Для чего нужен нулевой вектор
Нулевой вектор
Нулевой вектор (нуль-вектор) — вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается или
.
Нулевой вектор определяет тождественное движение пространства, при котором каждая точка пространства переходит в себя.
С нулевым вектором не связывают никакого направления в пространстве. Нулевой вектор принято считать сонаправленным любому вектору. Можно считать, что нулевой вектор одновременно параллелен и перпендикулярен любому вектору пространства (легко выводится из определения).
Все координаты нулевого вектора в любой аффинной системе координат равны нулю.
С точки зрения линейной алгебры, в линейном пространстве должен существовать специальный вектор , обладающий следующими свойствами:
Для любого вещественного числа
Для всякого вектора , найдется такой вектор
, что:
.
См. также
Ссылки
Полезное
Смотреть что такое «Нулевой вектор» в других словарях:
нулевой вектор — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN zero vector … Справочник технического переводчика
нулевой вектор — nulinis vektorius statusas T sritis fizika atitikmenys: angl. null vector; zero vector vok. Nullvektor, m rus. нулевой вектор, m; нуль вектор, m pranc. vecteur nul, m; vecteur zéro, m … Fizikos terminų žodynas
Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор … Википедия
Вектор — Вектор многозначный термин; величина, характеризующаяся размером и направлением. В Викисловаре есть статья «вектор» … Википедия
Вектор (значения) — Вектор: Содержание 1 В биологии 2 В информатике 3 В математике 4 В физике … Википедия
Вектор (геометрия) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия
Вектор (Геометрические представления) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
вектор — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=5044] вектор Упорядоченный набор из некоторого количества независимых действительных чисел (таково одно из многих определений — то, которое принято в экономико математических… … Справочник технического переводчика
Вектор — [vector] упорядоченный набор из некоторого количества независимых действительных чисел (таково одно из многих определений то, которое принято в экономико математических методах). Например, суточный план цеха может быть записан 4 мерным вектором… … Экономико-математический словарь
Нуль-вектор
Нулевой вектор (нуль-вектор) — вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается или
.
С нулевым вектором не связывают никакого направления в пространстве (т.е. его можно считать направленным во все стороны). Нулевой вектор принято считать сонаправленным любому вектору. Считается, что нулевой вектор одновременно параллелен и перпендикулярен любому вектору пространства.
Все координаты нулевого вектора в любой аффинной системе координат равны нулю.
Для любого вектора
Для любого числа c
Нулевой вектор равен сумме любых двух противоположных векторов:
.
См. также
Ссылки
Полезное
Смотреть что такое «Нуль-вектор» в других словарях:
нуль-вектор — нуль вектор, нуль вектора … Орфографический словарь-справочник
нуль-вектор — nulinis vektorius statusas T sritis fizika atitikmenys: angl. null vector; zero vector vok. Nullvektor, m rus. нулевой вектор, m; нуль вектор, m pranc. vecteur nul, m; vecteur zéro, m … Fizikos terminų žodynas
нуль-вектор — (2 м), Р. нуль ве/ктора … Орфографический словарь русского языка
нуль-вектор — а, ч., мат. Вектор, що є тотожним перетворенням простору … Український тлумачний словник
Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор … Википедия
Нуль — Нуль: В Викисловаре есть статья «нуль» Нуль, 0 (число) целое число, разделяющее на числовой прямой положительные и отрицательные числа … Википедия
Вектор-функция — Вектор функция функция, значениями которой являются векторы в векторном пространстве двух, трёх или более измерений. Аргументами функции могут быть: одна скалярная переменная тогда значения вектор функции определяют в некоторую… … Википедия
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
Вектор Киллинга — Поле Киллинга векторное поле скоростей (локальной) однопараметрической группы движений риманова или псевдориманова многообразия. Другими словами, поток, который генерируется векторным полем Киллинга, задает непрерывное однопараметрическое… … Википедия
это результат примитивизации
по идее, ученый обязан сначала изучить физический процесс, и только после этого пытаться его описать и, по возможности, математизировать
но…
ученые категорически настаивают, что типа мол физические процессы не нужно изучать в натуре, что все они чисто плоскостные, безобьемные, и потому достаточно просто нарисовать их на бумажке, и путем умножения\деления разных физических величин тупо вывести законы, которым природа обязана подчиняться
так, Ньютону приписывают типа мол он определял некую силу по разному
1\ F=ma=кг*м/с2
2\ F=Mm/r2=кг2/м2
и выяснял, что 1 кубометр = кг*с2
и вот, после Ньютона, на кубометрах и килограммах с квадратными секундами безграмотно выстроилась вся фундаментальная наука, вплоть до плоскостной гипотезы Энштейна
такая насильная примитивизация привела к появлению массы бредовых сведений, не имеющих отношения к реальности
нулевой вектор из этой серии
полюбуйся на цитату = «Нулевой вектор определяет тождественное движение пространства, при котором каждая точка пространства переходит в себя» https://ru.wikipedia.org/wiki/Нулевой_вектор
каково?
