Для чего нужен круговорот углерода
Кто на самом деле крутит углеродное колесо
Автор
Редактор
Хорошо известно, что в природе всё взаимосвязано, и вещества, как и энергия, не исчезают бесследно, а лишь переходят из одной формы в другую. Возможно, не все помнят круговороты, или, как их по-научному называют, биогеохимические циклы, азота, углерода или серы — основных элементов, входящих в состав биоорганических веществ, но вот круговорот воды в природе, уверен, воспроизведет каждый. Вода поступает в виде дождя в почву, по грунтовым водам попадает в океан, излишки влаги испаряются с поверхности океана, пар конденсируется в тучи и снова вода возвращается в виде дождя на землю. Вот так же можно проследить круговорот углерода — основы жизни на Земле. В 2015 году, похоже, пришло время переосмыслить круговорот углерода в океане, согласовав его с последними открытиями биологов.
Как вообще выглядит биогеохимический цикл углерода?
Мы все дышим и выводим из организма углекислый газ (СО2), то есть углерод. Многие думают, что кислород, который мы вдыхаем, превращается в СО2, но это не так, иначе это можно было бы назвать атомной реакцией. Углекислый газ берется из окисления глюкозы, но не кислородом. Кислород в этом процессе превращается в воду. Глюкоза тоже содержит углерод — целых шесть атомов; кроме того, это соединение органическое. В нашем организме последовательно проходят три процесса: гликолиз в цитоплазме (бескислородное окисление глюкозы), окисление продуктов гликолиза в цикле Кребса в митохондриях и окислительное фосфорилирование в электрон-транспортной цепи на внутренней мембране митохондрий [1]. В основном в результате последнего процесса образуется АТФ — энергетическая валюта клетки. Как ни странно, но именно в этом цель дыхания, по крайней мере, клеточного. Итак, первый этап круговорота углерода — окисление органических веществ до СО2 всеми живыми организмами.
Читатель, наверное, уже догадался, что второй этап этого цикла должен из СО2 сделать органические вещества. Вот это под силу немногим живым существам. Некоторые бактерии, все водоросли и высшие растения (кроме паразитов) умеют это делать, а процесс называется фотосинтез [2]. Растения поглощают углекислый газ и выделяют кислород. Даже здесь, вопреки бытующему мнению, кислород делается не из углекислого газа, а из воды в результате ее фотолиза — разложения под действием света. СО2 фиксируется в хлоропласте растения на рибулозо-1,5-бис-фосфате, который впоследствии вступает в цепь биохимических превращений, известную как цикл Кальвина. В результате получаются углеводы, в том числе и глюкоза. Итак, в растениях замыкается биогеохимический цикл углерода, из неорганической формы углерод переходит в органическую.
Всех, кто умеет производить органические вещества подобно растениям, называют автотрофами (то есть они могут сами себя прокормить: αυτος — сам, τροφη — пища)*. Остальные живые организмы — гетеротрофы — могут лишь использовать органику, произведенную автотрофами, поедая их. Таким образом, у нас есть производители — преимущественно растения — и потребители — все остальные. В круговороте огромную роль играют и бактерии, разлагающие останки живых организмов, возвращая их углерод в цикл. Потребляемые ими в пищу вещества часто крайне специфичны [3, 4].
* — Вообще, автотрофы бывают разные — не только фототрофы, как растения. Фиксировать CO2, но энергию получать не от света, а за счет окислительно-восстановительных реакций с использованием неорганических веществ, могут хемолитоавтотрофы. Их много среди бактерий и (особенно) архей. Построение собственного организма из неорганического материала — штука сложная и часто требующая нишевых ограничений, потому многие стремятся уворовать гены, обещающие сытую гетеротрофную жизнь. Возможно, именно так эволюционировали крупные группы архей: «Закинули археи эволюционный невод и вытянули. » [5]. А вот договориться о происходящем на самых ранних этапах биологической эволюции ученые не могут. Об источниках энергии и химических веществ для зарождения жизни вообще и о первичности в этом процессе метаболизма, а не репликаторов (всё — по гипотезе Майка Рассела), можно прочитать в статье «К вопросу о происхождении жизни» [6]. — Ред.
Почему интересен цикл углерода в океане?
Во-первых, в океане обитают крайне разнообразные организмы, большинство из которых одноклеточные. В процессе фотосинтеза они производят половину всех органических веществ на Земле [7]. Представляете, деревья и травы из миллионов клеток и незаметные невооруженным глазом микробы вносят равный вклад в цикл углерода?!
