Для чего нужна подстанция трансформаторная подстанция
Оборудование трансформаторных подстанций, как устроены подстанции
Сложная иерархия современных электрических сетей включает в себя огромное количество различного электротехнического оборудования, среди которого трансформаторные подстанции выполняют роль звена, связующего и перераспределяющего электроэнергию. Они располагаются около или внутри населенных пунктов и обеспечивают комфортные условия для проживания людей.
В сельской местности еще можно встретить конструкции старых столбовых подстанций, работающих на открытом воздухе, которые принимают по высокой стороне воздушной линии 10 или 6 кВ и отдают 0,4 подключенным потребителям.
Внутри населенных пунктах с многоэтажными зданиями в целях безопасности чаще применяются кабельные линии, скрытые в земле, а трансформаторное оборудование располагается внутри специальных построек, закрытых на замки от несанкционированного проникновения.
Здание подобной трансформаторной подстанции, преобразующей напряжение 10 кВ в 0,4 показано на фотографии.
Внешнее отличие габаритов показанных подстанций, преобразующих напряжения одинаковых величин, свидетельствует о том, что они оперируют разными мощностями.
Подобные трансформаторные подстанции (ТП) получают электроэнергию по высоковольтным линиям электропередач 10 кВ (или 6) от удаленных распределительных устройств.
Фотография силового трансформатора, расположенного на ОРУ-110 и осуществляющего преобразование электроэнергии 110 кВ в 10, передаваемое по ЛЭП на ПС-10, показана на очередной фотографии.
Этот трансформатор имеет уже большие габариты и оперирует с мощностями до 10 мегаватт, располагается на открытой, огороженной территории, которая конструкцией оборудования четко разграничена на две стороны:
высшего напряжения 110;
Сторона 110 кВ воздушной ЛЭП соединяется с другой подстанцией, которая имеет еще большие габариты и преобразовывает огромные энергетические потоки.
Размеры только вводной опоры единичной воздушной ЛЭП позволяют визуально оценить значительность потоков электроэнергии, пропускаемых через нее.
Приведенные фотографии свидетельствуют, что трансформаторные подстанции в энергетике перерабатывают энергию электричества различных напряжений и мощностей, монтируются разнообразными конструкциями, но имеют общие черты.
Состав оборудования трансформаторной подстанции
Каждая ПС создается под конкретные условия эксплуатации с расположением:
на открытом воздухе — открытые распределительные устройства (ОРУ);
внутри закрытых помещений — ЗРУ;
в металлических шкафах, встроенных в специальные комплекты — КРУ.
По типу конфигурации электрической сети трансформаторные ПС могут выполняться:
тупиковыми, когда они запитаны по одной либо двум радиально подключенным ЛЭП, которые не питают другие ПС;
ответвительными — присоединяются к одной (иногда двум), проходящим ЛЭП с помощью ответвлений. Проходящие линии питают другие подстанции;
проходными — подключены за счет захода ЛЭП с двухсторонним питанием методом «вреза»;
узловыми — присоединяются по принципу создания узла за счет не менее чем трех линий.
Конфигурация сети электроснабжения накладывает условия на рабочие характеристики подстанции, включая настройку защит для обеспечения безопасной работы.
Основные элементы ПС
В состав оборудования любой подстанции входят:
силовой трансформатор, который непосредственно осуществляет преобразование электроэнергии для ее дальнейшего распределения;
шины, обеспечивающие подвод приходящего напряжения и отвод нагрузок;
силовые коммутационные аппараты с тоководами, позволяющие перераспределять электроэнергию;
системы защит, автоматики, управления, сигнализации, измерения;
вводные и вспомогательные устройства.
Он является основным преобразующим элементом электроэнергии и выполняется трехфазным исполнением. В его конструкцию входят:
корпус, выполненный в форме герметичного бака, заполненного маслом;
обмотки стороны низкого напряжения (НН);
обмотки вводов высокого напряжения (ВН);
переключатель регулировочных отводов у обмоток;
вспомогательные устройства и системы.
Более подробно устройство силового трансформатора и автотрансформатора изложено в другой статье.
