Для чего нужен скафандр космонавту
Для чего в космосе нужны скафандры
Скафандр — это особый костюм, который изолирует человека от окружающей его среды. Использование такого снаряжения необходимо в таких условиях, в которых человеку опасно находится или его нахождение в такой среде опасно.
Почему опасно находится в открытом космосе
Под «открытым космосом» понимается пространство для космонавта, которое простирается за пределами его корабля. Для человека прогулка в открытом космосе очень опасна по некоторым причинам. Во-первых, большой риск столкновения специалиста с космическим мусором. Любое космическое тело на высоте 300 км от Земли (именно на таком расстоянии от планеты и находятся космические корабли) движется со скоростью 7,7 км/с. Это очень большая величина, поэтому любая частица, движущаяся в космосе способна причинить серьезную травму космонавту. Во-вторых, это резкие перепады температур, к которым не привык человек. В-третьих, это вакуум и необходимость наличия дыхательной смеси для космонавта. Также для специалиста возникает опасность отдалиться от космической станции и потеряться в безграничном пространстве Вселенной.
Обычно ученые не проводят в открытом пространстве очень много времени. Рекордное значение этой величины — 8 часов 56 минут. Именно столько длилась космическая прогулка Сьюзан Хелмс в 2001 году.
Зачем космонавтам скафандр
Космический скафандр состоит из непроницаемого материала, который защищает тело специалиста от вредных воздействий среды. Существует два типа этого снаряжения:
Первый тип является не самым удобным, так как мягкие скафандры раздуваются в космосе. У космонавтов, одетых в такое снаряжение, могут возникнуть трудности с возвращением в корабль. По этим причинам самым распространенным типом скафандров являются жесткие, которые держат форму.
Что будет, если скафандр повредится
Обычно скафандры делаются из очень прочного материала, но иногда целостность ткани может нарушиться. Если снаряжение космонавта повредится, то он может умереть, но если повреждение быстро будет починено, то опасность минует. Это связано с тем, что нарушается герметичность костюма.
Например, подобный случай произошел во время полета корабля «Атлантис». У одного из работников космического судна была порвана перчатка прутом, но герметизация не нарушилась, так как прут закупорил отверстие. Это счастливейшая случайность, так как нарушение целостности ткани было замечено лишь после возвращения специалистов на борт.
Скафандры используются не только для полетов в космос, но и для погружения в воду, а также в авиации.
Зачем космонавту нужен скафандр?
» Доклады для младших классов » Зачем космонавту нужен скафандр?
Во время полета и выхода в открытый космос космонавт вынужден постоянно находиться в специальном защитном костюме — скафандре. Космический костюм представляет собой прочную непроницаемую оболочку. Скафандры людям нужны там, где нормальное существование невозможно или очень затруднено. В скафандре поддерживаются необходимые для человека давление, температура, содержание кислорода в воздухе.
В самом начале эпохи освоения человеком космоса космонавт не снимал скафандр во время всего полета. А это, надо отметить, было крайне неудобно, ведь скафандр весит немало, а также сковывает движения. Теперь, пребывая на борту космических станций, покорители космоса носят удобную одежду вроде майки с шортами или комбинезона. Вместо обуви надевают толстые теплые носки.
Скафандр снабжает человека воздухом, а также защищает от космических излучений. Он убережет космонавта в случае повреждения кабины во время полета, а также необходим в открытом космосе и для выхода на поверхность других планет и спутников.
Современные скафандры компьютеризированы и даже оснащены дисплеем, показывающим, сколько времени осталось для работы в открытом космосе. На дисплей выводится другая важная для космонавта информация.
Как устроен космический скафандр: почему он стоит как личный самолёт
Скафандр — это специализированная одежда, предназначенная для выхода в космос, является одной из самых дорогих вещей в мире. Американские скафандры, которые разрабатываются для участников программы исследования космоса от NASA, стоят от 9 до 12 миллионов долларов. Это огромные цифры, но из-за чего они такие? Для сравнения, за плюс-минус 10 миллионов долларов можно купить личный самолет, роскошную недвижимость или несколько компаний, чтобы преумножить свой капитал, а тут 9-12 миллионов стоит незаурядный костюм для выхода в космос. Неужели производство одного скафандра может стоить как самолет? Давайте разберемся.
Лицевой частью скафандра является шлем. Наверняка у многих, если попросить их представить скафандр, в первую очередь на ум придет огромный, идеально зеркальный шлем. На самом деле основной иллюминатор шлема не имеет отражающего эффекта, его имеет специальный светофильтр, который надевается космонавтом, если тому необходимо защититься от лучей Солнца.
Основной иллюминатор и светофильтр делаются из специального ударопрочного материала, который не удастся разбить, даже если ударить по нему молотком. Материал просто погнется, но не разлетится на тысячи маленьких острых кусочков, как это могло бы произойти с обычным стеклом. Светофильтр, вдобавок к этому, покрывается слоем настоящего золота. Благодаря ему, до космонавта поступает всего около 5 процентов света. В условиях Космоса, где нет никакой атмосферы, это защищает от возникновения ожогов на лице. Раньше вместо золота использовали серебро, но, как оказалось, оно имеет довольно плохие протективные свойства.