Во-вторых, в океане есть ограничения: для фотосинтеза нужен свет, а вода его поглощает. Только на глубине до 100–200 м возможен фотосинтез — вторая половинка нашего углеродного цикла, соединяющая неживое и живое.
В-третьих, морские экосистемы интересны разнообразными типами питания своих обитателей. Вот только рассматриваемые обитатели — одноклеточные. Представляете — быть разными, состоя всего из одной единственной клетки? Александра Ворден и ее коллеги в свежей статье в Science [7] сконцентрировали внимание на протистах, под которыми подразумевали одноклеточных эукариот.
1. Производители органики — автотрофные организмы. Это так называемый фитопланктон (от греч. φυτον — растение и πλανκτον — странствующий). Значительная его часть в океане — цианобактерии (сине-зеленки, как их жаргонно называют). Конечно же, бактерии к эукариотам, тем паче к растениям, не относятся, но их всё равно называют микрофитопланктоном. Правда, отношение к растениям цианобактерии имеют прямое: они их «породили». Причем фотосинтезирующие протисты возникали в эволюции не один раз, как ранее утверждала теория эндосимбиоза.
Сначала предприимчивый древний эукариот «приручил» цианобактерий и выпестовал из них пластиды — произошел первичный эндосимбиоз, в результате которого возникли зеленые и красные водоросли и вообще все растения. А потом родоначальники других эукариотических линий поглощали уже готовые водоросли (вторичный эндосимбиоз). Вот такая матрешка получилась (рис. 1). Проследить количество актов «приручения» можно по числу пластидных мембран. У протистов, возникших в результате вторичного эндосимбиоза, две стандартные пластидные мембраны покрыты дополнительными, а у некоторых между мембранами даже сохранились остатки цитоплазмы и рудиментарное ядро — нуклеоморф — от поглощенной водоросли.
Рисунок 1. Эндосимбиоз в эволюции водорослей. Описание в тексте. Можно представить, что когда-то эукариот пытался съесть цианобактерию, но передумал и решил ее «приручить». Правда ведь, зачем один раз есть бактерию, если можно заставить ее работать на себя и постепенно поглощать то, что она вырабатывает, то есть углеводы? Так и появились хлоропласты. Рисунок из [7].
Рисунок 2. Разнообразие типов питания морских протистов. Симбиоз, жизнь в фикосфере зажиточного соседа, миксотрофия, сапротрофия, паразитизм и хищничество сильно усложняют цикл углерода в океане. Рисунок из [7].
2. Хищники, активно охотящиеся на других одноклеточных меньшего размера, поглощающие их фагоцитозом и переваривающие внутри клетки — пример потребителей органики.
4. Паразиты находят своего хозяина и потихоньку его кушают. На рисунке 2 показан цикл представителя динофлагеллят, зараженного родственником-паразитом Amoebophrya.
5. Симбионты находят своих друзей и помогают друг другу. Так, на шипах диатомовой водоросли живут бактерии, фиксирующие азот (рис. 2).
6. Миксотрофы — вообще необычные протисты: то автотрофы, то гетеротрофы. Они могут сами крутить собственный маленький цикл углерода: создавать органику, сжигать ее для получения АТФ до СО2 и использовать этот же СО2, чтобы снова создавать органику.
7. Также не стоит забывать о бактериях-«приживалках», которым много не надо. Они могут жить рядом с протистом в так называемой фикосфере (phycosphere), питаясь его выделениями.
Интерес и сложность представляет то, что многие из этих протистов не поддаются культивированию в лаборатории, то есть искусственно построить цикл углерода таким, какой он есть в океане (рис. 3), не получится.
Рисунок 3. Модель углеродного цикла, предлагаемая А. Ворден и соавторами. Обратите внимание, как много стрелок, показывающих взаимодействие, как много нюансов. Рисунок из [7].
Тенденция современной науки — интеграция, переход к системной (а в этом случае — к экосистемной) биологии. С биогеохимическим циклом углерода связаны циклы азота и кремния. Кроме того, по циклу углерода можно понять, происходят ли изменения климата. Накопленные данные о разнообразии поведения протистов говорят об их чрезвычайной важности в круговороте углерода. Тем не менее данная статья лишь немного отодвигает ширму, за которой скрывается удивительный мир протистов.
Круговорот элемента в природе
Все соединения в окружающей среде можно разделить на живые (органические) и мертвые (неорганические). К первой группе принадлежат вещества биологического происхождения, например, липиды, протеины. В состав их структуры входит ряд микроэлементов, имеющих важное значение для живого организма. Неорганические соединения образуются в результате химических реакций. К их числу принадлежат газы, соли, металлы и т.д.
