Для чего нужен разъем
Разъемы мониторов (VGA, DVI, HDMI, Display Port, USB Type-C). Какой кабель и переходник нужен для подключения монитора к ноутбуку или ПК
То ли дело раньше, есть один VGA везде: все просто и понятно 👌. Но со временем (после появления мониторов с высокими разрешениями), его возможностей стало недостаточно, и стали выходить новые интерфейсы.
Вообще, сейчас на мониторах чаще всего можно встретить интерфейсы DVI, Display Port или HDMI. Причем, они все в свою очередь подразделяются еще на несколько видов (если можно так сказать). Еще сложнее обстоит дело, если на мониторе одни интерфейсы, а на ПК совсем другие. Немудрено и запутаться.
В этой статье попробую «разобрать» весь этот клубок, и ответить на типовые и наиболее частые вопросы по этой проблеме.
И так, ближе к делу.
А вы знаете, что подключить дисплей можно без проводов по Wi-Fi (так называемое беспроводное проецирование на компьютер, со звуком).
Разъемы мониторов для подключения к компьютеру
HDMI (представлены разные виды)
Один из самых востребованных и популярных интерфейсов на сегодняшний день. Встречается на подавляющем большинстве ноутбуков и компьютеров (также часто можно встретить на планшетах). Подходит для подключения мониторов, ТВ (и ТВ приставок), проекторов и пр. видео-техники.
Классический HDMI кабель
Display Port
Display Port и Mini Display Port
Новый и достаточно быстро набирающий популярность интерфейс (конкурент HDMI). Позволяет подключать сразу несколько мониторов, поддерживает 4K разрешение, 3D изображение.
Есть два типоразмера: классический и Mini Display Port (на обычных ноутбуках и мониторах встречается первый вариант, см. фото выше 👆).
USB Type-С (Thunderbolt)
Очень и очень интересный интерфейс (активно начал развиваться буквально год назад)!
Кстати! Сразу хочу сделать небольшую ремарку — USB Type-С могут быть «разными»:
Этому интерфейсу уже почти 20 лет, а до сих пор пользуется широкой популярностью (вышел в 1999 г.). В свое время серьезно улучшил качество изображения на экране.
Максимальное разрешение равно 1920 х 1080 пикселям (однако, некоторые дорогие видеокарты могут передавать данные в двухканальном режиме (dual link) и разрешение может достигать 2560 х 1600 пикселей).
* Передача звука возможна, если у вас и видеокарта, и кабель (переходник), и сам монитор поддерживают цифровой стандарт DVI-D.
VGA (D-Sub)
Этот стандарт был разработан уже в далеком 1987 г. Несмотря на это, до сих пор пользуется большой популярностью, используется в основном для простых проекторов, видео-приставок, небольших офисных мониторов (где не требуется высокое разрешение и очень качественное изображение).
Лично мое мнение : многие рано «хоронят» этот интерфейс, ведь благодаря сотням миллионам устройств, которые были выпущены за эти 30 лет, VGA «переживет» некоторые современные.
Популярные вопросы по подключению и выбору кабеля
Вариант 1: на мониторе и компьютере есть один и тот же интерфейс (HDMI или Display Port)
Пожалуй, это наиболее благоприятный вариант. В общем случае, достаточно купить стандартный HDMI кабель (например), подключить устройства с помощью него и включить их. Никакой дополнительной настройки не требуется: на монитор сразу же подается изображение.
Классический HDMI кабель
Важно!
При «горячем» подключение HDMI может сгореть порт! Как этого избежать, и что делать (если не работает монитор/ТВ по HDMI) рассказано в этой инструкции.
Вариант 2: на устройствах разные интерфейсы. Например, на ноутбуке HDMI, на мониторе VGA.
Этот вариант сложнее.
Здесь необходим помимо кабеля, купить специальный переходник (иногда стоимость таких переходников достигает 30% от нового монитора!). Лучше и кабель, и переходник покупать в комплекте (от одного производителя).
Также учтите, что старые ПК/ноутбуки с VGA/DVI разъемами могут просто не «выдать» картинку высокого разрешения, если вы к ним захотите подключить большой монитор/ТВ.
В продаже сейчас достаточно много переходников, которые обеспечивают взаимодействие разных интерфейсов между собой (VGA, Display Port, HDMI, DVI, USB Type-C).