Комбинезон-радиатор
Наверняка многие видели на космонавтах такие забавные, похожие на кольчугу, синие жилеты, которые надеваются под скафандр. Оказывается, это не просто своеобразный тканевый комбинезон, а полноценный радиатор. Между слоями синей ткани проведены сотни небольших трубок, через которые постоянно циркулирует вода.
Перед тем как зайти в скафандр, специальные входная и выходная трубки подключаются к системе жизнеобеспечения и после при помощи встроенного компьютера космонавт регулирует комфортную для него температуру воды. Это позволяет создавать внутри герметизированного костюма своеобразный микроклимат. С учетом довольно серьезной термозащиты тепло никогда не покинет пределов скафандра.
Из чего сшит скафандр?
Раз уж я затронул термозащиту скафандра, давайте поговорим о том, из каких материалов состоит каждый из его слоев обшивки.
Наружный слой выполнен из фенилона, благодаря которому костюм становится неуязвим к механическим повреждениям, огню, а также радиации. Следом идут целых 10 слоев термоизоляционного материала, чтобы защищать космонавта от экстремальных температур (от –150 до +150 градусов по Цельсию).
Под термоизоляционным слоем находится радиоткань. Что такое радиоткань? Это специальный материал, который обеспечивает прием и передачу данных для связи с МКС. Им прошит весь скафандр, поэтому качество связи выходит довольно надежным. После радиоткани находится силовая оболочка — слой, поддерживающий форму отдельных мягких частей скафандра. В случае если при изменении давления он будет надуваться. И, наконец, герметичная оболочка — обеспечивающая полную закрытость скафандра, замыкает весь этот «бутерброд» под силовой оболочкой.
Бортовой компьютер
Теперь давайте немного поговорим про бортовой компьютер скафандра.
Наш отечественный скафандр «Орлан МК» является самой первой моделью со встроенным компьютером в российской истории космонавтики. Располагается он рядом с блоком радиотелеметрической температуры. И не случайно. Данный блок отвечает за сбор всей информации о скафандре, и такое решение позволяет наиболее надежно и быстро передавать информацию на дисплей компьютера. Компьютер сам совсем небольшой и максимум, что он позволяет делать, — это смотреть информацию о состоянии скафандра и показания давления. Кроме дисплея у компьютера имеются несколько тумблеров. С их помощью можно переключать работу некоторых блоков жизнеобеспечения в ручной или автоматический режим.
Дубль два
Как и в самолете, большинство систем скафандра продублированы. Рядом со шлемом, расположены несколько светодиодов, которые могут сигнализировать в случае поломки. В отсеке жизнеобеспечения также можно найти по два баллона с кислородом, водой.
Инженерами была продублирована, внимание, даже система герметизации. То есть, если вдруг случится разгерметизация скафандра из-за каких-то внешних факторов, то система автоматически переведет герметизацию костюма по внешнему желобу.
Мелочь, а приятно
За внушительным слоем внешней защиты скрывается еще более сложная, но элегантно скомпонованная инженерами техническая система. Разработчики позаботились не только о безопасности, но и об удобствах космических исследователей. Внутри скафандра можно обнаружить чесалку для носа, систему продувки ушей (в случае изменения давления) и специальный отсек для герметичной емкости с жидкостью, чтобы пить.
Теперь бы я хотел поговорить с вами о истории создания скафандров в СССР. Вот так плавно мы переходим ко второй главе.
История Советских скафандров
Рассказ об этом я думаю стоит с того, в какой стране впервые был разработан скафандр. Самый первый скафандр (СК-1) был разработан в СССР. Для меня это, безусловно, очередной повод для гордости за мою Родину.
СК-1 не был предназначен для работы в открытом космосе. Основная задача, которая была на него возложена, — это поддержание жизнедеятельности человека в течение 5 часов, если вдруг в кабине космического корабля неожиданно произойдет разгерметизация. Плюс, при возвращении на Землю человек, находящийся в таком костюме, мог рассчитывать на то, что до приезда помощи он сможет спокойно находиться в любой среде в течение 12 часов. Самым первым космонавтом, который осуществил выход на орбиту в скафандре СК-1, стал Юрий Алексеевич Гагарин — 12 апреля 1961-го года. В дальнейшем СК-1 использовался во всех полетах космических аппаратов «Восток».
Несмотря на то что эта разработка является довольно старой, скафандр уже имел несколько автоматизированных систем. Так, например, в шлеме был установлен специальный механический датчик, который при изменении давления перекрывал забрало, обеспечивая тем самым полную герметичность костюма. Если даже сегодня мы с трудом можем утверждать, что хорошо знаем поведение организма человека в космосе, то в те времена учеными этот аспект был и вовсе не изучен. Поэтому инженеры старались изо всех сил любыми возможностями создать условия, при которых пионеры исследований космоса будут живы.
