Для чего нужна индуктивность
Индуктивность
Выше мы рассматривали два основных понятия в электротехнике — идеальный генератор напряжения и идеальный генератор тока.
Идеальный генератор напряжения выдает заданное напряжения U (давление в водопроводной аналогии) на любой нагрузке (сопротивлении внешней цепи).
При этом в соответствии с законом Ома I=U/R, даже если R стремится к нулю, а ток возрастает до бесконечности.
Внутренне сопротивление идеального генератора напряжения равно 0.
Идеальный генератор тока выдает заданный ток I (поток в водопроводной аналогии), даже если сопротивление внешней цепи стремится к бесконечности. Напряжение на нагрузке при этом также стремится к бесконечности U=I*R.
Внутреннее сопротивление идеального генератора тока равно ∞.
Тут можно увидеть определенную симметрию, дуализм.
Мы рассматривали конденсатор С который может накапливать заряд (потому и называется — емкость) С=Q/U. Чем больше емкость, тем медленнее растет напряжение (давление) при закачке в конденсатор заряда U=Q/C.
Если емкость заряда очень большая (стремится к бесконечности), то такой конденсатор бесконечной емкости будет являться идеальным генератором напряжения. Он никогда не разрядится и при этом может выдать ток любой величины, и напряжение на нем будет оставаться постоянным.
Симметричным (дуальным) к конденсатору элементом будет являться индуктивность. Индуктивность обозначается буквой L (см схему ниже).
Обычно сам электронный компонент называется катушка индуктивности, а его параметр — индуктивность L.
рис 13. Подключение катушки индуктивности к генератору напряжения.
Если конденсатор является генератором напряжения, то индуктивность является генератором тока. Индуктивность стремиться поддерживать ток в цепи постоянным, то есть препятствует изменению тока в цепи.
Индуктивность бесконечной величины является идеальным генератором тока, то есть будет бесконечно гнать заданный ток I независимо от сопротивления нагрузки.
Это похоже как если вы подойдете к стоящей на рельсах вагонетке и станете ее толкать (приложите к ней силу). Вагонетка начнет медленно разгоняться и «ток все быстрее и быстрее побежит по проводам». А потом попробуйте вагонетку тормозить и она будет медленно останавливаться.
Так и в индуктивности, после подачи напряжения ток будет постепенно расти (вагонетка разгоняется), а при подаче напряжения другой полярности — постепенно уменьшаться (вагонетка тормозится).
Отсюда следует вывод «Поезд мгновенно остановить нельзя!»
«Ток в индуктивности мгновенно остановить нельзя!»
То есть даже если щелкнуть выключателем S4 на схеме и разомкнуть цепь, ток в первый момент после этого будет продолжать идти! На практике это приводит к тому, что в момент размыкания контактов в выключателе между ними будет проскакивать искра.
Сопротивление при размыкании контактов увеличивается до бесконечности (в реальности до очень больших величин) и протекающий ток создаст на этом сопротивлении напряжение очень большой величины, так что воздушный промежуток между контактами будет пробит.
“При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока.”
Тут есть некий момент — постоянный ток это ток, который не меняется со временем, то, что называется «постоянная составляющая» частотой равной 0 Гц. Ее конденсатор не пропускает. Совсем.
А вот индуктивность совсем не пропускает переменный ток бесконечной частоты. А просто переменный ток любой конечной частоты немножко пропускает.
Но к понятию напряжения переменного тока мы вернемся позже.
рис. 14 График тока в индуктивности при подаче на нее постоянного напряжения.
При подаче на индуктивность постоянного напряжения ток в ней линейно возрастает со временем.
Мы помним аналогичную картину для конденсатора.
Напряжение на конденсаторе линейно возрастает при его заряде постоянным током.
А что будет, если запитать индуктивность от генератора тока?
рис 15. Подключение индуктивности к генератору тока.
Ну тут из серии «кто кого заборет — слон или кит».
Цепи, содержащие конденсатор и индуктивность
Как было отмечено выше, индуктивность в электротехнике играет ту же роль, что масса в механике. А что является аналогом конденсатора в механике? Конденсатор является генератором напряжения, то есть создает силу, которая двигает поток заряда по проводам. Выше мы приводили аналог конденсатора в виде водонапорной башни, которая заполняется водой (зарядом) и давление (напряжение) в ней увеличивается.
Но можно также представить конденсатор в виде пружины — при заряде пружина сжимается и сила сжатия (напряжение) увеличивается. Емкость в этом случае величина обратная жесткости пружины. Чем пружина жестче, тем быстрее возрастает сила при сжатии. То есть соединение конденсатора и индуктивности эквивалентно вагонетке закрепленной на пружине. )
Что же будет происходить, если конденсатор соединить с индуктивностью, например как в схеме на рис. 16
рис 16. Параллельное включение конденсатора и катушки индуктивности.