похоже, что такой абракадаброй ученые пытаются дать определение кругу\кольцу\шару
из за того, что древние шаманские знания навязываются как суперпуперсовременные, нынешняя наука застряла на уровне знаний Галилея
зря стараетесь, даже это сильно упрощенное определение Вове недоступно.
А оно сильно упрощенное, оно предполагает, что уже есть скалярное произведение и базис. По уму достаточно ввести линейное пространство.
Знакомимся с вектором
Основы линейной алгебры для тех, кого это миновало в универе.
Вы наверняка слышали много историй о программистах, которые учились в технических вузах, изучали высшую математику и теперь пользуются этими знаниями в программировании. И если кого-то это не коснулось, может быть ощущение, что он пропустил в жизни что-то важное.
Будем это исправлять. Попробуем разобрать некоторые базовые понятия из математики за пределами школьной программы. И заодно покажем, как оно связано с программированием и для каких задач полезно.
⚠️ Математики, помогайте. Мы тут многое упростили, поэтому будем рады увидеть ваши уточнения и замечания в комментариях.
Линейная алгебра
Есть математика: она изучает абстрактные объекты и их взаимосвязи. Благодаря математике мы знаем, что если сложить два объекта с ещё двумя такими же объектами, то получится четыре объекта. И неважно, что это были за объекты: яблоки, козы или ракеты. Математика берёт наш вещественный мир и изучает его более абстрактные свойства.
Внутри математики есть алгебра: если совсем примитивно, то в алгебре мы вместо чисел начинаем подставлять буквы и изучать ещё более абстрактные свойства объектов.
Внутри алгебры есть линейная алгебра — она изучает векторы, векторные пространства и другие абстрактные понятия, которые в целом относятся к некой упорядоченной информации. Например, координаты ракеты в космосе, биржевые котировки, расположение пикселей в изображении — всё это примеры упорядоченной информации, которую можно описывать векторами. И вот их изучает линейная алгебра.
В программировании линейная алгебра нужна в дата-сайенс, где из упорядоченной информации создаются алгоритмы машинного обучения.
Если представить линейную алгебру в виде дома, то вектор — это кирпич, из которого всё состоит. Сегодня разберёмся, что такое вектор и как его понимать.
Что такое вектор
Вы наверняка помните вектор из школьной программы — это такая стрелочка. Она направлена в пространство и измеряется двумя параметрами: длиной и направлением. Пока длина и направление не меняются, вектор может перемещаться в пространстве.
Физическое представление вектора: есть длина, направление и нет начальной точки отсчёта. Такой вектор можно как угодно двигать в пространстве
У аналитиков вектор представляется в виде упорядоченного списка чисел: это может быть любая информация, которую можно измерить и последовательно записать. Для примера возьмём рынок недвижимости, который нужно проанализировать по площади и цене домов — получаем вектор, где первая цифра отвечает за площадь, а вторая — за цену. Аналогично можно сортировать любые данные.
