Для чего нужен квадрант
Квадрант (в астрономии)
Смотреть что такое «Квадрант (в астрономии)» в других словарях:
Квадрант (астрономический инструмент) — У этого термина существуют и другие значения, см. Квадрант. Квадрант Квадрант астрономический инструмент для определения высот светил. Квадрант состоит из пластины с лимбом в четверть окружности для отсчёта углов и планк … Википедия
Квадрант (астрономия) — Квадрант Квадрант астрономический инструмент для определения высот светил. Квадрант состоит из пластины с лимбом в четверть окружности для отсчёта углов и планки (либо телескопа) для фиксации угла, прикреплённой к этой пластине одним концом.… … Википедия
Квадрант — I Квадрант (от лат. quadrans, родительный падеж quadrantis 4 я часть) 1) К. плоскости любая из 4 областей (углов), на которые плоскость делится двумя взаимно перпендикулярными прямыми, принятыми в качестве осей координат. 2) К. круга… … Большая советская энциклопедия
Астрономическая обсерватория Львовского национального университета имени Ивана Франко — Оригинал названия Астрономічна обсерваторія є науково дослідним підрозділом Львівського національного університету імені Івана Франка Тип астрономическая обсерватория Код 067 … Википедия
Астрономическая обсерватория Львовского университета — Астрономическая обсерватория Львовского национального университета имени Ивана Франко Оригинал названия Астрономічна обсерваторія є науково дослідним підрозділом Львівського національного університету імені Івана Франка Тип астрономическая… … Википедия
Астрономия Древней Греции — Астрономия Древней Греции астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает… … Википедия
АРХЕОАСТРОНОМИЯ — Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад.… … Энциклопедия Кольера
Браге, Тихо — У этого термина существуют и другие значения, см. Тихо Браге (значения). В Википедии есть статьи о других людях с такой фамилией, см. Браге. Тихо Браге Tyge Ottesen Brahe … Википедия
Браге Т. — Тихо Браге Tyge Ottesen Brahe Дата рождения: 14 декабря 1546(15461214) Место рождения: Кнудструп, Дания Дата смерти: 24 октября … Википедия
Браге Тихо — Тихо Браге Tyge Ottesen Brahe Дата рождения: 14 декабря 1546(15461214) Место рождения: Кнудструп, Дания Дата смерти: 24 октября … Википедия
Квадрант оптический – как пользоваться, преимущества
Специальные приборы вертикального проектирования – средства для переноса запланированных координат точек с одной горизонтальной высоты на другую, поэтому широко применяются при геодезических работах. Они позволяют точно рассчитать вертикальные оси сооружения.
Например, когда требуется увеличение этажности дома, строится:
Подробно о квадранте оптическом
Производители оборудования для инженерной геодезии и строительства выпускают разнообразные модификации средств измерения. Для расчетов можно использовать модель:
Современный инструмент может быть дополнен различными приспособлениями и дополнительными деталями для повышения функциональности. Есть комбинированные модели, где сочетаются возможности оптики и лазера. Они отличаются:
Одними из лучших в сегменте угломерных инструментов считаются оптические модели, обладающие отличным качеством, надежной конструкцией.
История эволюции угломерных приборов
Человеку издревле приходилось что-то измерять, для чего изобретались различные приспособления. Ученые древнего Вавилона первыми стали использовать термин «градус». Одновременно с градусом они ввели понятия минуты и секунды.
Клавдий Птолемей способствовал сохранению этих единиц для измерения, которые стали основой угломерных приборов.
Древние ученые для расчетов создали транспортир, но это средство измерения не подходило для работ на местности. Первый квадрант для определения параметров наклона поверхностей на местности описал в I веке до нашей эры как «диоптр» Герон Александрийский из Древней Греции. Этот инструмент и дал начало созданию науки геодезии.
С развитием технического прогресса для измерений прикладного характера появились экер, нивелир, теодолит, инклинометр, универсал, автоколлиматор. В астрономии – астролябия, октант, секстант, бэкстаф, для машиностроения — различные угломеры.
Все средства углового измерения позволяют определить наклон поверхности от горизонта по вертикали, расположение сооружений, других объектов относительно друг друга. Однако приборы ориентации, предназначенные для навигации, не подходят для машиностроения.