Пусть конденсатор С заряжен до напряжения U. Ключ S2 замыкается и в цепи начинает течь ток. Это эквивалентно тому, как если бы мы сжали пружину и затем в какой-то момент отпустили (замкнули ключ S2).
То есть цепь пришла в состояние когда конденсатор заряжен, ток в ней равен нулю.
Хм.. но это то же состояние, с которого мы начали, только полярность напряжения противоположная. Следовательно процесс повторится, только ток потечет уже в другую сторону и система вернется в исходное состояние. Вагонетка поедет обратно, проедет положение равновесия и по инерции снова сожмет пружину.
Возникнет колебательный процесс. То есть вагонетка на пружине так и будет кататься туда-сюда и в отсутствие потерь энергии (трения) этот процесс будет длиться бесконечно.
Таким образом соединение конденсатора с индуктивностью образует колебательное звено. Такие звенья широко используются в электротехнике для создания генераторов и фильтров напряжения переменного тока.
Понятие переменного тока рассмотрим в следующей статье.
UPD.
Поскольку возник диспут экспоненциально ли растет ток при подключении катушки индуктивности к генератору напряжения или линейно, скажу еще пару слов по этому вопросу.
Откуда же берется экспонента роста тока в схеме на рис.13?
Ответ- ниоткуда. Ее там нет. Ток растет линейно и зависимость тока от напряжения описывается формулой
ЭДС самоиндукции в цепи прямо пропорциональна скорости изменения силы тока в этой цепи.
Чтобы обеспечить U=const (а U – это производная от тока в катушке), ток должен линейно расти.
А откуда тогда вообще зашел разговор об экспоненте? А зашел он потому, что ток линейно растет только в идеальном случае — в схеме с идеальным генератором напряжения (бесконечной мощности и с нулевым внутренним сопротивлением) и идеальной индуктивностью (с нулевым внутренним сопротивлением).
В реальном случае с учетом внутреннего сопротивления схема будет выглядеть так.
рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.
На схеме рис.17 R символизирует собой внутреннее сопротивление генератора и катушки индуктивности. (они все равно включены последовательно, поэтому можно обойтись одним R, как суммой этих сопротивлений)
Вот в этом случае и получится такой экспоненциальный график роста тока в индуктивности.
Рис. 18 Экспоненциальный график роста тока в индуктивности.
ис 19 «Экспонента проходит через 0 под углом 45 градусов»
зы. В интернете столько разнообразной ереси на тему катушек индуктивности. Просто диву даешься.
«Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение. Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения.»
Ну.. поскольку про резистор в цепи ничего не сказано, то не на короткий промежуток, а пока входное напряжение не будет снято. Вторая часть звучит бредово, но направление верное — ток с цепи растет от нуля до.. без резистора до бесконечности, с резистором до I=Uвх/R.
Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:
VL = – L*(di/dt), (1)
где:
VL – напряжение (обратная ЭДС), индуцированная на катушке;
L – индуктивность катушки;
di/dt – скорость изменения тока во времени.
Видимо здесь попытались описать начальный момент возникновения ЭДС самоиндукции, но получилась ерунда. Говорить, что «индуцированное напряжение противоположно по полярности приложенному напряжению» это то же самое, что «падение напряжения на резисторе противоположно по полярности приложенному напряжению.» Ага, точно, приложенное напряжение сложили с падением напряжения и после резистора получили 0. Так и есть, лол.
«ЭДС самоиндукции» в катушке это аналог «падения напряжения» на резисторе. Только в резисторе электрическая энергия рассеивается, переходит в тепло, а в индуктивности — накапливается, переходит в энергию магнитного поля. В водопроводной аналогии индуктивность это такая турбинка, вставленная в водопроводную трубу, и которая имеет момент инерции. Турбинка пропускает воду только когда вращается. И вот крантель открыли, давление к турбинке приложили, она начала вращаться и пошел ток дальше по трубе. И чем быстрее турбинка вращается, тем больше ее пропускная способность. Турбинка раскручивается, ток возрастает и так до бесконечности. Это если нет потерь энергии — резистора. А если есть резистор (трение), то часть давления расходуется на преодоление трения. И когда вся входная энергия будет расходоваться на трение, турбинка перестанет ускоряться и ток достигнет максимальной величины.