Спустя четыре года в 1964-м, после множества сложных этапов разработки и тестирований советскими учеными была представлена абсолютно новая модель скафандр, известная ныне как «Беркут». Эта модель подлежала выходу в открытый космос и была еще более устойчива к внешней разгерметизации. Самыми первыми людьми в истории, осуществившими выход в открытый космос, которые ко всему прочему еще были одеты в эти скафандры стали Павел Беляев и Алексей Леонов.
«Беркут» имел ряд недостатков, которые ученым не удалось выявить во время тестирования. Оказывается, система поддавалась изменению давления и в конечном итоге Алексею Леонову было затруднительно вернуться на борт космического корабля, потому что скафандр увеличился в размерах.
Следующей моделью скафандра, которую выпустило советское научно-производственное предприятие «Звезда» в 1967 году стал «Ястреб». Самыми первыми космонавтами, которые осуществили переход между двумя пилотируемыми космическими кораблями «Союз–4» и «Союз–5» стали Евгений Хрунов и Алексей Елисеев. «Ястреб» конструктивно мало чем отличался от «Беркута», однако, в нем были исправлены все недочеты, которые были присущи прошлой модели скафандра. Также в «Ястребе» был реализован светофильтр, который защищал космонавтов от вредного воздействия солнечных лучей на зрение.
В 1969 году закончились работы над легендарным скафандром «Кречет» — предназначенного для выхода на Луну. На этот раз ученым пришлось изрядно потрудиться, так как кроме обычной герметичности костюма, требовалось разместить в нем полноценную систему жизнеобеспечения, благодаря которой астронавт мог бы автономно ходить по поверхности земного спутника в течение определенного количества времени.
В заднем отсеке, напоминающем чем-то довольно большой полый рюкзак, инженерам удалось вместить аккумулятор, систему вентилирования, сбора влаги, а также терморегулирования. «Кречет» являлся представителем полужестких скафандров, посему термин «надеть скафандр» был не применим к нему. В «Кречет» нужно было входить, и без помощи кого-то второго сделать это было невозможно. Так как советская программа исследования Луны предполагала полет лишь одного космонавта, на поясе был предусмотрен специальный «обруч», благодаря которому астронавт, в случае падения мог встать без посторонней помощи.
После «Кречета» научно-производственным предприятием «Звезда» был выпущен спасательный скафандр «Сокол». Что значит «спасательный»? Это значит, что изначально скафандр не предусмотрен для осуществления внекорабельной деятельности, а как следствие и выхода в открытый Космос. Однако все условия для него он поддерживает. Главной задачей, возлагаемой на «Сокола» была поддержка жизнедеятельности пилотов советских космических кораблей в течение 125 минут для осуществления посадки.
Как вы уже могли понять, «Кречет» был очень знаковой разработкой для Советского Союза, и несмотря на свертывание лунной программы, скафандр принес довольно много технологий, которые были применены в целом поколении скафандров «Орлан». Даже на сегодняшний день «Орлан» является актуальной линейкой спецэкипировки для полетов в Космос на МКС.
История их появления достаточно банальна. Активно использовавшиеся в те времена скафандры «Беркут» и «Ястреб» не имели возможности подгонки, и поэтому для каждого космонавта было необходимо изготавливать снаряжение, которое бы соответствовало всем индивидуальным параметрам космического путешественника. Плюс, они были довольно громоздкими, а в условиях ограниченного количества груза, которое можно было бы брать на космические станции «Союз» и «Прогресс», это было очень проблемным недостатком. «Орлан» впервые вступил в эксплуатацию во время выхода в открытый космос на станции «Салют–6» космонавтов Юрия Романенко и Георгия Гречко. Всего с 1977-го по 2018 год было выпущено шесть моделей скафандра «Орлан».
Последняя выпущенная актуальная модификация «Орлан–МКС» ждет испытаний в открытом космосе в ближайшее время. Федор Юрчихин и Сергей Рязанский станут первыми членами экипажа МКС (Международной Космической Станции), кто опробуют новейший отечественный скафандр в действии. Актуальным и эксплуатируемым начиная с 2009-го года скафандром является «Орлан–МК». Основным его отличием является наличие компьютерной системы позволяющей управлять всеми показателями скафандра, для большего комфорта находящегося в нем космонавта.
Для чего нужен скафандр космонавту
КОСМИЧЕСКИЕ СКАФАНДРЫ
Профессор Г. ИЛЬИН, кандидаты технических наук В. ИВАНОВ, И. ПАВЛОВ.
Каждый из нас видел по телевидению, в кино или на фотографиях, как на стартовой позиции космонавты идут к ракете в своем космическом одеянии — в скафандрах. Но не каждый, наверное, сможет точно ответить на простой вопрос: зачем космонавту скафандр? Для чего конкретно нужно это снаряжение, стесняющее движение человека? И, в частности, для чего оно в космическом корабле, где созданы все необходимые для жизни и работы условия.