Чтобы трансформатор работал к нему надо подвести питающее и отвести преобразованное напряжение. Эта задача возложена на токоведущие части, которые называют шинами и ошиновкой. Они должны надежно передавать электрическую энергию, обладая минимальными потерями напряжения.
Для этого их создают из материалов с улучшенными токопроводящими свойствами и повышенным поперечным сечением. В зависимости от размеров ПС шины могут располагаться на открытом воздухе или внутри закрытого сооружения.
Шины и ошиновка электрически разделяются между собой положением силового выключателя. Причем ошиновка без каких-либо коммутационных аппаратов напрямую подключена к вводам трансформатора. Ее конструкция не должна создавать механических напряжений в фарфоровых и всех остальных деталях вводов.
Для ошиновки используют кабели или пластины, которые монтируют на медные шпильки трансформаторных вводов через наконечники или переходники.
У подстанций, защищенных от воздействия атмосферных осадков, шины обычно делают цельными алюминиевыми или реже медными полосами. На открытом воздухе для них чаще используют многожильные не закрытые слоем изоляции провода повышенного сечения и прочности.
Однако, в последнее время наметился переход на системы шин, устанавливаемые жестко. Это позволяет экономить площадь на ОРУ, металл токоведущих частей и бетон.
Такие конструкции применяются на новых строящихся подстанциях. За их основы взяты образцы, успешно работающие несколько десятилетий в странах Запада на оборудовании 110, 330 и 500 кВ.
Для расположения шин применяется определенная конфигурация, которая может использовать:
Под термином «система шин» подразумевается комплект силовых элементов, подключающих все присоединения на распределительном устройстве. На подстанциях с двумя трансформаторами одного напряжения создаются две системы шин, каждая из которых питается от своего источника.
Протяженная система шин при большом количестве присоединений может разделяться на отдельные участки, которые называются секциями.
Силовые коммутационные аппараты
Трансформаторные подстанции при эксплуатации необходимо подключать под напряжение или выводить из работы для профилактического обслуживания или в случае возникновения аварийных ситуаций и неисправностей. С этой целью используются коммутационные аппараты, которые создаются различными конструкциями и могут:
1. отключать аварийные токи максимально возможных величин;
2. коммутировать только рабочие нагрузки;
3. обеспечивать разрыв видимого участка электрической схемы за счет переключения только при снятом с оборудования напряжении.
Коммутационные аппараты, способные отключать аварийные ситуации, работают в автоматическом режиме и называются «автоматическими выключателями». Они создаются с различными возможностями коммутации нагрузок за счет конструктивных особенностей.
По принципу использования запасенной энергии, заложенной в работу исполнительного механизма, их подразделяют на:
По способам гашения электрической дуги, возникающей при отключениях, они классифицируются на:
Для управления исключительно рабочими режимами, характеризующимися только номинальными параметрами сети, создаются «выключатели нагрузки». Мощность их контактной системы и скорость работы позволяют успешно переключаться при обычном состоянии схемы. Но, ими нельзя оперировать для ликвидации коротких замыканий.
При разрыве электрической цепи под нагрузкой создается электрическая дуга, которая ликвидируется конструкцией выключателя. В обесточенной схеме для отделения определенного участка от напряжения используют более простые устройства:
Разъединителями оперируют, как правило, вручную при снятом напряжении. На подстанциях 330 кВ и выше управление разъединителями осуществляется электродвигателями. Это объясняется большими габаритами и механическими усилиями, которые сложно преодолеть вручную.
При включении разъединителя участок его цепи собирается в электрическую схему, а при отключении — выводится.
Отделители создаются для автоматического разделения напряжения с защищаемого участка при создании на нем бестоковой паузы удаленным выключателем. Более подробно работа отделителя изложена в этой статье.
Взаимное расположение коммутационных аппаратов и шин
Любая трансформаторная подстанция создается по определенной электрической схеме, предполагающей обеспечение надежной работы, простоты управления в сочетании с минимумом затрат на ввод и эксплуатацию. С этой целью к трансформаторному устройству разными способами подключаются отходящие ЛЭП.