Аналитическое представление вектора: данные можно перевести в числа
Математики обобщают оба подхода и считают вектор одновременно стрелкой и числом — это связанные понятия, перетекающие друг в друга в зависимости от задачи. В одних случаях удобней считать, а в других — показать всё графически. В обоих случаях перед нами вектор.
Математическое представление вектора: данные можно перевести в числа или график
В дата-сайенс используется математическое представление вектора — программист может обработать данные и визуализировать результат. В отличие от физического представления, стрелки векторов в математике привязаны к системе координат Х и У — они не блуждают в пространстве, а исходят из нулевой точки.
Векторная система координат с базовыми осями Х и Y. Место их пересечения — начало координат и корень любого вектора. Засечки на осях — это отрезки одной длины, которые мы будем использовать для определения векторных координат
👉 Получается, вектор – это такой способ записывать, хранить и обрабатывать не одно число, а какое-то организованное множество чисел. Благодаря векторам мы можем представить это множество как единый объект и изучать его взаимодействие с другими объектами.
Например, можно взять много векторов с ценами на недвижимость, как-то их проанализировать, усреднить и обучить на них алгоритм. Без векторов это были бы просто «рассыпанные» данные, а с векторами — порядок.
Как записывать
Вектор можно записать в строку или в столбец. Для строчной записи вектор обозначают одной буквой, ставят над ней черту, открывают круглые скобки и через запятую записывают координаты вектора. Для записи в столбец координаты вектора нужно взять в круглые или квадратные скобки — допустим любой вариант.
Строгий порядок записи делает так, что каждый набор чисел создаёт только один вектор, а каждый вектор ассоциируется только с одним набором чисел. Это значит, что если у нас есть координаты вектора, то мы их не сможем перепутать.
Способы записи вектора
Скаляр
Помимо понятия вектора есть понятие скаляра. Скаляр — это просто одно число. Можно сказать, что скаляр — это вектор, который состоит из одной координаты.
Помните физику? Есть скалярные величины и есть векторные. Скалярные как бы описывают просто состояние, например, температуру. Векторные величины ещё и описывают направление.
Как изображать
Вектор из одного числа (скаляр) отображается в виде точки на числовой прямой.
Графическое представление скаляра. Записывается в круглых скобках
Вектор из двух чисел отображается в виде точки на плоскости осей Х и Y. Числа задают координаты вектора в пространстве — это такая инструкция, по которой нужно перемещаться от хвоста к стрелке вектора. Первое число показывает расстояние, которое нужно пройти вдоль оси Х; второе — расстояние по оси Y. Положительные числа на оси Х обозначают движение вправо; отрицательные — влево. Положительные числа на оси Y — идём вверх; отрицательные — вниз.
Представим вектор с числами −5 и 4. Для поиска нужной точки нам необходимо пройти влево пять шагов по оси Х, а затем подняться на четыре этажа по оси Y.
Графическое представление числового вектора в двух измерениях
Вектор из трёх чисел отображается в виде точки на плоскости осей Х, Y и Z. Ось Z проводится перпендикулярно осям Х и У — это трёхмерное измерение, где вектор с упорядоченным триплетом чисел: первые два числа указывают на движение по осям Х и У, третье — куда нужно двигаться вдоль оси Z. Каждый триплет создаёт уникальный вектор в пространстве, а у каждого вектора есть только один триплет.
Если вектор состоит из четырёх и более чисел, то в теории он строится по похожему принципу: вы берёте координаты, строите N-мерное пространство и находите нужную точку. Это сложно представить и для обучения не понадобится.
Графическое представление числового вектора в трёх измерениях. Для примера мы взяли координаты −5, 2, 4
Помните, что все эти записи и изображения с точки зрения алгебры не имеют отношения к нашему реальному трёхмерному пространству. Вектор — это просто какое-то количество абстрактных чисел, собранных в строгом порядке. Вектору неважно, сколько там чисел и как их изображают люди. Мы же их изображаем просто для наглядности и удобства.