Человеческий организм приспособлен к жизни в условиях земной атмосферы и не может существовать за ее пределами без специальных средств защиты, без созданной для него искусственной среды обитания. В полете основное средство защиты космонавта от воздействия неблагоприятных факторов космического пространства — это сам космический корабль, его герметическая кабина. Однако по требованиям безопасности полета иногда необходимо еще и индивидуальное защитное снаряжение. Например, в такие периоды полета, когда нужно считаться с возможностью разгерметизации кабины или с отказом бортовой системы жизнеобеспечения. Ну, а при выходе из корабля в открытый космос скафандр становится единственной защитой человека.
А теперь от этих общих соображений перейдем к конкретным факторам, определяющим необходимость такого защитного снаряжения, как скафандр.
ЧЕЛОВЕК В БЕЗВОЗДУШНОМ ПРОСТРАНСТВЕ
Кислород, жизненно необходимый человеку, поглощается им из вдыхаемого воздуха и одновременно в процессе дыхания из организма удаляется углекислота. Для этого даже в состоянии покоя человек прокачивает через свои легкие до 450 литров воздуха в час. Содержание кислорода в атмосфере составляет 21% по объему и остается практически постоянным на разных высотах. Поэтому на долю кислорода всегда приходится примерно пятая часть атмосферного давления, у поверхности Земли это составляет 160 мм рт. ст. И все наши сложные физиологические системы миллионами лет эволюции приспособились к поглощению кислорода именно при таком давлении.
С подъемом на высоту падает общее барометрическое давление, а вместе с ним уменьшается парциальное давление кислорода (часть общего давления смеси газов, обусловленная данным газом или паром). Наступает «кислородное голодание»: чтобы получить необходимое количество кислорода, человек начинает дышать более часто и глубоко, а если и в этом случае кислорода оказывается слишком мало, теряет сознание. В нашем организме практически нет запасов кислорода, поэтому если без пищи человек может прожить месяцы, без воды — до 14 суток, то без кислорода — максимум несколько минут.
Скафандр для выхода в открытый космос из орбитальной станции «Салют-6». |
Кроме кислородного голодания, есть и другие факторы, затрудняющие или делающие невозможным пребывание человека в условиях пониженного давления. Так, в частности, с понижением атмосферного, то есть внешнего, давления до уровня, соответствующего высоте 7—8 км, растворенный в тканях организма азот переходит в газообразное состояние. Появившиеся пузырьки газа могут нарушить кровоснабжение жизненно важных органов или вызвать боли, оказывая механическое давление на нервные окончания (декомпрессионные расстройства). На еще больших высотах может произойти закипание жидких сред организма. Вода, содержащаяся в тканях, уже при давлении около 47 мм рт. ст. (это соответствует атмосферному давлению на высоте 19,2 км) закипает при 37°С, то есть при нормальной температуре тела.
Чтобы предотвратить кислородное голодание к вдыхаемому воздуху добавляют кислород, увеличивают его процентное содержание с таким расчетом, чтобы парциальное давление кислорода составляло привычную для человека величину — 160мм рт. ст. Для этого, в частности в авиации, используют кислородно-дыхательную аппаратуру в комплекте с маской или гермошлемом. Однако уже на высоте 12 км, где общее давление составляет всего 145 мм рт. ст., даже чистый кислород не может создать необходимого парциального давления. А на высоте 16 км при дыхании чистым кислородом человек теряет сознание уже через 15 секунд.
Из всего оказанного нужно сделать такой вывод: для полетов на больших высотах необходимо увеличить общее давление газа, в котором находится и которым дышит человек, то есть нужно создать вокруг человека среду с избыточным давлением, превышающим атмосферное давление на данной высоте. Это одна из главных задач, которая решается с помощью скафандра. Герметичная оболочка скафандра изолирует человека от внешней среды, а внутри скафандра создается искусственная атмосфера с избыточным давлением и необходимым газовым составом.
Избыточное давление в атмосфере скафандра должно быть достаточным для получения нужного парциального давление кислорода и предотвращения декомпрессионных расстройств. В то же время это давление стремятся сделать минимальным, чтобы улучшить подвижность скафандра. Практически в современных космических скафандрах рабочее давление лежит в пределах от 180 до 300 мм рт. ст. Искусственная среда скафандра не обязательно должна обладать всеми свойствами привычной земной атмосферы: если человек находится в скафандре сравнительно недолго, то можно рассчитывать на известные резервы человеческого организма, позволяющие ему без ущерба переносить условия, несколько отличающиеся от нормы.
Работы по созданию скафандров для высотных полетов начались более 40 лет назад, и наша страна включилась в них одной из первых. С тех пор высотные скафандры прошли большой путь — от малоподвижного армированного надувного комбинезона до сложного технического устройства с совершенными системами жизнеобеспечения. Устройства, в котором используются достижения самой современной технологии, материаловедения, химии, электроники и других областей техники.