Наиболее простая схема предполагает подключение к ТП посредством силового выключателя Q одной секции шин, от которой отходят все присоединения. Для обеспечения условий безопасного ремонта оборудования выключатели со всех сторон отделяются разъединителями.
Если на ПС много присоединений, когда в схеме используются 2 силовых трансформатора, то может применяться секционирование за счет использования дополнительного выключателя, который постоянно находится в работе, а при возникновении неисправности на одной из секций разрывает цепь, оставляя в работе ту секцию, где нет поломки.
Использование в такой схеме обходной системы шин, образованной за счет подключения дополнительных выключателей и небольшой корректировки электрических цепей, позволяет переводить любое присоединение на питание от обходного выключателя, безопасно выполнять ремонт и обслуживание собственного.
Большими удобствами обслуживания и повышенной надежностью обладают распределительные устройства, собранные на основе двух рабочих систем шин с обходной, когда они дополнительно разделены на секции.
В исходном состоянии все отход ящие ЛЭП получают электроэнергию от обоих трансформаторов. Для этого шинные и секционные выключатели питают секции шин, а присоединения равномерно распределены по ним через свои коммутационные устройства.
Обходная СШ каждой секции вводится под напряжение только для случая перевода через нее питания присоединения, выключатель которого выведен в ремонт.
При возникновении короткого замыкания на одной из секций она отключается защитами со всех сторон, а все остальные с подключенными к ним ЛЭП остаются в работе. За счет такой схемы при КЗ на ОРУ обесточивается минимальное количество потребителей от всех работающих.
Приведенные схемы показаны для примера. Их существует большое разнообразие, которое позволяет наиболее оптимально эксплуатировать оборудование трансформаторной подстанции.
Защиты, автоматика, системы управления
Работа оборудования трансформаторной подстанции происходит в автоматическом режиме под дистанционным наблюдением оперативного персонала. Чтобы предотвратить серьезные повреждения внутри сложной дорогостоящей системы применяются автоматические защитные устройства.
Они имеют чувствительные датчики, которые воспринимают начало возникновения аварийных процессов и, обрабатывая полученную информацию, передают ее на защиты.
Такими датчиками могут работать механические приборы, реагирующие на:
возникновение вспышки света;
резкое возрастание давления внутри закрытой ячейки;
начало газообразования внутри жидкостей или другие признаки.
Однако, основная нагрузка по определению начала аварийных режимов возложена на электрические устройства — измерительные трансформаторы тока и трансформаторы напряжения.
Они с высокой точностью моделируют электрические процессы, происходящие в первичной схеме силового оборудования и передают их в органы сравнения, которые определяют момент возникновения неисправностей.
Полученный сигнал от них воспринимают логические блоки, обрабатывающие поступившую информацию для передачи исполнительной команды на отключающие устройства конкретных автоматических выключателей.
У малогабаритных трансформаторных подстанций, размещенных внутри крытых сооружениях, защиты могут располагаться в отдельной ячейке или шкафу.
На подстанциях, преобразующих напряжение 110 кВ и выше, для размещения релейных вторичных цепей требуется отдельное здание с большим количеством панелей. На них монтируют системы управления, автоматики и защиты:
К этим устройствам подключаются системы сигнализации, работающие в местном и дистанционном режиме для передачи оперативному персоналу достоверных сведений о происходящих коммутациях в электрической сети. Наиболее важная информация о положении ответственных элементов оборудования передаются по каналам телесигнализации.
Используемые многие десятилетия релейные защиты постепенно вытесняются микропроцессорными малогабаритными модулями, облегчающими эксплуатацию.
Однако, их массовое использование сдерживается высокой стоимостью и отсутствием точных международных стандартов для всех производителей. Ведь при поломке отдельного специфичного блока пользователю приходится обращаться к конкретному заводу для замены возникшей неисправности.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Электрические подстанции: назначение и классификация
Электрической подстанцией называют электроустановку, служащую для преобразования и распределения электроэнергии и состоящую из трансформаторов или других преобразователей энергии, распределительного устройства, устройства управления и вспомогательных сооружений.