Кратко схема круговорота углерода в природе можно описать следующим образом:
Это общее описание принципа оборота углекислого газа (СО2) в природе, приведенного на рисунке.
Однако при ближайшем рассмотрении процесса встречаются некоторые нюансы. Их необходимо изучить, чтобы написать доклад или реферат по теме.
Дыхательный обмен
Углекислый газ присутствует в воздухе, земле и воде. Он образуется вследствие дыхания живых существ, горения, а также гниения. Растения обладают способностью усваивать углерод, входящий в состав СО2. После этого они перерабатывают его в органические соединения. Этот процесс называется фотосинтезом, а протекает он в листьях.
Для его активации необходим солнечный свет. Следует помнить, что скорость и качество поглощения углерода во многом зависит от категории представителей растительного мира планеты. Люди и животные могут выживать только благодаря флоре, занимающей центральное место в схеме круговорота кислорода.
Деятельность микроорганизмов
Простейшие организмы являются началом и концом любой пищевой цепи. Именно благодаря их работе растения и животные получают необходимую для жизни энергию. Погибшие представители флоры и фауны оказываются в структуре почвы и морского дна. После этого в работу включаются микроорганизмы, перерабатывающие их плоть в простые химические соединения. Этот процесс сопровождается выделением CO2.
В результате образуются питательные ресурсы, необходимые для жизни растений и животных, а круговорот элементов начинается с самого начала. При этом некоторым простейшим для расщепления мертвой структуры не требуется кислород. Например, в воде обитают анаэробные бактерии. Они обладают способностью производить сернистое черное железо. Именно это вещество придает болотам и рекам характерный цвет.
Частью углеродного цикла является симбиоз, представляющий собой выгодное взаимодействие двух организмов. Не все животные способны расщеплять сложную растительную клетчатку. Однако в их желудках обитают бактерии, расщепляющие целлюлозу на простые элементы, которые легко усваиваются организмом парнокопытных. Можно привести много примеров такого сотрудничества.
Углерод в воде и на суше
Атмосфера содержит около 30 % всего углерода планеты. Этого количества элемента достаточно для растений, являющихся главным элементом пищевой цепи высших животных. Благодаря фотосинтезу флора получает требуемую для роста энергию из углерода. Травоядные животные употребляют растения, обеспечивая себя пищей. В свою очередь, хищные представители фауны поедают слабейших травоядных.
После смерти плотоядных все органические вещества оказываются в почве, где и перерабатываются микроорганизмами. Жизнедеятельность простейших организмов способствует образованию газов и солей, без которых растения не смогли бы существовать. В результате круговорот веществ замыкается.
Взаимодействие элементов в водной среде является более сложным процессом. Углекислый газ сначала должен раствориться в воде. Только после этого он может быть переработан планктоном. Эти микроорганизмы обитают в верхних слоях воды и находятся в начале пищевой цепи.
Роль людей
Человек уже давно стремится перестроить окружающую среду под свои нужды. К сожалению, это оказывает негативное влияние на природу. Злоупотребление ресурсами приводит к следующим отрицательным последствиям:
Активная деятельность человека привела к появлению глобального потепления. Из-за большого количества парниковых газов в атмосфере, процесс отдачи инфракрасного излучения планетой в космическое пространство замедлился. В результате наблюдается таяние льдов на полюсах, что привело к увеличению уровня Мирового океана и гибели некоторых представителей биосферы.
Значение цикла
За все время существования Земли в ее атмосфере накопилось большое количество углекислого газа. Если исключить оборот углерода в природе, жизнь утратит свой потенциал к развитию. Этот химический элемент можно смело назвать важнейшим в биологической системе планеты благодаря следующим свойствам:
Значение круговорота углерода в природе сложно переоценить. Школьникам необходимо знать, как он происходит и для чего необходим. Только разобравшись в этом вопросе, они смогут подготовить сообщение на заданную тему.
Круговорот углерода в природе
Всего получено оценок: 335.
Всего получено оценок: 335.
Важную роль в жизнедеятельности живых организмов играет круговорот углерода в природе. Углерод входит в состав всех органических веществ и участвует в большинстве химических и физических процессов планеты.
Общее описание
Углерод – шестой элемент периодической таблицы Менделеева с относительной атомной массой 12. Углерод находится в четвертой группе и проявляет постоянную валентность IV. Это активное вещество, вступающее в реакцию с металлами, неметаллами, оксидами, кислотами.