Практически любой переходник можно заказать за «бесценок» в китайском онлайн-магазине
Как к ноутбуку подключить больше одного монитора
Довольно популярный вопрос.
Обычно у большинства ноутбуков есть только один порт HDMI (VGA), и, разумеется, подключить по нему можно только один дисплей. Для подключения второго дисплея — понадобиться спец. адаптер (своего рода аналог внешней видеокарты).
Подключается такой адаптер к обычному USB-порту: на выходе есть VGA и HDMI интерфейсы (см. фото 👇). Ссылку на инструкцию с более подробной настройкой оставляю ниже.
Как подключить два монитора к компьютеру (или ноутбуку) — см. инструкцию
Внешний вид адаптера
К ноутбуку подключено 2 монитора!
А что, если я возьму разные версии разъёма HDMI
Если имеется ввиду форм-фактор — т.е. Micro и классический размер разъемов, то, чтобы их соединить нужен спец. кабель (возможно, переходник).
Если речь идет о том, чтобы видеокарту, поддерживающую стандарт HDMI 1.4 (с 3D), скажем, подключить к монитору с HDMI 1.2 — то устройства будут работать по стандарту HDMI 1.2 (без поддержки 3D).
Важна ли длина кабеля? Какому интерфейсу отдать предпочтение?
Конечно, на длину влияет еще выбранный вами интерфейс. Скажем, интерфейс HDMI позволяет использовать кабель длиной до 10 метров (а с усилителем и до 25-30!). В то время, как тот же VGA — кабель, длиннее 3 м. может существенно «испортить» картинку.
Что насчет качества, то сегодня одну из лучших картинок обеспечивают HDMI и Display Port (разрешение вплоть до 4K, при одновременной передаче аудио-сигнала, и при практически полном отсутствии помех).
Классический USB и USB Type C
Позволяет на «горячую» подключать монитор к ПК, одновременно передается аудио- видео-сигналы. В некоторых случаях, даже дополнительного питания монитору не требуется — хватает питания от USB-порта.
Возможно, вам будет полезна статья о том, как правильно подключить монитор к ноутбуку (инструкция по шагам).
Разъёмы на ноутбуках: что они дают и зачем их так много?
Если взять в руки современный ноутбук, по на его боковых гранях можно обнаружить с полтора десятка различных разъёмов. Полагаем, большинство людей прекрасно знают, для чего именно они предназначены. Если не все, то хотя бы часть разъёмов точно будет опознана.
Но разработка новых стандартов продолжается ежедневно. К примеру, год назад встретить на мобильном компьютере разъёмы eSATA или HDMI было нельзя, а теперь они попадаются всё чаще. Поэтому мы решили сделать материал – чтобы объяснить назначение большинства интерфейсов, служащих для подключения внешних устройств к ноутбуку. Вместе с тем мы вкратце перечислим их возможности и характеристики, а также перспективы.
Начнём мы с самого известного и распространённого интерфейса – USB. Его финальная спецификация была представлена в далёком 1996 году. Главным назначением новой последовательной шины (USB расшифровывается как Universal Serial Bus – «универсальная последовательная шина) было заменить целый сонм интерфейсов одним универсальным.
Разъёмы USB 1.0 стали постепенно появляться на материнских платах, но настоящий бум их распространения случился после выхода USB 1.1 в 1998 году. В обновлённой спецификации были исправлены ошибки и повышена стабильность работы. Следующим шагом стало появление USB 2.0 в 2000 году. Именно этот стандарт на сегодняшний день распространён больше всех.
Шина USB работает за счёт так называемого USB-хоста. Таких в компьютере в зависимости от чипсета и установленных плат расширения может быть как один, так и несколько. К нему можно подключать до 127 устройств. Наращивание портов происходит за счёт подключения USB-хабов. При этом хаб считается отдельным устройством (то есть если вы подключите четырёхпортовый хаб и четыре устройства к нему, то для USB-хоста число подключённых устройств будет равно пяти). Уровень вложенности подключения хабов не может превышать пяти.
