил.
При заказе БСК указывается мощность батареи, номинальное напряжение и ток КЗ на месте установки, тип и количество конденсаторов в батарее, категория размещения и климатическое исполнение.
Виктор ИТКИН,
технический директор ЗАО «Матик-электро».