В природе встречается в виде твёрдых веществ в составе горных пород. Элемент имеет несколько аллотропных модификаций – графит, алмаз, сажа, уголь. Большая часть газообразного углерода находится в атмосфере. Соединяясь с кислородом, образует угарный и углекислый газы.
Угарный газ (СО) – ядовитое вещество без цвета, запаха, вкуса. Соединяясь с гемоглобином крови, нарушает клеточное дыхание, что приводит к удушению.
Значение углерода
Углерод входит в состав угольной кислоты (H2CO3), соды (Na2CO3), всех органических соединений. Это один из жизненно важных элементов. Углерод участвует в процессах дыхания, синтеза веществ, энергетического обмена.
В живых организмах элемент содержат:
Благодаря четырём валентным электронам атом углерода способен образовывать четыре связи с атомами различных элементов. Именно этим объясняется распространённость элемента в природе в составе сложных веществ.
Круговорот
Краткая схема круговорота углерода в природе:
Общее количество углерода в природе можно разделить на четыре части:
Углекислый газ (СО2) является конечным продуктом метаболизма. Он образуется в процессе дыхания и полного распада углеводов, жиров, аминокислот. Из клетки с током крови углекислый газ попадает в лёгкие, а оттуда – в атмосферу при внешнем дыхании.
Углекислый газ – продукт не только жизнедеятельности живых организмов. Газ образуется при сжигании органического топлива – нефти, природного газа, древесины, угля. При попадании углекислого газа в атмосферу круговорот элемента начинается заново.
Углерод накапливается в земной коре или на дне океана в виде горных пород или донных отложений. Именно так образуются каменный уголь, нефть, графит, алмаз.
Что мы узнали?
Углерод – жизненно важный элемент, участвующий в круговороте веществ в природе. Углерод в составе углекислого газа поглощают растения в процессе фотосинтеза и преобразуют в органические вещества, которые служат пищей для травоядных животных. Используя других животных в качестве пищи, хищники получают углерод в составе органических веществ. Обратно в природу углерод попадает при дыхании (выделяется в виде углекислого газа) и при гниении органических тканей.
Геохимический цикл углерода: схема, описание процесса и значение
Геохимический цикл углерода (круговорот углерода в природе) – это процесс, посредством которого углерод циркулирует между атмосферой, гидросферой, литосферой и живыми организмами (биосферой).
Углерод: важнейший элемент
Когда вы в последний раз видели периодическую таблицу Менделеева? Возможно, вы помните таблицу, которая висела на стене в вашем школьном классе. В ней содержится вся ключевая информация о каждом элементе, существующем на Земле. Одни из элементов, представленных в таблице, редки и незнакомы, например иттрий и калифорний. Другие являются драгоценными и благородными, например, золото и серебро.
Но в периодической таблице есть один элемент, который незаменим для каждого живого организма. Он также входит в состав воздуха и постоянно циркулирует через нашу Землю, живые организмы и атмосферу. Этот элемент – углерод, и в этой статье мы рассмотрим очень важный процесс, называемый геохимическим циклом углерода.
Особенности круговорота углерода
Углерод – это элемент, который встречается во многих различных формах и местах нашей Земли и атмосферы. Как упоминалось ранее, он в больших количествах содержится в живых организмах. Без этого элемента мы бы даже не существовали. Ключевые молекулы, из которых состоит наш организм, такие как белки, углеводы и ДНК, содержат углерод в качестве основного компонента. Углерод также в изобилии присутствует в нашей атмосфере в форме углекислого газа или CO2. Кроме того, углерод также содержится в Земле в виде ископаемого топлива.
Круговорот углерода – это, по сути, естественный способ повторного использования атомов углерода различными способами и в разных местах. Это процесс, при котором углерод перемещается из атмосферы в живые организмы и Землю, а затем обратно в атмосферу. Но как он работает и что заставляет углерод циркулировать?
Важно понимать, что наша Земля и ее атмосфера в целом являются замкнутой средой. Материя, которая существует сейчас, – это все, что у нас когда-либо будет. Вы когда-нибудь слышали фразу: «Материю невозможно создать или уничтожить»? Возьмем, к примеру, воду. Вода постоянно циркулирует на Земле и атмосфере. Она испаряется из океанов и других водоемов и удерживается в облаках. Затем выпадает в виде дождя или снега. Вода никогда не создается и не уничтожается, она лишь перерабатывается.