Рис.20 Переходной процесс в цепи с индуктивностью
Картинка неправильная. В правильном варианте при отключении источника, подключался резистор и цепь оставалась замкнутой.
Рассмотрим следующую цепь
Рис.21 Цепь с индуктивностью и переключателем
Вопрос на засыпку: Чему будет равно напряжение на индуктивности в первый момент после переключения ключа S из верхнего положения в нижнее?
Hint: Не надо выносить себе мозг, пытаясь сообразить с каким там знаком возникнет ЭДС самоиндукции и что с ней будет дальше. Надо применять простое правило:
Ток в индуктивности в первый момент времени после переключения сохраняется неизменным.
Дальше применять закон Ома.
Индуктивная катушка: что это и где используется
Индукционная катушка — это дроссель или изолированный проводник. Используется электрический каркас, композитные вставки. При рассмотрении понятия необходимо изучить свойства, основные особенности катушки индуктивности.
Определение устройства
Катушка индуктивности — это устройство, которое обладает малой емкостью и значительным сопротивлением. Дроссель является отменным проводником электрического тока, учитывается высокий показатель инерционности. Устройства применяются в качестве свернутого изолированного проводника. Винтовые, спиральные модификации способны справляться с помехами, колебаниями в сети.
Индукционная катушка
Важно! Устройство работает в цепях переменного тока при низкой и высокой частоте.
Назначение и принцип действия
Специалисты задаются вопросом, зачем нужна токовая катушка индуктивности в цепи, и для этого необходимо разобраться в показателях. Коэффициент ЭДС (электродвижущая сила) показывает разницу между энергией и магнитным потоком. Устройства самоиндукции способны влиять на изменения в цепи. Чаще всего дроссели применяются в силовых установках. Они способны контролировать уровень напряжения, не допускают разрыва цепи.
Устройства самоиндукции
Также компоненты устанавливаются на пару с конденсаторами либо резисторами. Благодаря работе катушки фильтры находятся в безопасности. Теперь вызывает интерес, как включается индукционная катушка. Принцип работы построен на изоляции проводников. В конструкции используется электрический каркас с различным сечением. За счёт намоток обеспечивается распределение ёмкости на дросселе.
Интересно! Витки наматываются с определенным шагом, многое зависит от типа катушки.
Виды и типы
Различают низкочастотные, высокочастотные модели. В отдельную категорию выделяют винтовые, спиральные катушки. Также существуют модификации, которые используются в радиотехнике. Они подходят для защиты конденсатора либо резонансных контуров.
Устройства в радиотехнике
Для трансформаторов годятся катушки с усилителем каскадом. В последнюю категорию выделены вариометры, основное отличие — высокая частота колебательных контуров. Дроссели могут быть одинарными либо сдвоенными. От этого зависит показатель индуктивности и питания системы.
Низкочастотные
Для включения в электрическую цепь, применяется низкочастотная катушка индуктивности. Она предназначена для подавления переменного тока. В формуле учитывается циклическая частота и показатели индуктивности. За основу в устройствах берётся сердечник, который изготавливается из стали. Он может быть с фильтрами либо без них.
Чтобы влиять на частоту, происходит игра с сопротивлением. В цепи постоянного тока напряжение должно быть неизменным. С целью понижения частоты применяются фильтры. Основная проблема — это малая ёмкость. Чтобы детально ознакомиться с дросселем, стоит подробнее узнать о резонансной частоте, которая выделяется на контуре рабочего сигнала.
Когда в цепях повышается напряжение, на каркас оказывается нагрузка. В цепи постоянного тока задействуются непрозрачные проволочные резисторы. Также для этих целей подходят однослойные катушки типа «универсал». Их особенность — использование ферритовых стержней.
Низкочастотная катушка
Высокочастотные
Устройства изготавливаются с различными типами обмотки. Речь идет о наборе преимуществ, которые спасают в той или иной ситуации. Сфера применения элементов широка, учитывается значительная частота модуляции. Таким образом удается бороться с повышенным сопротивлением металлов. У катушек имеется сердечник.
Основная задача — это модуляция частоты генератора. Она происходит за счёт усиления сигнала, и за процессом можно проследить при подключении осциллографа. Многие высокочастотные катушки не отличаются стабильной работой, поскольку применяется керамический каркас. У него малый срок годности, плюс они восприимчивы к повышенной влажности.
Интересно! Современные товары изготавливаются из алюминия и являются компактными.
Электрикам известны контурные, безконтурные модификации высокой частоты. В зависимости от намотки учитывается стабильность электрических параметров. У моделей высокой частоты могут применяться магниты и провода. Речь идет о порошковых материалах, сделанных из диэлектриков.