В зависимости от функции они называются трансформаторными (ТП) или преобразовательными (ПП). Подстанцию называют комплектной — КТП (КПП) — при поставке трансформаторов (преобразователей), щита низкого напряжения и других элементов в собранном виде или в визе, полностью подготовленном для сборки.
Электрические подстанции служат для приема, преобразования и распределения электроэнергии, выполняются на все ступени напряжения, могут быть повышающими если находятся в непосредственной близости от электростанций и преобразуют для передачи от них в сеть электроэнергию более высокого напряжения) или понижающими (к ним относится подавляющее число подстанций, от которых осуществляется электроснабжение потребителей).
Назначение, мощность и уровни напряжения электрической подстанции определяются схемой и конфигурацией электрической сети, в которой она эксплуатируется, характером и нагрузками присоединенных потребителей электроэнергии.
Различают в основном следующие виды электрических подстанций:
ответвительные, присоединенные к проходящим вблизи ВЛ;
промежуточные, служащие для питания своих потребителей;
транзитные (в большом числе случаев — узловые), предназначенные не только для питания потребителей, но и для передачи потоков мощности в смежные сети своей и соседних энергосистем;
преобразовательные — для передачи и приема электрической мощности на постоянном токе;
Конструктивно распределительные устройства электрических подстанций могут выполняться открытыми (основное оборудование располагается на открытом воздухе) или закрытыми (в городских условиях, в местах с неудовлетворительными условиями окружающей среды), по своей ведомственной принадлежности подстанции находятся в ведении энергосистем или промышленных и других потребителей электроэнергии.
Электрические подстанции переменного тока с высшим напряжением 330, 500, 750 кВ, 150 кВ и некоторая часть подстанций 220 кВ с развитой схемой электрических соединений, оснащенные синхронными компенсаторами 50—100 MB-А и выше с открытым распределительным устройством, большим числом трансформаторов, выключателей и другого оборудования высокого напряжения, размещаются на больших площадях, требуют присутствия постоянного дежурного персонала высокой квалификации и широко развитой дистанционной и телемеханической информации. С помощью этих подстанций, как правило, осуществляются межсистемные связи, образующие объединенные и Единую энергосистемы.
Подстанция 330 кВ Машук
Подстанции постоянного тока с высшим напряжением 800 и 1500 кВ с большим количеством сложного преобразовательного оборудования пока немногочисленны. Однако в дальнейшем их значение существенно повысится.
Электрические подстанции 35, 110 и 220 кВ с упрощенной схемой электрических соединений, часто без выключателей на стороне высшего напряжения, с комплектными распределительными устройствами низшего напряжения (КРУ, КРУН и др.), у которых аппаратура управления, защиты, сигнализации и автоматики расположена на лицевой стороне их шкафов и не требует специального щитового помещения.
Эти подстанции не нуждаются в постоянном дежурном персонале, обслуживаются оперативными выездными бригадами (ОВБ) или дежурными на дому и по количеству составляют большинство среди подстанций данного типа (для облегчения обслуживания и диспетчерского контроля подстанции оснащают соответствующими устройствами связи и телемеханики).
Подстанция 110 кВ, построенная для проведения Зимних Олимпийских игр 2014 года в Сочи
Рис. 1. Принципиальная схема распределения электроэнергии от электростанции на напряжениях 10 и 35 кв.
На схеме рис. 1 показано, что две параллельные линии электропередачи Л-7 и Л-8 питают районную (городскую, промышленную) понижающую трансформаторную подстанцию П-7 на вторичное напряжение 10 кв, от которой в свою очередь питаются понижающие подстанции потребителей — П-8, П-9, П-10 и др. От шин этих подстанций питаются электроприемники (как от шин подстанции П-1, П-2 и П-3).
Питание понижающих подстанций непосредственно от сборных шин станций или районных подстанций (подстанции П-1, П-2, П-3, П-8, П-9) целесообразно только при достаточно мощных и ответственных подстанциях. Группы небольших подстанций обычно целесообразнее питать от распределительных пунктов (РП), получающих питание от шин станции или районной подстанции.