Рождение достаточно сложных оптических приборов началось в XVI-XVII веках, благодаря трудам ученых Рене Декарта, Пьера Ферма, Исаака Ньютона, Х. Гюйгенса, Галилея Галилео, Иогана Кеплера, других. Они объединили лучшие черты предшествующих инструментов и уникальные возможности оптики. Усовершенствованные средства измерения были значительно точнее, соответствовали требованиям, предъявляемым топографами и навигаторами.
Эффективное устройство для расчетов
Технический прогресс, а также возрастающая сложность задач оказали влияние на эволюцию оптико-механических приборов, в том числе на оптический квадрант – инструмент, где угломер совмещен с уровнем. Такое средство измерения состоит из надежного корпуса, составных элементов, оптики. Его функциональность основана на том, что горизонтальная линия независимо от степени отклонении основания задается при помощи продольного уровня цилиндрической формы. Определение выполняется при помощи расчетной системы прозрачного лимба из стекла. Как правильно пользоваться квадрантом определенной модели, можно узнать из паспорта инструмента.
Современные производители выпускают три вида оптических квадрантов, обладающие разными ценами делений – 2, 10, 60, которые позволяют выполнять измерения с большей точностью, чем устройства древнейших предшественников.
СТЕННОЙ КВАДРАНТ
В числе прототипов современных угломерных инструментов – квадрант. Его неподвижную конструкцию сооружали для астрономических исследований на стенах обсерваторий, как правило, в одной плоскости с меридианом. В средние века таким образом измеряли высоту планет над горизонтом при помощи градуированной дуги.
Такие изделия были громоздкими, но сложность их возведения вознаграждалась точностью результатов. История сохранила такие огромные настенные квадранты, которые использовали в странах Востока известные ученые ал-Бируни, Насир ад-Дина ат-Туси, Улугбека. Позже их заменили меридианными кругами.
КВАДРАНТ МЕХАНИЧЕСКИЙ
Измерения в дооптрической астрономии проводились механическими угломерными инструментами. Конструкции таких моделей основывались на формировании отвесной линии, получаемой при помощи струны, отягощенной грузом, или специального стержня.
Груз крепился на конец струны. Если струна располагалась вертикально, его могли поместить в воду или масло, чтобы повысить точность результатов. Современные геодезисты редко используют механический квадрант, предпочитая вести расчеты при помощи оптических и лазерных моделей.
Квадрант оптический повышает надежность измерений
Базовые элементы конструкции оптических моделей – основание, где закреплена направляющая планка. Внутри корпуса расположен неподвижный лимб из стекла и 1-градусными делениями. Параллельно лимбу вмонтирован диск. Он способен вращаться вокруг своей оси, которая совпадает с лимбовой осью. На нем расположены лупа, отсчетная шкала, уровень цилиндрической формы. Основание квадранта оснащено поперечным уровнем.
Небольшой оптический квадрант показывает уровень отклонения основания по отклонению пузырьков в стеклянном лимбу при помощи встроенного микрометра. Он позволяет определять вертикальное расположение плоскостей с погрешностью до 1 минуты.
Еще одна особенность инструмента в том, что продольный цилиндрический уровень позволяет задавать горизонтальную линию независимо от наклона основания.
Во время проведения расчета необходимо учитывать, что относительность ошибки по расположению точки, которая проектируется с помощью оптических инструментов, составляет 1:30000 – 1:50000 при 150-метровом расстоянии.
Каждый угломерный прибор обладает характерными особенностями. У оптического квадранта ко 30м это магнитное основание, благодаря которому он легко устанавливается на цилиндрические поверхности. Оснащение микроскопа двухкомпонентным объективом позволяет менять его увеличение.
Прибором удобно пользоваться:
Универсальным квадрантом ко 60м широко пользуются в различных отраслях. Его предел погрешности не более ±60, а масса — всего 3,5 кг. Магнитное основание позволяет устанавливать средство измерения на потолочные и наклонные поверхности.
Ко 60м с поверкой – гарантия точных параметров
Правильную работу угломерного инструмента обеспечивает регулярная поверка. В ходе нее выявляются, устраняются погрешности отсчета. Для модели квадранта ко 60м характерны:
Угломер КО 60М отличается от квадранта ко 60 магнитным основанием, что расширяет диапазон его размещения даже на потолке или сферической плоскости. В то же время оба изделия точно измеряют углы наклона, благодаря оснащению лимбами из стекла, отсчетными микроскопами.
Квадрант ко 10 – надежный и удобный
Цена деления квадранта Ко10 составляет 10”, позволяет измерять углы в диапазоне 0-360, по сравнению с моделью КО-1 дает более точные данные.