Разработка современных космических скафандров, особенно предназначенных для работы в открытом космосе, требует решения ряда сложных научно-технических проблем. Нужно, в частности, создать в скафандре необходимый для человека микроклимат (давление, газовый состав, влажность, температура), причем с учетом возможных аварийных ситуаций. Нужно защитить космонавта и оборудование скафандра от воздействия глубокого вакуума и излучений Солнца. Необходимо обеспечить отвод тепла, выделяемого человеком, а это не так-то просто сделать в условиях космоса. Нужно, наконец, обеспечить подвижность космонавтов, их работоспособность, что, конечно, затруднено из-за избыточного давления в скафандрах. Скафандр должен быть герметичным, прочным, легким, иметь небольшой объем, обеспечивать безопасность работы космонавта. К этому следует добавить еще массу, так сказать, вспомогательных «нужно», таких, например, как разработка методов моделирования внешних воздействий космического пространства и условий выхода из корабля при наземных испытаниях или создание материалов, пригодных для условий открытого космоса.
Важные характеристики скафандра — быстрота его надевания и простота эксплуатации. А при длительных полетах на орбитальных станциях, когда программой могут предусматриваться смены экипажей и несколько выходов для работы в открытый космос, к скафандрам начинают предъявлять дополнительные требования. Хочется, например, чтобы скафандр можно было «отрегулировать» для космонавтов разного роста. Чтобы в случае необходимости скафандр можно было отремонтировать или заменить отдельные его элементы.
КАК УКРЫТЬСЯ ОТ СОЛНЦА
Работу человека в скафандре вне корабля при расчетах обычно оценивают как работу средней тяжести, на которую человек затрачивает мощность в среднем 300 Вт. Этим энергозатратам соответствуют такие показатели жизнедеятельности организма: потребление кислорода — примерно 60 л/час; выделение углекислоты — 48 л/час; выделение влаги — 50—300 г/час (в зависимости от температуры окружающей среды и способа охлаждения тела).
Необходимые климатические и гигиенические условия в скафандре поддерживает автономная система обеспечения жизнедеятельности — сокращенно АСОЖ, — неотъемлемая часть космического скафандра. Именно АСОЖ должна обеспечить заданное давление в скафандре, газовый состав, удаление продуктов жизнедеятельности, поддержание необходимой влажности и температуры.
Чтобы защищать человека и оборудование от столь резких изменений тепловых потоков, поверх основной оболочки скафандра надевается одежда с несколькими слоями так называемой экранно-вакуумной теплоизоляции, которая работает как своего рода многослойный термос. Кроме того, определенным образом подбираются оптические характеристики («степень черноты» — коэффициент, характеризующий излучательную способность тела; коэффициент поглощения солнечных лучей) материалов для открытых поверхностей скафандра, а также создаются для них специальные краски. Материалы и покрытия подбираются таким образом, чтобы внешние излучения почти полностью отражались и при этом собственное, внутреннее тепловое излучение задерживалось. Важность этой проблемы связана еще и с тем, что для мягких частей скафандра нужны эластичные материалы, а они не всегда выдерживают большие перепады температуры.
В открытом космосе, за пределами атмосферы, состав солнечного излучения существенно отличается от того, к которому мы привыкли на поверхности Земли. Поэтому особые требования предъявляются к прозрачной части шлема: остекление и светофильтры должны защитить глаза и кожу лица от чрезвычайно активных ультрафиолетовых лучей, от инфракрасных (тепловых) лучей, должны ослабить солнечное излучение в видимой части спектра, обеспечив при этом хорошую видимость при различной освещенности.
МИКРОКЛИМАТ В СКАФАНДРЕ
Наиболее простой способ поддерживать в скафандрах необходимые параметры газовой среды — это непрерывная вентиляция, непрерывная подача в него газовой смеси заданного состава с последующим выбрасыванием ее в окружающую среду. В этой системе сама газовая смесь будет уносить выделенные космонавтом тепло, влагу, углекислоту, вредные примеси. Такая система, как ее называют «открытого типа» обычно применяется на высотных самолетах: здесь можно для вентиляции использовать воздух, взятый из окружающей атмосферы, и только добавлять в него кислород, необходимый для дыхания. Сама система при этом получается очень простой и надежной. Однако для космического скафандра открытые системы слишком расточительны. В космосе, конечно, никакого воздуха нет, и поэтому запасы газов для вентиляции нужно брать с собой в баллонах. А это дополнительные объемы и вес, причем, мягко говоря, немалые.
Тем не менее открытые системы обеспечения жизнедеятельности применялись при первом выходе в космос А. Леонова и при работах вне корабля по программе «Джемини» в США — в этих случаях время работы в скафандре за бортом корабля было невелико и суммарный расход газов получался вполне приемлемым.