Точно так же у нас есть фиксированное количество углерода на Земле и в атмосфере. Мы находимся в нашем собственном пузыре, и, по сути, практически ничто не выходит из нашего мира и не входит в него. Мы не получаем межгалактических поставок необходимых элементов, таких как углерод. Это означает, что весь углерод на Земле и в атмосфере, равен тому количеству, которое у нас всегда было. Итак, когда формируются новые организмы, необходим углерод для образования ключевых молекул, таких как белок и ДНК. Но откуда он берется? Вот тут и начинает работать круговорот углерода в природе.
Фотосинтез и клеточное дыхание
Как упоминалось ранее, углерод находится во многих различных формах и в разных местах. Мы уже знаем, что он находится в нашей атмосфере. Но только некоторые организмы действительно могут использовать атмосферный углерод. Давайте начнем с рассмотрения процесса фотосинтеза, посредством которого углерод в атмосфере в форме CO2 используется растениями.
Растения могут производить органические вещества, используя несколько простых ингредиентов: CO2, воду (или H2O) и солнечную энергию. Это можно представить следующим уравнением:
6CO2 (диоксид углерода) + 6H2O (вода) + солнечный свет → C6H12O6 (углевод) + 6O2 (кислород)
Теперь вы можете видеть, что в процессе фотосинтеза атомы углерода были взяты из углекислого газа и использованы для создания C6H12O6 или глюкозы. И куда пойдет углерод дальше?
Подумайте, кто может есть растения. Например, люди, которые должны добывать себе пищу, чтобы выжить. Итак, когда мы едим растительные продукты, мы получаем из них глюкозу. Когда мы едим мясо, мы также можем получить глюкозу, так как животные питаются растениями.
После переваривания глюкоза из растения расщепляется в наших клетках для выработки энергии. Этот процесс называется клеточным дыханием. По сути, это процесс, противоположный фотосинтезу, и его побочным продуктом является CO2. Организмы избавляются от этих отходов, выдыхая их обратно в атмосферу. Каждый раз, когда вы дышите, вы участвуете в круговороте углерода, потому что выдыхаете CO2. Таким образом, вы можете видеть, как углерод движется по всей планете и влияет на каждый организм.
Углерод в ископаемом топливе и деревьях
Некоторое количество углерода в нашем мире находится в подвешенном состоянии сотни или даже миллионы лет. Углерод задерживается в ископаемом топливе, таком как уголь и нефть. Ископаемое топливо состоит из трансформированных останков живых организмов и содержит много энергии. Мы сжигаем ископаемое топливо для получения энергии, и в этом процессе углерод возвращается в атмосферу в форме CO2.
Еще одно место, где углерод задерживается на долгое время – это деревья. Поскольку деревья живут очень долго, углерод не циркулирует, пока дерево не умрет или не сгорит. Затем CO2 выпускается обратно в атмосферу, и цикл продолжается, поскольку этот углерод снова используется растениями для создания пищи.
Разложение и углерод
Другой важный способ круговорота углерода в живых организмах – это разложение. Например, представьте, что сейчас осень, и листья меняют цвет и опадают на землю. Эти листья содержат углерод в виде глюкозы, образующийся в результате фотосинтеза. Когда листья падают на землю, они со временем разлагаются. Разложение высвобождает атомы углерода обратно в почву. И через процесс дыхания, в конечном итоге, этот углерод будет выпущен обратно в атмосферу в виде CO2.
Подведение итогов
Круговорот углерода в природе – это процесс, при котором углерод перемещается между всеми оболочками Земли и живыми организмами. Растения забирают углекислый газ из воздуха и используют его для синтеза питательных веществ. Затем животные едят растения, и углерод накапливается в их телах или выделяется в виде CO2 при дыхании. Углерод также возвращается в атмосферу при сжигании древесины и ископаемого топлива или разложении мертвых организмов.
Круговорот углерода в природе
Углерод непрерывно циркулирует в биосфере Земли под влиянием химических и прочих процессов.
Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.
Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:
В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов:
Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.
Составной частью этих поисков является установление количества CO2, находящегося в тканях растений (например, в только что посаженном лесу) — ученые называют это стоком углерода. Поскольку правительства разных стран пытаются достичь международного соглашения по ограничению выбросов CO2, вопрос сбалансированного соотношения стоков и выбросов углерода в отдельных государствах стал главным яблоком раздора для промышленных стран. Однако ученые сомневаются, что накопление углекислого газа в атмосфере можно остановить одними лесопосадками.