Разъемы ноутбуков и их назначение
Для удобства чтения мы поделили информацию о разъемах на пять групп:
Универсальные разъемы
Шина USB (Universal Serial Bus – Универсальная последовательная шина) применяется повсеместно. Такому успеху способствовала и способствует высокая пропускная способность, компактность разъема и его долговечность, возможность горячего подключения, универсальность и масштабируемость.
Технология
Характеристики USB 1.0/1.1 следующие:
В настоящий момент разрабатывается и уже анонсирована новая, третья версия USB, получившая соответствующее название USB 3.0. Скоростные параметры USB 3.0 превышают таковые у USB 2.0 примерно в 10 раз и составляют 4.8-5.0 Гбит/с. Предполагается, что массовое внедрение USB 3.0 начнется в 2010 году.
Разъем USB легко узнать – это прямоугольное отверстие, размером примерно 12х5 мм, с «язычком» внутри.
Пара разъемов Powered USB на ноутбуке
Показанный на фото прямоугольный разъем называется USB type A, он используется на ноутбуках и настольных компьютерах и под него рассчитаны все USB-устройства и кабели.
Разъем на кабеле типа A.
Таким же разъемом оснащены внешние USB-устройства, подключаемые к ноутбуку
Однако на внешних устройствах, соединяемых с ноутбуком при помощи кабеля, разъем типа А не используется; используется либо разъем типа B, либо разновидности mini USB и micro USB.
Разъем типа B на другом конце кабеля
Разъем mini USB на внешнем устройстве
Обычно разъемы type B используются на принтерах, сканерах и внешних накопителях; портом mini USB оснащены коммуникаторы, миниатюрные жесткие диски, некоторые фотокамеры, USB-хабы, картридеры; разновидности micro USB можно встретить на некоторых mp3-плеерах и фотокамерах.
Ноутбуки в большинстве случаев оснащены разъемами USB в количестве от одного до четырех. Лишь изредка и на мощных или профессиональных моделях разъемов может быть больше. Однако малое количество разъемов – это не проблема, потому что преимущество шины USB заключается в масштабируемости: к одному разъему можно подключить несколько устройств. Для этого служат разветвители, чаще именуемые USB-хабами (от английского USB Hub ), которые могут быть как отдельным устройством, так и встроенным в монитор или клавиатуру, либо охлаждающую подставку для ноутбука.
Для подключения устройств с достаточно большим энергопотреблением (таких, например, как внешние жесткие диски) разветвитель может быть оснащен внешним блоком питания от сети 220 В, такой хаб называется активным.
Кроме того, многие компактные и профессиональные модели мобильных компьютеров могут оснащаться док-станциями (покупаются дополнительно), на которых имеются дополнительные порты USB.
Важные сведения
Обозначение порта Powered USB
FireWire
Разновидность последовательной шины, используемой для соединения компьютера и периферийных устройств. Отличие от USB заключается в несколько меньшей функциональности FireWire и совершенно ином протоколе обмена информацией устройств FireWire. Данный тип шины позволяет объединить два компьютера в локальную сеть, что не позволяет сделать USB.
Технология
Стандарт IEEE 1394, известный как FireWire (Apple), i.Link (Sony, JVC), mLAN (Yamaha), Lynx (Texas Instruments), DV (Panasonic), создан в 1995 году, как и USB, однако разработка FireWire началась гораздо раньше USB – в 1986 году. Разработкой занималась компания Apple, ей же принадлежат все патенты.
Преимуществами FireWire являются:
Всего принято 5 спецификаций IEEE 1394 на сегодняшний день.
Шина FireWire в основном используется для подключения внешних накопителей, видеокамер MIniDV/DV (и других мультимедиа-устройств), принтеров, сканеров и создания компьютерной сети.
Основные характеристики и критерии выбора разъемов
Ниже представлена заключительная часть серии небольших обзоров, призванных помочь в выборе пассивных компонентов с использованием ресурсов компании Терраэлектроника. Напомним, что две предыдущие части были посвящены выбору резисторов и конденсаторов.
В данной статье представлены основные типы разъемов широкого применения, рассмотрены их достоинства и особенности, а также типичные области использования. Для облегчения выбора конкретного типа разъема в статье указаны их наименования по каталогам ведущих производителей.