В современных космических скафандрах главным образом используют системы регенерационного типа, где циркуляция газа происходит по замкнутому контуру и обновляется не вся газовая среда внутри скафандра, а только те ее компоненты, которые изменяются или расходуются в процессе жизнедеятельности человека. После восстановления в АСОЖ газовая смесь пополняется кислородом и снова используется для дыхания и вентиляции.
Как уже говорилось, при создании микроклимата в скафандре особые заботы разработчикам доставляет тепловой режим. Достаточно сказать, что даже при сравнительно небольшой «теплообменной недостаточности», всего на каких-то 150 ккал/час, у человека с массой 70 кг, находящегося в скафандре, температура тела за 1 час повысится более чем на 2°С. А это сопряжено с потерей работоспособности.
Перенос тепла от тела человека к охлаждающему агрегату АСОЖ может осуществляться с использованием как газа (воздуха), так и жидкости. При воздушном охлаждении тепло отбирается у тела главным образом за счет интенсивного потоотделения, а это, конечно, серьезный недостаток. Кроме того, для отвода тепла при интенсивной работе космонавта необходимо прогонять через скафандр весьма большой объем газа, примерно 700—1000 л/мин. Это, в свою очередь, требует вентилятора мощностью в несколько сот ватт, требует больших затрат электроэнергии, а сильный обдув не очень-то приятен для космонавта.
Водяное охлаждение, пожалуй, является единственно возможным методом поддержания приемлемых тепловых условий в скафандре при интенсивной работе космонавта. Чтобы отвести 300—500 ккал/ч тепла, расход воды через костюм водяного охлаждения обычно составляет 1,5—2 л/мин, потребная длина охлаждающих трубок— до 100 метров. Для прокачки воды вполне хватает насоса с мощностью двигателя в несколько ватт. Одновременно с водяным охлаждением нужна и вентиляция — она уносит выделяемую влагу и углекислоту, но, конечно, мощность вентилятора уже во много раз меньше, чем при чисто воздушном охлаждении.
ЛЕГКО ЛИ ДВИГАТЬСЯ В СКАФАНДРЕ
Разная одежда по-разному сковывает движения человека. Сравните, как легко поднимается рука, если вы в одной легкой рубашке, и насколько трудно поднять ее в зимнем пальто. По-особому сопротивляется движению тела скафандр. Его мягкая оболочка под действием внутреннего избыточного давления всегда стремится, принять форму тела вращения и распрямиться. Согнуть какую-либо ее часть, скажем, рукав или штанину, не так-то просто, и чем больше внутреннее давление, тем труднее это сделать. Чтобы обеспечить подвижность тела, в скафандре применяют шарниры, их размещают в области основных суставов — плечевых, локтевых, коленных, в области лодыжек, пальцев рук и т. д. Конструкция шарниров может быть различной: она зависит от характера движений, в которых участвует шарнир. Кроме того, для повышения подвижности в ряде сочленений используются герметические подшипники (например, в плечевом или кистевом сочленениях), совершенствуется раскрой оболочки скафандра, разрабатываются более легкие и гибкие материалы.
При работе в первых космических скафандрах из-за их относительно низкой подвижности космонавтам приходилось затрачивать немалые дополнительные усилия, что в итоге вело к интенсификации обменных процессов в организме. Из-за этого, в свою очередь, приходилось увеличивать массу и габариты запасов кислорода, а для замкнутых систем еще и поглотителей углекислоты и блоков системы охлаждения.
Космические скафандры (слева направо): спасательный скафандр, применявшийся во время полета Ю. А. Гагарина на корабле «Восток» (1961 г.); скафандр (показан без теплозащитной оболочки), применявшийся А. А. Леоновым для работы в открытом космосе во время полета на корабле «Восход-2» (1965 г.); скафандр, применявшийся А. С. Елисеевым и Е. В. Хруновым при переходе через открытый космос из корабля «Союз-5» в корабль «Союз-4» (1969 г.); скафандр, применявшийся для выхода на Луну в программе «Аполлон» (1969 г.). |
Несмотря на достигнутые с того времени успехи, проблема подвижности человека в скафандре до сих пор остается одной из основных.
Все космические скафандры принято делить на три класса:
спасательные скафандры — служат для защиты космонавтов в случае разгерметизации кабины или при значительных отклонениях параметров ее газовой среды от нормы;
скафандры для работы в открытом космосе на поверхности космического корабля или вблизи его;
скафандры для работы на поверхности небесных тел.
Существуют и универсальные скафандры, они могут использоваться и как спасательные и при выходе в открытый космос.
Первые космические скафандры, использовавшиеся при полетах на кораблях «Восток», представляли собой чисто спасательное снаряжение, причем многоцелевое. Они могли обеспечить защиту космонавтов в случае разгерметизации кабины, при катапультировании на заключительном этапе спуска и при возможном последующем приводнении. Кстати, такой универсальностью, стремлением (космический костюм приспособить ко всем возможным условиям полета объясняется значительная сложность и громоздкость первых космических скафандров. Вспоминается, что, отправляя в полет Ю. А. Гагарина, его сначала облачали в толстую теплозащитную одежду с системой вентиляции и затем только надевали сам скафандр. Поверх скафандра надевались различные приспособления на случай попадания космонавтов в воду, в карман вкладывалась аварийная радиостанция.