Процесс изготовления связан с методом холодного прессования. Индуктивные датчики отличаются по защищенности. На предприятиях элементы могут погружать в раствор либо продевать в трубку. Это делается с целью избежания коротких замыканий. Мировые производители решают проблему путем использование вторичного витка.
Высокочастотная катушка
У моделей значительное сопротивление и есть проблема с концентрацией электролита. Таким образом изменяются свойства катушки индуктивности. Проводимость раствора падает и повышается частота электромагнитного поля.
Основные технические параметры
Катушки индуктивности имеют следующие характеристики:
Стабильность демонстрирует свойства устройства при изменении условий использования. Температура фиксируется вследствие различных причин. Многое зависит от размера каркаса. Когда температура уменьшается, индуктивность также снижается. Современные параметры — это цикличность, которая является отношением температуры к линейному расширению. Учитывается изменение в керамической основе плюс показатель плотности.
Температура отслеживается на горячей намотке. В этом плане хорошо себя показали многослойные дроссели с сердечником, которые сделаны из карбонильного железа. Ёмкость отображает количество витков катушки, берется в расчет количество секций и контуров. Высокочастотные модели считаются более емкостными и стабильными.
Номинальная индуктивность — это параметр, который учитывает изменение размеров волны. Измерение происходит в микрогенрах. Если смотреть на формулу, учитывается количество витков, длина намотки, плюс диаметр катушки.
Маркировка
При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:
В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.
Применение катушек индуктивности
Если хорошо подумать, то всевозможных применений для такой простой на первый взгляд вещи как катушка индуктивности просто не счесть. В рамках одной статьи мы вспомним лишь некоторые из них. А между тем, человеческие изобретательность и талант не устают творчески проявлять себя, придумывая и разрабатывая все новые и новые устройства и механизмы на базе катушки индуктивности.
Казалось бы, что тут можно соорудить? Бесхитростный моток проволоки, может быть сердечник определенной формы, и ток, проходящий по проводу в постоянной, переменной или импульсной форме. А между тем, без катушек индуктивности вся современная электротехника просто не могла бы существовать. Давайте внимательно приглядимся.
Грузоподъемный электромагнит
Грузоподъемники в форме шайб-элекромагнитов применяют по всему миру на протяжении многих лет для погрузки ферромагнитных отходов. Подав в рабочую обмотку электрическую мощность в 18кВт, можно удержать и погрузить за раз более 2 тонн железа, тогда как развиваемое при данной мощности отрывное усилие превышает 25 тонн.
Электромагнит диаметром примерно 1,5 метра просто цепляется крюком подъемного крана, запитывается, как правило, трехфазным переменным напряжением, и можно оперативно вести погрузку ферромагнитных материалов или каких-нибудь железных изделий. Секционированные обмотки нескольких катушек индуктивности получают ток, намагничивая сердечник из специального сплава, а он в свою очередь притягивает, допустим, металлолом, который требуется погрузить в вагоны.
Электромагнитное реле
Допустим, вам необходимо просто прикоснуться пальцем к сенсору, а результатом должен стать процесс подключения к (или отключения от) сети мощной нагрузки, например лампы или двигателя. На помощь приходят электромагнитные реле. Благодаря реле вы можете отказаться от огромных кнопок выключателей, вместо этого теперь можно просто дотрагиваться до микрокнопок, на которые будет реагировать электронная схема, функция которой — подавать питание на обмотку реле или снимать с нее питание. Обмотка реле — это обмотка электромагнита (опять же катушка индуктивности), который притягивает подпружиненный контакт, выполняющий роль механического выключателя.
Трансформатор
Первичная обмотка при прохождении по ее проводу переменного тока, создает в объеме сердечника переменный магнитный поток, который пронизывает витки вторичной обмотки, и наводит в ней ЭДС, создает напряжение вторичной обмотки. Трансформаторы повышают напряжение электростанций и подают их на ЛЭП, а затем понижают напряжение от ЛЭП, и подают его в наши дома.
Не было бы трансформаторов (катушек индуктивности в роли первичной и вторичной обмоток) — не было бы ни передачи, ни распределения электроэнергии. Не говоря уже о лабораторных автотрансформаторах, сварочных трансформаторах, трансформаторах на феррите в импульсных блоках питания, и конечно ни о каких катушках зажигания в автомобилях речи бы не шло, а ведь катушки зажигания — это тоже особые, но трансформаторы, то есть снова катушки индуктивности.