На распределительном пункте электроэнергия не трансформируется, так как он предназначен только для распределения электроэнергии между отдельными понижающими подстанциями. От РП могут питаться подстанции городской электросети, цеховые подстанции и даже общезаводские подстанции.
Возможно питание нескольких подстанций от одной линии без сооружения РП, как это показано для подстанций П-10, П-11 и П-12. В обоих случаях уменьшаются число линий, отходящих от сборных шин станции или районной подстанции, и затраты на сооружение сети.
Подстанции П-10 и П-11 являются проходными, все остальные — тупиковыми, конечными.
Питание подстанций одиночными линиями, например питание подстанции П-1 линией Л-1, не обеспечивает бесперебойности электроснабжения, так как авария на линии или отключение ее для ремонта приводят к длительному прекращению питания потребителей подстанции. Для предотвращения этого резервируют питание подстанций, например, путем сооружения двух питающих линий: линий Л-3 и Л-4, питающих подстанцию П-3, линий Л-3 и Л-6, питающих РП, и др. В случае отключения одной из линий питание соответствующей подстанции бесперебойно продолжается по второй линии.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Трансформаторная подстанция: назначение, классификация, технические параметры, структура условного обозначения
Трансформаторная подстанция (ТП) — это электрическая подстанция, предназначенная для преобразования электрической энергии одного напряжения в энергию другого напряжения с помощью трансформаторов (определение согласно ГОСТ 24291-90). В народе данный правильный термин часто некорректно подменяют жаргоном «трансформаторная будка».
Отдельно выделяют комплектные трансформаторные подстанции, которые соответствуют ГОСТ 14695-97 или ГОСТ 14695-80 и о которых дальше и пойдет речь в статье. Другими словами, в статье вы найдете информацию именно о комплектных трансформаторных подстанциях негерметизированных в металлических оболочках общего назначения на напряжение до 10 кВ, которые предназначены для приема, преобразования и распределения электроэнергии трехфазного переменного тока частоты 50 и 60 Гц, изготавливаемые для различных отраслей народного хозяйства и для экспорта.
Комплектная трансформаторная подстанция (КТП) — электрическая подстанция, состоящая из шкафов или блоков со встроенным в них трансформатором и другим оборудованием распределительного устройства, поставляемая в собранном или подготовленном для сборки виде (определение согласно ГОСТ 24291-90).
Рис. 1. Пример трансформаторной подстанции
Назначение
Если говорить простым и весьма упрощенным языком, то трансформаторные подстанции служат для приёма, преобразования и распределения электрической энергии. Любая электрическая подстанция имеет силовой трансформатор, служащий для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.
Принимая высоковольтное напряжение сети 6-10 кВ, понижающая ТП преобразует его и передает потребителям — то есть нам. Приём и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого к потребителю уходит трёхфазное переменное напряжение 0,4 кВ. Для питания домашнего однофазного электрооборудования используется один из трёх фазных проводников L1; L2; L3, а также нейтральный проводник N.
КТП часто используют как источники питания в системах распределения электроэнергии (см. рисунок 2 ниже). На рисунке 2 показана система распределения энергии, соответствующая типу заземления системы TN-C-S. В качестве источника питания (ПС) используется трансформаторная подстанция.
Классификация
Классификация исполнений КТП должна соответствовать указанной в таблице 1 и предусматриваться в технических условиях на конкретные типы КТП.