Электрические соединители (разъемы) используются тип для подключения адаптеров питания, аккумуляторов, карт памяти, антенн, для передачи аналоговых аудио- и видео-сигналов и потоков цифровых данных на уровне отдельных плат и электронных систем в целом. В таблице 1 представлены основные типы, характеристики и области применения разъемов широкого применения.
Таблица 1. Основные типы разъемов широкого применения
Тип разъема
Область применения
Основные характеристики
Наименования разъемов по каталогам производителей
Аудиоразъемы
Передача аналоговых сигналов звукового диапазона частот
Выпускаются разъемы диаметром 2,5 мм, 3,5 мм (наиболее распространенный тип) и 6,5 мм
Серия AUB, Бурый Медведь
Разъемы RCA
Передача аналоговых аудио- и видеосигналов
Разъем RCA желтого цвета предназначен для передачи видеосигнала, красного цвета — для правого стереоканала, белого — для левого стереоканала
Серии RP и RPC,
Бурый Медведь
(например, разъемы RP-8-Y и RP-8-R, RPC-1R-R), Серия ACPR от Amphenol и др.
Разъем HDMI
Передача цифровых аудио- и видеосигналов
Включает в себя наиболее распространенный разъем типа A, а также типа C — мини-HDMI и типа D — микро-HDMI
Цилиндрические разъемы
Разъемы питания для отладочных плат, например, Arduino Uno
Обеспечивает питание батарейных устройств от сети посредством сетевых источников питания (адаптеров)
Разъемы JST
Разъемы «Провод-Плата», некоторые из которых используются, в том числе, и для подключения литий-полимерных аккумуляторов к радиоуправляемым моделям
Доступно широкое разнообразие разъемов «провод-плата» от JST с различным количеством контактов, шагом контактов, количеством рядов и другими особенностями
Разъемы USB
USB-A для компьютерных интерфейсов, USB-B для отладочных плат, микро-USB для бытовых устройств
Обеспечивают двусторонний обмен цифровыми данными с периферийным оборудованием и дополнительно зарядку батарей портативных устройств. Используемые в настоящее время разъемы мини-USB постепенно выводятся из обращения
USB-A — серия 1734366 TE, USB-B и микро-USB от различных производителей
Штыревые межплатные соединители
Для соединения базовой платы с платами расширения
Выпускаются в штыревом и гнездовом вариантах. Наиболее распространенный тип разъемов имеет шаг выводов 0,1” (2,54 мм)
Штыревые разъемы — серия 4-1037 TE, гнездовые разъемы — 5-53423 TE
Винтовые клеммные блоки
Для зажимного соединения проводов
Клеммники с различными способами фиксации провода обеспечивает соединение провода с платой. При необходимости провод можно легко отсоединить от клеммы
Держатели микросхем
Для установки микросхем и резисторных сборок в корпусах DIP и микросхем в корпусах PLCC, например, микросхем Flash-памяти
Держатели могут устанавливаться непосредственно на печатную плату, что дает возможность быстрой замены микросхем
Держатели микросхем DIP — серия 1-2199 TE Connectivity
Коаксиальные разъемы байонетного типа
Передача видеосигнала, применение в измерительных приборах и радиооборудовании
Диапазон рабочих частот — до 4 ГГц. В разъемах BNC используется байонетное соединение, в разъемах TNC/N — резьбовое соединение
Серия 5-16345
TE Connectivity
Коаксиальные разъемы SMA
Миниатюрные коаксиальные разъемы
Диапазон рабочих частот — до 18 ГГц. Для соединения ответной части разъема требуется динамометрический ключ
Разъемы для объединительных плат
Обеспечивают параллельное соединение нескольких различных плат на кросс-плате, образуя тем самым единую систему
Разъемы D-Sub
Интерфейс RS-232, передача видеосигнала
Наиболее распространенными являются DB-25 (25 контактов) и DE-9 (9 контактов)
Разъемы FFC/FPC
Применяются в гибких печатных шлейфах и гибких печатных платах
По сравнению с разъемами для жестких печатных плат обеспечивают более компактную конструкцию, однако имеют более высокую стоимость
Модульные разъемы и разъемы Ethernet
Первоначально были разработаны для подключения телефонных кабелей, в настоящее время используются также в интерфейсах сети Ethernet
Наиболее распространенный тип разъема 8P8C
Держатели карт памяти
Применяются для подключения карт памяти к макетным платам, например, Raspberry Pi
Позволяет получить большой объем памяти на макетной плате
В конструкции разъемов разных типов могут присутствовать фиксирующие элементы в виде штырей, некоторым типам разъемов требуется особый режим пайки, существуют также разъемы, представляющие собой гибрид компонентов для поверхностного и штыревого монтажа. Далее перечислены основные критерии выбора, позволяющие разработчику учесть проблемы, которые могут возникнуть на производстве при установке разъемов на печатные платы:
Основные типы разъемов широкого применения
Аудио- и видеоразъемы
Для подключения провода наушников к печатной плате необходимо использовать гнездовой разъем 3,5 мм, например, серии AUB производства компании Бурый Медведь.