Он одинаково функционирует при любом свете, но в отличие от более современных моделей только при температурном режиме от + 40 до — 10 градусов и не более 80% влажности. Предел абсолютной погрешности изделия составляет ±10.
Надежный корпус защищает оптику и механические детали. Отечественные модели оснащаются оптическими микрометрами с двусторонним отсчетом, что исключает эксцентриситет лимба.
к 1 – прост, но эффективен
Механический угломер К 1 может измерять углы в вертикальной плоскости от 0 до 90 градусов, благодаря перемещению указателя по зубчатому сектору, где нанесены параметры углов.
В конструкцию прибора входит:
Измерения осуществляются, благодаря шкале, расположенной на зубчатом секторе, а параметры перемещения капсулы – насечек на движке. Весит прибор около 2 кг.
Разность показаний механического средства измерения при определении параметров одного и того же угла наклона плоскости по двум противоположным направлениям не должна составлять более половины деления угломера.
Астрономический инструмент
В линейке угломерных средств особое место занимают модели, применяемые в астрономии. Они с древности используются для расчетов высоты светил и расстояний от одной до другой планеты.
Самый примитивный вариант — плоская доска формой, равной четверти окружности. Рядом с центром круга крепилась передвигающаяся линейка, конец которой направлялся на небесный объект. Чем больше были размеры такого устройства и точнее вертикальная установка, тем более точными получались расчеты. Со временем характерной чертой конструкции таких приборов стала планка под телескоп. Для путешествий астрономы использовали переносные изделия, устанавливаемые на штативах, для постоянных обсерваторий — стенные.
Использование в разных отраслях
Оптические модели квадрантов созданы для измерений:
Высокоточные инструменты позволяют определить:
РЕГУЛИРОВКА
До получения расчетов при помощи оптического квадранта ко 60 необходимо проверить нулевую отметку, перпендикулярность опорных площадок. Для этого инструмент измерения располагают на поверхности и вращают диск так, чтобы пузырьки ампулы продольного уровня находились посередине.
Перевернув прибор на 180 градусов, с помощью наводящего винта добиваются того же результата. При правильной регулировке абсолютные значения обоих измерений будут одинаковыми, но отличаться по знакам.
При расположении средства измерения на высоте, когда не видно или неудобно следить за пузырьками лимба, можно использовать зеркало, отражающее изображение уровня. Если отклонение от нуля превышает ±20”, требуется юстировка, которую надо проводить по следующему порядку:
При несовпадении расчетных делений юстировка повторяется.
Транспортировка и хранение
Производители оборудования перед продажей консервируют все модели, чтобы защитить от коррозии. Инструменты транспортируются, хранятся в ящиках. Для перевозки можно использовать любой транспорт, кроме авиации.
При доставке и хранении квадранта ко 60м необходимо избегать:
Хранить ящики необходимо на складах:
Правила работы — как пользоваться
Угломерные изделия с оптикой используются для определения параметров вертикального расположения плоской поверхности или в форме цилиндра и ее установки под заданным углом к горизонтальной плоскости. Перед началом расчета при помощи квадранта ко 30м средство измерения устанавливается на проверяемую поверхность и регулируется.
При измерении числа градусов параметры фиксируются по рискам лимба. Минуты отсчитываются этой же риской по шкале микроскопа. При этом так же, как и при измерении квадрантом ко 60м, углы с условно отрицательным со знаком «-» измеряются по верхней шкале, а положительные со знаком «+» по нижней.
Преимущества оптических приборов
Благодаря высокоточным инструментам с оптикой легко выполняется расчет угла наклона любого объекта к горизонту. Их главное достоинство — возможность расчета наклона поверхности, установленной под любым углом к горизонту. В числе плюсов:
Существует два типа прибора:
Механический квадрант с уровнем используют для установки и определения угла наклона в вертикальной плоскости (угловой диапазон – 0-90 градусов). Конструктивно инструмент представляет собой рамку, опорные площадки которой взаимноперпендикулярны. Кроме того, конструкция включает направляющую дугу, зубчатый сектор и движок с ампулой. Зубчатый сектор необходим для того, чтобы выставлять направляющую дугу под конкретным углом к опорным площадкам. Дискретность этого сектора 0-25. Движок с ампулой находится на дуге и приводится в движение с помощью маховика. Месторасположение ампулы фиксируют при помощи винта и гайки, которые имеются на движке.