Например, в векторе спокойно может быть 99 координат. Для его изображения нам понадобилось бы 99 измерений, что очень проблематично на бумаге. Но с точки зрения вектора это не проблема: перемножать и складывать векторы из двух координат можно так же, как и векторы из 9999999 координат, принципы те же.
И зачем нам это всё
Вектор — это «кирпичик», из которого строится дата-сайенс и машинное обучение. Например:
Кроме того, векторы используются в компьютерной графике, работе со звуком, инженерном и просто любом вычислительном софте.
И давайте помнить, что вектор — это не какая-то сложная абстрактная штука, а просто сумка, в которой лежат числа в определённом порядке. То, что мы называем это вектором, — просто нюанс терминологии.
Что дальше
В следующий раз разберём операции с векторами. Пока мы готовим материал — рекомендуем почитать интервью с Анастасией Никулиной. Анастасия ведёт ютуб-канал по дата-сайнс и работает сеньором дата-сайентистом в Росбанке.
Векторы в C++: для начинающих
Всем привет! До этого дня мы использовали чистые массивы. Чистые — это значит простые массивы, не имеющие у себя в багаже различных функций. В этом уроке мы пройдем нечистые массивы — векторы.
Быстрый переход по статье:
Что такое вектор (vector)
Вектор — это структура данных, которая уже является моделью динамического массива.
Давайте вспомним о том, что для создания динамического массива (вручную) нам нужно пользоваться конструктором new и вдобавок указателями. Но в случае с векторами всего этого делать не нужно.
Вообще, по стандарту пользоваться динамическим массивом через конструктор new — не есть правильно. Так как в компьютере могут происходить различные утечки памяти.
Как создать вектор (vector) в C++
Кстати, сейчас и в будущем мы будем использовать именно шаблон вектора. Например, очередь или стек, не созданные с помощью массива или вектора, тоже являются шаблонными.
Далее, чтобы объявить вектор, нужно пользоваться конструкцией ниже:
В примере выше мы создали вектор строк.
Кстати, заполнить вектор можно еще при инициализации (другие способы мы пройдем позже — в методах вектора). Делается это также просто, как и в массивах. Вот так:
После имени вектора ставим знак равенства и скобки, в которых через пробел указываем значение элементов.
Такой способ инициализации можно использовать только в C++!
Второй способ обратиться к ячейке
Но в C++ есть еще один способ это сделать благодаря функции — at(). В скобках мы должны указать индекс той ячейки, к которой нужно обратиться.
Вот как она работает на практике:
Давайте запустим эту программу:
Как указать количество ячеек для вектора
Указывать размер вектора можно по-разному. Можно это сделать еще при его инициализации, а можно хоть в самом конце программы. Вот, например, способ указать длину вектора на старте:
Так в круглых скобках () после имени вектора указываем первоначальную длину. А вот второй способ:
Вы можете задать логичный вопрос:»А в чем разница?». Давайте создадим два вектора и по-разному укажем их количество ячеек.
Как видим, в первом случае мы вывели три нуля, а во втором: 17, 0, 0.
Все потому, что при использовании первого способа все ячейки автоматически заполнились нулями.
При объявлении чего-либо (массива, вектора, переменной и т.д) мы выделяем определенное количество ячеек памяти, в которых уже хранится ненужный для ПК мусор. В нашем случае этим мусором являются числа.
Поэтому, когда мы вывели второй вектор, в нем уже находились какие-то рандомные числа — 17, 0, 0. Обычно они намного больше. Можете кстати попробовать создать переменную и вывести ее значение.
Нужно помнить! При использовании второго способа есть некоторый плюс — по времени. Так как для первого способа компилятор тратит время, чтобы заполнить все ячейки нулями.
Как сравнить два вектора
Если в середине программы нам понадобиться сравнить два массива, мы, конечно, используем цикл for и поочередно проверим все элементы.
Вектор снова на шаг впереди! Чтобы нам сравнить два вектора, потребуется применить всего лишь оператор ветвления if.