Рис. 1. Популярные типы аудиоразъемов
Рис. 3. Кабели HDMI типа A, C и D
Для подключения к кабелям HDMI на печатных платах требуются розетки HDMI, например, Тип A — серия 1747981 TE, тип C — серия 2013978 TE, тип D — серия 46765 Molex.
Низковольтные разъемы питания
Цилиндрические разъемы питания обычно применяются в устройствах бытовой электроники и отладочных платах (например, Arduino Uno). Они могут использоваться также для питания батарейных устройств от сети переменного тока посредством источников питания (адаптеров), например, разъемы серии DJK (рис. 4) от Kls Electronics.
Рис. 4. Гнездовой разъем низковольтного питания
Серии разъемов JST (рисунок 5) отличаются числом выводов и расстоянием между ними. Наиболее распространенными типами являются:
Ввиду того, что разъемы JST выпускаются в различных типовариантах, идентификация конкретного разъема по его обозначению в каталоге может вызвать некоторое трудности, поэтому перед заказом целесообразно проверить шаг и число выводов разъема.
Варианты разъемов JST:
Рис. 5. Разъем JST для установки на плату
Разъемы IEC
Разъемы IEC широко используются для подключения персональных компьютеров и лабораторного оборудования к сети переменного тока.
Панельки для микросхем
Панельки для микросхем с двухрядным расположением выводов, или DIP (рисунок 6) предназначены для установки микросхем, резисторных сборок, светодиодных индикаторов и DIP-переключателей. Штыревые компоненты с двухрядным расположением выводов могут устанавливаться на плату пайкой в отверстия либо в разъемы. Использование панелек обеспечивает возможность быстрой замены компонентов и исключает их повреждение при пайке.
Менее распространенным является вариант разъема с однорядным расположением выводов (SIP).
Рис. 6. Держатель микросхем в корпусе DIP
Рис. 7. Держатель микросхем в корпусе PLCC
Рис. 8. Держатель микросхем в корпусе PGA
Радиочастотные коаксиальные разъемы
Разъем байонетного типа, или BNC (рисунок 9), является одним из наиболее распространенных типов коаксиальных разъемов и применяется в видеотехнике, измерительных приборах и радиооборудовании. Разъемы BNC характеризуются постоянной величиной импеданса, что обеспечивает согласование с волновым сопротивлением кабеля в широком диапазоне частот, в частности, в радиочастотных устройствах. Наиболее распространенный тип разъема BNC предназначен для работы с 50-омными кабелями в диапазоне частот до 4 ГГц. В качестве примера можно привести разъемы серии 5-16345 TE Connectivity.
Рис. 9. Коаксиальный разъем BNC
Разъемы TNC (рисунок 10) имеют конструктивное исполнение, сходное с разъемами BNC, однако соединение в них осуществляется не байонетным, а резьбовым способом, благодаря чему эти разъемы более устойчивы к механическим воздействиям и способны работать на более высоких частотах.
Рис. 10. Коаксиальный разъем TNC
Разъемы N-типа (рисунок 11) представляют собой улучшенный вариант разъемов TNC для среднего уровня мощности сигнала и предназначены для использования в радиочастотных устройствах с диапазоном до 11 ГГц, а в прецизионном исполнении — до 18 ГГц. По своим частотным характеристикам разъемы N-типа сходны с разъемами TNC, но более устойчивы к механическим воздействиям вследствие бо?льших габаритных размеров.