Признак классификации КТП | Исполнение |
По виду силового трансформатора | С масляным трансформатором; с герметичным масляным трансформатором; с трансформатором, заполненным негорючим жидким диэлектриком; с сухим трансформатором. |
По способу выполнения нейтрали обмотки трансформатора на стороне низшего напряжения (НН) | С глухозаземленной нейтралью; с изолированной нейтралью. |
По взаимному расположению частей КТП | Однорядное, двухрядное. |
По числу применяемых силовых трансформаторов | С одним трансформатором; с двумя и более трансформаторами. |
По выполнению вводов в УВН 1 | Кабельный, шинный, воздушный |
По выполнению выводов из РУНН 2 | Шинный, воздушный, кабельный (верхнее или нижнее расположение) |
По виду климатического исполнения | У1; ХЛ1; УХЛ1; Т1; У3; Т3 по ГОСТ 15150, ГОСТ 15543.1 и в сочетании категорий размещения для исполнений У и Т (смешанная установка): 1 – для УВН, шинопровода и силового трансформатора; 3 – для РУНН. |
По степени защиты оболочки | По ГОСТ 14254 |
По способу установки автоматических выключателей | С выдвижными выключателями; со стационарными выключателями. |
По наличию коридора (тамбура) обслуживания в УБН и РУНН категории размещения 1 | Без коридора (тамбура) обслуживания; с коридором (тамбуром) обслуживания. |
Примечания к таблице 1 (согласно [2]):
Основные технические параметры
Основные параметры КТП должны соответствовать указанным в таблице 2.
Наименование параметра | Значение |
Мощность силового трансформатора, кВ·А | 25; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500 |
Номинальное напряжение на стороне высшего напряжения (ВН), кВ | 6; 10 |
Наибольшее рабочее напряжение на стороне ВН, кВ | 7,2; 12 |
Номинальное линейное напряжение на стороне НН, кВ | 0,23; 0,4; 0,69 |
Номинальный ток сборных шин на стороне ВН, А | 6; 10; 16; 25; 40; 63; 100; 160; 250 |
Номинальный ток сборных шин на стороне НН, А | 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000 |
Ток термической стойкости в течение 3 с на стороне ВН, кА | 4; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40 |
Ток электродинамической стойкости на стороне ВН, кА | 10; 16; 21; 26; 32; 41; 51; 64; 81; 102 |
Уровень изоляции по ГОСТ 1516.1 | Нормальная изоляция; облегченная изоляция. |
Частота, Гц | 50; 60 |
Примечания к таблице 2 (согласно [2]):
Номинальные токи вводов ВН и НН, а также сборных шин НН КТП, должны быть не менее номинальных токов силового трансформатора.
Сечение нейтральной шины в РУНН должно соответствовать 50 % номинального тока силового трансформатора. По заказу потребителя допускается применять нейтральные шины, соответствующие 70 % номинального тока.
В шкафах РУНН групповые ответвления от сборных шин к нескольким коммутационным аппаратам главной цепи должны выдерживать длительную нагрузку, равную сумме номинальных токов подключенных аппаратов, но не более номинального тока трансформатора. В технически обоснованных случаях допускается указанную нагрузку уменьшать до 70 % номинального тока.
Стойкость к токам короткого замыкания сборных шин РУНН и ответвлений от них в пределах КТП должна соответствовать стойкости к току короткого замыкания вводов со стороны НН трансформатора. Продолжительность тока термической стойкости – 1 с.
При установке на вводе НН КТП автоматического выключателя сборные шины и ответвления от них должны соответствовать термической и динамической стойкости выключателя, но не более стойкости к току короткого замыкания вводов со стороны НН силового трансформатора. Продолжительность действия тока термической стойкости должна быть равна времени верхнего значения срабатывания в зоне токов короткого замыкания выключателя.
Структура условного обозначения КТП
Пример условного обозначения типа КТП мощностью 400 кВ·А, класса напряжения 10 кВ, на номинальное напряжение на стороне НН 0,4 кВ, климатического исполнения ХЛ, категории размещения 1:
То же, двух трансформаторной КТП мощностью 1600 кВ·А, класса напряжения 6 кВ, на номинальное напряжение на стороне НН 0,69 кВ, климатического исполнения У, категории размещения 3:
То же, КТП мощностью 1000 кВ·А, класса напряжения 10 кВ, на номинальное напряжение на стороне НН 0,4 кВ, климатического исполнения У, категории размещения для вводного устройства со стороны высшего напряжения, шинопровода и трансформатора – 1, а распределительного устройства со стороны низшего напряжения – 3:
КТП-1000/10/0,4 – У1 (РУНН – У3)
В технических условиях на конкретные типы КТП допускается применять дополнительные буквенные обозначения после обозначения КТП, поясняющие тип или назначение КТП.