Используя механический квадрант, можно установить заданный угол наклона. Для этого на шкале зубчатого сектора выставляют приблизительное значение необходимого угла (уменьшенное и кратное 0-25). Вращая маховик движка, добиваются совпадения его риски с отметкой шкалы направляющей дуги, соответствующей требуемому значению угла. Далее инструмент размещают таким образом, чтобы его опорные площадки были на контрольной площадке установки. Наклоняя площадку установки, ловят момент, когда ампула будет в среднем положении, что будет означать – угол установлен.
Для измерения угла наклона прибор располагают опорной площадкой на соответствующую площадку установки. Движок ставят ближе к отметке 0-25 (если значение угла от 0 до 7-50) или к нулю (если углы 7-50-15-00). Направляющую дугу поднимают, отжав указатель риски, до тех пор, пока ампула не переместится к зубчатому сектору. Квадрант необходимо устанавливать так, чтобы было совпадение краев опорной площадки с рисками, имеющимися на контрольной площадке установки.
Прежде чем начинать работу с квадрантом, следует провести проверку нулевой установки и перпендикулярности опорных площадок. Проверка нулевой установки: опорную площадку квадранта со значком от 0 до 7-50 устанавливают на контрольную площадку установки, совмещая риски движка и указателями с нулевыми шкалами. Далее переворачивают квадрант на 180 градусов. Если ампула смещается от середины на величину, превышающую половину малого деления, то ее при помощи винта и гайки отводят в направлении середины на половину смещения и повторяют проверку.
Перпендикулярность опорных площадок проверяется следующим образом: по шкалам ставят угол 7-50, а квадрант располагают на установке любой опорной площадкой, и перемещают ампулу к середине. Далее квадрант переустанавливают другой опорной площадкой. Ампула при этом не должна сместиться от середины более чем на два малых деления.
Квадрант имеет достаточно широкую область использования. Так же как и индикаторный нутромер, механический квадрант применяют в строительстве, на заводах, в научно-исследовательских институтах и других сферах народного хозяйства.
Как пользоваться оптическим квадрантом?
Оптические квадранты представляют собой измерительные приборы, при помощи которых можно с высокой точностью определять угол наклона плоскости или поверхности к некоторой эталонной линии. Они компактны, не требуют подключения электрического питания и нуждаются только в периодической поверке показаний в измерительных лабораториях системы государственных метрологических организаций.
Принцип работы, классификация и разновидности
Для угловых измерений используют, кроме оптических, также и механические устройства. Измерения механическими квадрантами производятся при помощи поворачивающегося зубчатого сектора, на лицевой плоскости которого наносится измерительная шкала. Искомый угол наклона совмещают с ближайшим делением шкалы, после чего выполняют отсчёт показания.
При простоте устройства, механические квадранты обладают рядом эксплуатационных ограничений. Основными из них являются:
В отличие от механических квадрантов, в приборах оптического действия используют визуальный принцип совмещения плоскостей – обычный или в виде цилиндра. При этом ориентируются на показания тарированной ампулы, внутри которой находится пузырёк с воздухом. По месторасположению этого пузырька относительно измерительной шкалы делают заключение о значении угла и направлении наклона измеряемой плоскости или поверхности. Особенность применения оптического квадранта – необходимость в его дополнительной фиксации.
Оптические квадранты серии КО производятся отечественной приборостроительной промышленностью. Обычно они имеют производственный ресурс до 6000 часов, и различаются своими эксплуатационными характеристиками.
Основные технические характеристики модели КО-1:
Основные технические характеристики модели КО-10:
Основные технические характеристики модели КО-30м:
Основные технические характеристики модели КО-60м:
Индекс «м» в обозначении оптического квадранта означает, что устройство оснащено магнитным захватом. Для остальных моделей фиксация выполняется вручную.
Число после буквенного обозначения модели означает цену деления шкалы угломера в минутах (за исключением модели КО-1, где она приведена в градусах).
Как пользоваться квадрантом?
Последовательность работы с квадрантом оптического исполнения рассмотрим на примере наиболее совершенной конструкции типа КО-60м.