Рис. 11. Коаксиальный разъем N-типа
Субминиатюрные коаксиальные разъемы SMA (рисунок 12) предназначены для работы на частотах до 18 ГГц. Для их соединения обычно требуется использование динамометрического ключа, поэтому, при необходимости частого подключения/ отключения кабелей целесообразно использовать вместо них разъемы BNC. Меньшими габаритами по сравнению с разъемами SMA обладают разъемы SMB и SMC. Разъемы SMB способны работать на частотах до 4 ГГц. Примером коаксиальных субминиатюрных разъемов является серия 10525 TE Connectivity.
Рис. 12. Коаксиальный разъем SMA
Разъемы U.FL (рисунок 13) используются при ограниченных габаритных размерах устройства — высота данного разъема составляет всего 2,5 мм. Разъемы U.FL устанавливаются непосредственно на печатную плату и могут работать на частотах до 6 ГГц, например, серия U.FL-R-SMT производства компании Hirose.
Рис. 13. Коаксиальный разъем U.FL
Разъемы USB
USB (универсальная последовательная шина) представляет собой промышленный стандарт, разработанный в середине 1990-х годов. Впоследствии область применения разъемов USB распространилась на потребительские товары. Большинство USB-кабелей снабжено штыревыми разъемами USB типа A, посредством которых они соединяются с гнездовыми разъемами USB, установленными в персональных компьютерах и другом электроном оборудовании, поддерживающем работу с периферийными устройствами USB. Другой конец USB-кабеля снабжается разъемами USB типа B, мини-USB или микро-USB (рисунок 14), что позволяет с помощью кабеля осуществлять обмен данными между компьютерами и периферийным оборудованием, а также заряжать аккумуляторы портативных устройств. В настоящее время применение разъемов мини-USB в мобильных устройствах неуклонно сокращается в пользу разъемов микро-USB. Варианты разъемов USB: гнездовой разъем типа A — серия 1734366 TE Connectivity series, гнездовой разъем типа B, например, 1734346-4 от TE Connectivity, гнездовой разъем микро-USB — от разных производителей.
Рис. 14. Кабели USB с разъемами типа A, типа B и микро-USB
Штыревые межплатные соединители и винтовые клеммные блоки
Штыревые соединители (рисунок 15) и ответные к ним гнездовые части (рисунок 16) применяются для подключения плат расширения к базовой плате. Также они используются для установки перемычек (джамперов). Наиболее распространенные штыревые соединители имеют шаг выводов 0,1″ (2,54 мм) с однорядным или двухрядным расположением выводов и совместимы по шагу выводов с перфорированными печатными платами. Штыревые соединители используются также в макетных платах, например, в линейке устройств Arduino.
Рис. 15. Штыревая часть межплатного соединителя
Рис. 16. Гнездовая часть межплатного соединителя
Винтовые клеммные блоки (рисунок 17) используются для подключения проводов к плате. Винтовые клеммы обеспечивают прижим проводов к контактам. При выборе клеммных блоков необходимо обращать внимание на возможность достаточно легкого отсоединения проводов от клемм. Винтовые клеммные блоки от разных производителей.
Рис. 17. Винтовой клеммный блок
Разъемы для объединительных плат
Рис. 18. Разъем для объединительных плат
Разъемы D-sub
Рис. 19. Разъем D-sub
Разъемы FFC для гибких печатных шлейфов и FPC для гибких печатных плат
Разъемы для гибких печатных шлейфов (рисунок 20) и гибких печатных плат являются альтернативой разъемам для жестких печатных плат в устройствах с ограниченным внутренним объемом, например, в сотовых телефонах. Вследствие своих конструктивных особенностей они имеют более высокую стоимость и сложнее в использовании по сравнению с разъемами для жестких печатных плат.
Рис. 20. Разъемы FFC для гибких печатных шлейфов
Модульные разъемы и разъемы Ethernet
Рис. 21. Разъем 8P8C
Держатели карт памяти
Рис. 22. Держатель SD-карт
Специализированные разъемы
Помимо перечисленных выше разъемов широкого применения, существует значительное число специализированных разъемов, к которым относятся, в частности:
Каждый из специализированных типов разъемов обеспечивает определенные преимущества в конкретных применениях. Однако в большинстве случаев разработчики, вероятно, смогут ограничиться разъемами общего применения, перечисленными в данной статье.