При полетах, продолжительность которых не превышала нескольких суток, космонавты находились в скафандрах все время полета. Это накладывало немало серьезных дополнительных требований: нужно было предусмотреть работу в скафандре со всей аппаратурой корабля, принятие пищи и воды, пользование системой удаления отходов жизнедеятельности. В дальнейшем, в частности при полетах на кораблях «Союз», космонавты начали надевать спасательные скафандры только в особо ответственных случаях: при выведении на орбиту, стыковке кораблей, спуске с орбиты на Землю, а также, конечно, при выходе в космос.
Первый в истории выход в открытое космическое пространство совершил, как известно, в 1965 году А. А. Леонов во время полета на корабле «Восход-2». Этим было практически доказано, что человек может работать в открытом космосе. В последующие годы было осуществлено еще несколько более продолжительных выходов в открытый космос советскими космонавтами из корабля «Союз-5» и американскими астронавтами из кораблей «Джемини», «Аполлон» и орбитальной станции «Скайлэб».
Следует отметить, что основные режимы работы спасательного скафандра значительно отличаются от режимов работы скафандра, предназначенного для работы в открытом космическом пространстве. Спасательный скафандр должен быть максимально удобен для работы внутри герметичной кабины, то есть в ненадутом состоянии — лишь в аварийной ситуации автоматически происходит надув спасательного скафандра. А скафандр для выхода в космос должен быть рассчитан на непрерывную работу космонавта при внутреннем избыточном давлении. Спасательный скафандр, как правило, работает в сочетании с бортовой системой жизнеобеспечения, в то время как скафандр «для выхода» должен иметь автономную систему жизнеобеспечения, иметь АСОЖ, органически объединенную с ним.
СКАФАНДРЫ ДЛЯ КОМПЛЕКСА «СОЮЗ» — «САЛЮТ»
Для космического комплекса, образуемого кораблями типа «Союз» и орбитальной станцией «Салют-6», было признано целесообразным иметь два различных типа скафандров. В качестве спасательного применяется максимально облегченный «мягкий» скафандр, изготовленный индивидуально для каждого космонавта. Это, по сути дела, многослойный герметический комбинезон, объединенный с мягким шлемом. Верхняя часть шлема со смотровым стеклом — откидывающаяся.
Масса скафандра не превышает 8—10 кг, толщина пакета оболочек минимальна, что дает возможность использовать его с индивидуальными ложементами амортизационных кресел, ослабляющими действие перегрузок при выводе на орбиту и спуске. Основной конструкционный элемент скафандра — внешняя силовая оболочка, рассчитанная на нагрузки, которые создает внутреннее избыточное давление. Силовая оболочка изготовлена из высокопрочного синтетического материала и снабжена рядом шарниров. Надевают этот скафандр через передний мягкий распах.
Вентиляция в спасательном скафандре осуществляется воздухом кабины, регенерируемым в бортовой системе жизнеобеспечения. При разгерметизации кабины наполнение скафандра до необходимого давления, подача кислорода, удаление углекислого газа, влаги, тепла производятся с помощью автономной бортовой системы. Для выхода в космос из станции «Салют-6» используются скафандры принципиально новой конструкции — так называемого полужесткого типа. Их основная отличительная черта — жесткий металлический корпус — кираса. Она составляет единое целое со шлемом и ранцевой системой жизнеобеспечения; рукава и оболочки штанин скафандра мягкие. Этот скафандр не надевают, в него входят сзади, через люк в кирасе. В наспинной части скафандра размещена АСОЖ, которая одновременно служит герметической крышкой входного люка.
Во время полета на борту орбитальной станции «Салют-6» Ю. В. Романенко готовит свой скафандр к выходу в открытый космос. (Снимок сделан Г. М. Гречко). |
Полужесткий скафандр в мировой практике космических полетов применен впервые. В его активе такие бесспорные достоинства:
— легкость и быстрота надевания (или, точнее, «входа» в скафандр): надеть и снять подготовленный к работе скафандр можно буквально за 2—3 минуты, причем без посторонней помощи;
— удобство эксплуатации и высокая надежность: в скафандре нет внешних пневмогидрокоммуникаций, связывающих его с ранцем, где располагается АСОЖ; органы управления удобно размещены на жестком корпусе скафандра (ранее применявшиеся скафандры мягкого типа, например, скафандр кораблей «Аполлон», имели отдельный ранец с размещенной в нем АСОЖ; этот ранец надевался поверх скафандра и, естественно, был связан с ним рядом гибких трубопроводов и кабелей, которые при выходе из корабля тоже попадают в тяжелые условия открытого космоса;
— высокая герметичность: герметизация места входа в скафандр осуществляется с помощью надежного механического соединения;
— полужестким скафандром одного размера в принципе могут пользоваться космонавты разной комплекции: благодаря жесткому корпусу увеличенные зазоры между телом и оболочкой не играют большой роли, а длина эластичных оболочек (рукава, штанины) регулируется каждым космонавтом в соответствии с его ростом; полужесткие скафандры для работы в космосе постоянно находятся на борту «Салюта-6», ими может пользоваться каждый, кто прибывает на станцию.