Оптический квадрант включает в себя:
Основание прибора выполнено из пластинки шлифованной инструментальной стали и снабжено полуцилиндрическим пазом для возможности установки квадранта на цилиндрическую поверхность. Слева и справа от этого паза имеются плоские магнитные захваты. Корпус крепится к основанию при помощи трёх винтов, а внутри его неподвижно размещено отсчётное устройство в виде лимба со шкалой и диск с защитной крышкой, где нанесена основная тарировочная шкала. С противоположной стороны отсчётное устройство защищено сплошной панелью. В защитной крышке предусмотрено технологическое отверстие, предназначенное для производства поверочных операций. При повседневной эксплуатации прибора это отверстие заглушено пластиковой пробкой.
Выше продольного уровня вертикально расположен тубус отсчётного микроскопа, а также измерительное зеркало и сменные измерительные уровни. При помощи зеркала производится визуальный контроль за положением воздушного пузырька продольного уровня. Зеркало имеет возможность вращения вокруг вертикальной оси, установленной в корпусе.
При пользовании оптическим квадрантом типа КО-60м прибор располагают на измеряемой поверхности и считывают по показаниям в окуляре микроскопа деления стеклянного лимба. Перед этим продольный и поперечный уровни последовательно выставляют таким образом, чтобы пузырёк с воздухом располагался примерно посередине измерительной шкалы. Далее, при помощи винта точной настройки положение основания оптического квадранта корректируют.
Примерно аналогичным образом производится эксплуатация и остальных типов оптических квадрантов.
Применение рассмотренной измерительной техники целесообразно в геодезической практике, строительстве, а также в лабораториях машиностроительных предприятий, где ведётся поузловая сборка продукции. Точность отсчётов, выполненных с применением оптических квадрантов, гарантируется лишь после их систематических поверок в сертифицированных лабораториях (адреса таких центров обычно сообщаются производителем в техническом паспорте на изделие).
Естествознание.ру
Квадранты и секстанты
Самые распространенные механические приборы древней астрономии — секстанты и квадранты. Считается, что квадрант изобрел во II в. н. э. знаменитый ученый Клавдий Птолемей. А примерно 1000 лет назад был создан астрономический секстант. Позже всех появился навигационный секстант, изобретенный в 1730 г. английским математиком Дж. Хэдли и американским изобретателем Т. Годфри.
Квадрант
Квадрант — астрономический инструмент для определения высоты звезд над горизонтом. Это прототип, упрощенный вариант секстанта. Ручной квадрант состоит из пластины в четверть окружности (отсюда и название: «квадро» в переводе с латыни — «четыре») со шкалой (1). К одной из сторон этой пластины прикреплены планки (2) либо полая трубка для прицеливания.
Обсерватория Улугбека
В Средние века строили увеличенные модификации квадранта — стенные квадранты. Крупнейший из них находился в обсерватории Улугбека в Самарканде и имел радиус 40 м! Мирзо Улугбек, правитель Самарканда, внук завоевателя Тамерлана, выдающийся математик, астроном и поэт. Его обсерватория являлась одной из важнейших обсерваторий Средневековья. Здесь к 1437 г. был составлен «Гурганский зидж» — каталог с описанием 1018 звезд.
Квадрант «Небесного замка»
На протяжении 20 лет известный датский астроном Тихо Браге жил и работал в своем замке Ураниборге, первой в Европе специализированной обсерватории. Его основным инструментом был стенной квадрант. Он в 20 раз меньше, чем квадрант Улугбека, однако точнее. С помощью этого инструмента Браге создал каталог почти 800 звезд!
Секстант
Секстант (от лат. sextans—«шестой») имеет шкалу размером 1/6 от полного круга, или 60 градусов, прицел и систему линз. В отличие от навигационных секстантов, бывших ручными приборами, более древние астрономические секстанты часто представляли собой массивные приборы. Они проще: отсутствовали трубка для прицеливания и система линз. Прибор состоял из треугольника (3), дугообразной шкалы (4) и подвижного визира (5).
«Звездная» пара астрономов
Мастером астрономического секстанта считают Яна Гевелия (1611—1687), польского астронома. Пользуясь секстантом собственной конструкции, он измерил положения 1564 звезд. Его каталог более точен, чем у Тихо Браге. Супруга Яна Гевелия Элизабет Гевелий (на гравюре — справа) стала первой женщиной-астрономом Европы.
Как работает навигационный секстант?
Через прицел навигационного секстанта (6) необходимо «поймать» линию горизонта. Потом отрегулировать рычаг (7) до тех пор, пока через прицел и систему линз (8) не увидим небесный объект. Низ рычага (9) скользит по дугообразной шкале (10). Число этой шкалы, на котором остановился рычаг, станет использоваться в дальнейшем для вычислений.