Дроссель
Для преобразования электроэнергии в импульсных источниках питания используются специальные катушки индуктивности — дроссели. Функция такой катушки — сначала накопить энергию в форме магнитного поля в сердечнике, запасти ее там, потом — отдать нагрузке. Если трансформатор в одно и то же время преобразует электроэнергию, то дроссель — сначала энергию принимает, потом — отдает.
Процесс преобразования электроэнергии у дросселя разделен во времени. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. Импульс тока подается на обмотку дросселя, дроссель запасает энергию в магнитном поле. Затем импульс тока уже не действует, но к дросселю подключена нагрузка, и ток дросселя устремляется через нагрузку, но уже при другом напряжении, зависящем от временных характеристик схемы управления преобразователем. Так катушка индуктивности сплошь и рядом, например в энергосберегающих лампах, работает совместно с полупроводниковыми ключами.
Индукционные печи и индукционные плиты
Катушка индуктивности — это катушка с сердечником. А что если в качестве сердечника внутрь катушки, в ее поле действия, ввести какую-нибудь заготовку из ферромагнитного материала, который требуется нагреть вихревыми токами? Именно так работают индукционные печи и индукционные плиты. Катушка индукционного нагревателя выступает для ферромагнитной заготовки индуктором, наводя в ней вихревые токи высокой частоты, приводящие к разогреву заготовки вплоть до плавления.
Фильтр ВЧ-помех
Катушка индуктивности обладает свойством препятствовать изменению тока, она проявляет своего рода электромагнитную инерционность, заставляя ток как-бы просачиваться сквозь себя, потому что пока ток нарастает через катушку, создаваемое им магнитное поле не может изменяться мгновенно, изменение требует времени, катушка индуктивности словно тормозит своим магнитным полем изменение тока в собственном проводе.
В составе колебательного контура
Кстати, индукционные нагреватели зачастую имеют индуктор, соединенный параллельно с конденсатором, в таких условиях катушка индуктора тоже является составной частью колебательного контура. Кроме того, сам резонансный контур может выступать в качестве фильтра — пропускать и усиливать токи частот близких к собственной резонансной частоте, и подавлять частоты далекие от нее. В радиоприемниках антенны на феррите — тоже являются частью перестраиваемого колебательного контура.
Роторы и статоры двигателей и генераторов
Статор этого же генератора имеет трехфазную обмотку — это своего рода модификация катушки индуктивности. Даже асинхронный двигатель — и тот имеет обмотку статора, которую можно тоже назвать катушкой индуктивности. Мало того, индуктивности этих статорных катушек учитываются как таковые при подборе рабочих конденсаторов, например когда трехфазный двигатель необходимо адаптировать к питанию от однофазной цепи.
Датчики перемещения и положения
Индуктивные датчики перемещения и положения — это катушки индуктивности с модифицированными сердечниками. Часть сердечника катушки в форме пластины, перемещаясь изменяет индуктивность катушки, и частотные параметры схемы изменяются из-за изменения индуктивности. Так фиксируется наличие объекта в поле действия датчика. Или цилиндрический сердечник в форме штока может смещаться по мере движения связанного с ним объекта, и по частотным параметрам, связанным с изменяемой индуктивностью катушки, сердечник которой двигается, считывается информация о положении объекта.
Направление луча в ЭЛТ
В некоторых мониторах с электронно-лучевыми трубками поток заряженных частиц фокусируется и отклоняется специальными катушками отклоняющей системы. Катушки индуктивности отклоняющей системы установлены на ферритовом сердечнике особой формы, в который вставляется электронно-лучевая трубка. Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране.
Электроклапан, электрозамок, втягивающее реле
Подобно магниту, который притягивает железные предметы, катушка способна втянуть в себя ферромагнитный сердечник той или иной формы. Приблизительно по такому принципу работают некоторые электрические замки, электромагнитные клапана и, как пример, втягивающее реле автомобильного стартера, перемещающее бендикс, и удерживающее его некоторое время в рабочем положении, пока двигатель не будет пущен. Мощная катушка сначала втягивает якорь, затем удерживает его. По выключении тока, бендикс возвращается на место пружиной.
Катушки магнитного удержания плазмы
Катушка Тесла
Говоря о катушках индуктивности, нельзя не вспомнить о легендарной катушке (или резонансном трансформаторе) Тесла. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью. Здесь нет конденсатора параллельно резонирующей катушке, как в индукционном нагревателе, но есть уединенная емкость в виде тороида.
Каждая катушка кроме параметра «индуктивность», обладает еще и емкостью, и собственным волновым сопротивлением. Все эти параметры учитываются при настройке трансформатора Тесла. Казалось бы, просто заземленная катушка индуктивности с тороидом наверху, введенная в собственный резонанс. Но как эффектно смотрится!