Следует также отметить, что габариты полужесткого скафандра в рабочем режиме меньше габаритов соответствующего мягкого скафандра в надутом состоянии с надетым ранцем.
Чтобы обеспечить хорошую подвижность при избыточном давлении, скафандр снабжен герметическими подшипниками и мягкими шарнирами. Перчатки съемные, подбираются индивидуально для каждого космонавта.
Спасательный скафандр для полетов на космических кораблях «Союз». |
Автономная система обеспечения жизнедеятельности скафандра — замкнутого регенерационного типа. Она состоит из ряда функционально связанных друг с другом систем. В их числе:
система кислородного питания с устройствами для хранения запаса кислорода и аппаратурой для регулирования и поддержания давления в скафандре;
система вентиляции и регулирования газового состава, с блоками очистки газовой среды скафандра от углекислоты и вредных примесей;
система электрооборудования, управления и контроля работы агрегатов;
В системе терморегулирования используется костюм водяного охлаждения — сетчатый комбинезон и шапочка с вплетенными тонкими пластмассовыми трубочками, по которым циркулирует вода, охлаждаемая в теплообменнике. Такой метод теплоотвода в отличие от применявшегося в скафандрах кораблей «Восход-2» и «Союз-5» снятия тепла с помощью вентилирующего газа обеспечивает нормальные тепловые условия внутри скафандра практически при любом уровне физической активности космонавта и в течение полной «рабочей смены». Интенсивность теплосъема регулируется самим космонавтом.
Скафандр может многократно использоваться для выхода в открытое космическое пространство. После каждого выхода можно дозаправить водой бачок контура системы охлаждения АСОЖ, заменить израсходованный блок поглощения углекислоты, дозаправить или заменить блоки с запасами кислорода. Основные системы жизнеобеспечения скафандра дублируются резервными блоками.
Работоспособность агрегатов и оборудования скафандра в условиях глубокого вакуума космического пространства обеспечивается подбором соответствующих материалов и пар трения в подвижных соединениях, применением специальных смазок, а также установкой многих агрегатов внутри корпуса скафандра.
Электропитание агрегатов скафандра, радиосвязь и передача телеметрической информации от космонавта на Землю осуществляются с помощью так называемого электрофала — специального многопроводного кабеля, связывающего системы скафандра с бортом станции «Салют-6». В атмосфере внутри скафандра при работе в космосе давление меньше, чем на Земле, а содержание в скафандре кислорода выше. Поэтому создание скафандра и АСОЖ, в частности выбор материалов, разработка конструкции элементов, приборов и агрегатов, включая электрорадиоаппаратуру, проводились с учетом повышенных требований пожаробезопасности.
Создание скафандра для выхода космонавтов в открытый космос из орбитальной станции «Салют-6» потребовало проведения большого объема исследований и экспериментальной отработки агрегатов и комплекса в целом.
В отличие от других видов космической техники, которая на заключительном этапе проверяется при беспилотных космических полетах, отработка скафандра проводится с обязательным участием испытателей в наземных условиях, максимально приближенных к натурным. В связи с этим большое внимание уделялось моделированию условий работы скафандров, АСОЖ, материалов, созданию методов отработки этого комплекса на летающих лабораториях, в специальных бассейнах (для имитации условий невесомости), в термобарокамерах, на тренажерах.
Разработка нового типа скафандра и его успешное применение на орбитальной станции «Салют-6» — это крупный шаг вперед в скафандростроении.
Испытатель входит в полужесткий скафандр, предназначенный для работы в открытом космосе; шторка, закрывающая агрегаты автономной системы обеспечения жизнедеятельности (АСОЖ), откинута. |
Внешний вид полужесткого скафандра (без теплоизолирующей оболочки): 1 — мягкие части скафандра; 2 — разъем пневмо— и гидрокоммуникаций; 3 — ручка для закрывания входного люка скафандра; 4 — карабин страховочного фала; 5 — клапан включения резервного запаса кислорода; 6 — светофильтр; 7 — жесткий корпус; 8 — гермоподшипник; 9 — пульт управления и контроля; 10 — регулятор режимов давления в скафандре; 11 — индикатор давления в скафандре; 12 — перчатка; 13 — силовой шпангоут; 14 — штепсельный разъем. Внешний вид костюма водяного охлаждения (А) и схема распределения воды в нем (Б). 1, 2 — подводящий и отводящий шланги; 3 — сетчатый комбинезон; 4 — охлаждающие трубки. | |