Для чего нужна профильная физика
СТАНДАРТ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ
ПО ФИЗИКЕ
ПРОФИЛЬНЫЙ УРОВЕНЬ
Изучение физики на профильном уровне среднего (полного) общего образования направлено на достижение следующих целей:
· освоение знаний о методах научного познания природы; со-временной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий – классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, элементов квантовой теории;
· овладение умениями проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, выдвигать гипотезы и строить модели, устанавливать границы их применимости;
· применение знаний для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения информации физического содержания и оценки достоверности, использования современных информационных технологий с целью поиска, переработки и предъявления учебной и научно-популярной информации по физике;
· развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний, выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;
· использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и охраны окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ
ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ
ФИЗИКА КАК НАУКА.
МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ
Механическое движение и его относительность. Уравнения прямолинейного равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение.
Механические колебания. Амплитуда, период, частота, фаза колебаний. Уравнение гармонических колебаний. Свободные и вынужденные колебания. Резонанс. Автоколебания. Механические волны. Длина волны. Уравнение гармонической волны.
Наблюдение и описание различных видов механического движения, равновесия твердого тела, взаимодействия тел и объяснение этих явлений на основе законов динамики, закона всемирного тяготения, законов сохранения импульса и механической энергии.
Проведение экспериментальных исследований равноускоренного движения тел, свободного падения, движения тел по окружности, колебательного движения тел, взаимодействия тел.
Практическое применение физических знаний в повседневной жизни для учета: инертности тел и трения при движении транспортных средств, резонанса, законов сохранения энергии и импульса при действии технических устройств.
Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.
Уравнение состояния идеального газа. Изопроцессы. Границы применимости модели идеального газа.
Модель строения твердых тел. Механические свойства твердых тел. Изменения агрегатных состояний вещества.
Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики и его статистическое истолкование. Принципы действия тепловых машин. КПД тепловой машины. Проблемы энергетики и охрана окружающей среды.
Наблюдение и описание броуновского движения, поверхностного натяжения жидкости, изменений агрегатных состояний вещества, способов изменения внутренней энергии тела и объяснение этих явлений на основе представлений об атомно-молекулярном строении вещества и законов термодинамики.
Проведение измерений давления газа, влажности воздуха, удельной теплоемкости вещества, удельной теплоты плавления льда; выполнение экспериментальных исследований изопроцессов в газах, превращений вещества из одного агрегатного состояния в другое.
Практическое применение физических знаний в повседневной жизни:
при оценке теплопроводности и теплоемкости различных веществ;
для использования явления охлаждения жидкости при ее испарении, зависимости температуры кипения воды от давления.
Объяснение устройства и принципа действия паровой и газовой турбин, двигателя внутреннего сгорания, холодильника.
Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле. Энергия электрического поля.
Электрический ток. Последовательное и параллельное соединение проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, жидкостях, газах и вакууме. Плазма. Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.
Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Переменный ток. Конденсатор и катушка в цепи переменного тока. Активное сопротивление. Электрический резонанс. Производство, передача и потребление электрической энергии.
Постулаты специальной теории относительности Эйнштейна. Пространство и время в специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс. Связь полной энергии с импульсом и массой тела. Дефект массы и энергия связи.
Практическое применение физических знаний в повседневной жизни для сознательного соблюдения правил безопасного обращения с электробытовыми приборами.
Объяснение устройства и принципа действия физических приборов и технических объектов: мультиметра, полупроводникового диода, электромагнитного реле, динамика, микрофона, электродвигателя постоянного и переменного тока, электрогенератора, трансформатора, лупы, микроскопа, телескопа, спектрографа.
Гипотеза М.Планка о квантах. Фотоэффект. Опыты А.Г.Сто-летова. Уравнение А.Эйнштейна для фотоэффекта. Фотон. Опыты П.Н.Лебедева и С.И.Вавилова.
Наблюдение и описание оптических спектров излучения и поглощения, фотоэффекта, радиоактивности; объяснение этих явлений на основе квантовых представлений о строении атома и атомного ядра.
Проведение экспериментальных исследований явления фотоэффекта, линейчатых спектров.
Объяснение устройства и принципа действия физических приборов и технических объектов: фотоэлемента, лазера, газоразрядного счетчика, камеры Вильсона, пузырьковой камеры.
Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд. Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов. «Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
Наблюдение и описание движения небесных тел.
Компьютерное моделирование движения небесных тел.
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения физики на профильном уровне ученик должен
· смысл понятий: физическое явление, физическая величина, модель, гипотеза, принцип, постулат, теория, пространство, время, инерциальная система отсчета, материальная точка, вещество, взаимодействие, идеальный газ, резонанс, электромагнитные колебания, электромагнитное поле, электромагнитная волна, атом, квант, фотон, атомное ядро, дефект массы, энергия связи, радиоактивность, ионизирующее излучение, планета, звезда, галактика, Вселенная;
· смысл физических величин: перемещение, скорость, ускорение, масса, сила, давление, импульс, работа, мощность, механическая энергия, момент силы, период, частота, амплитуда колебаний, длина волны, внутренняя энергия, средняя кинетическая энергия частиц вещества, абсолютная температура, количество теплоты, удельная теплоемкость, удельная теплота парообразования, удельная теплота плавления, удельная теплота сгорания, элементарный электрический заряд, напряженность электрического поля, разность потенциалов, электроемкость, энергия электрического поля, сила электрического тока, электрическое напряжение, электрическое сопротивление, электродвижущая сила, магнитный поток, индукция магнитного поля, индуктивность, энергия магнитного поля, показатель преломления, оптическая сила линзы;
· смысл физических законов, принципов и постулатов (формулировка, границы применимости): законы динамики Ньютона, принципы суперпозиции и относительности, закон Паскаля, закон Архимеда, закон Гука, закон всемирного тяготения, законы сохранения энергии, импульса и электрического заряда, основное уравнение кинетической теории газов, уравнение состояния идеального газа, законы термодинамики, закон Кулона, закон Ома для полной цепи, закон Джоуля-Ленца, закон электромагнитной индукции, законы отражения и преломления света, постулаты специальной теории относительности, закон связи массы и энергии, законы фотоэффекта, постулаты Бора, закон радиоактивного распада; основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;
· описывать и объяснять результаты наблюдений и экспе-риментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризация тел при их контакте; взаимодействие проводников с током; действие магнитного поля на проводник с током; зависимость сопротивления полупроводников от температуры и освещения; электромагнитная индукция; распространение электромагнитных волн; дисперсия, интерференция и дифракция света; излучение и поглощение света атомами, линейчатые спектры; фотоэффект; радиоактивность;
· приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;
· описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики ;
· применять полученные знания для решения физических задач;
· определять: характер физического процесса по графику, таблице, формуле; продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа;
· измерять: скорость, ускорение свободного падения; массу тела, плотность вещества, силу, работу, мощность, энергию, коэффициент трения скольжения, влажность воздуха, удельную теплоемкость вещества, удельную теплоту плавления льда, электрическое сопротивление, ЭДС и внутреннее сопротивление источника тока, показатель преломления вещества, оптическую силу линзы, длину световой волны; представлять результаты измерений с учетом их погрешностей;
· приводить примеры практического применения физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций; квантовой физики в создании ядерной энергетики, лазеров;
· воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета);
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
· анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
· рационального природопользования и защиты окружающей среды;
определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.
[1] Курсивом в тексте выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников.
Как сдать ЕГЭ-2022 по физике
Рассказываем о структуре экзамена по физике и делимся советами преподавателя
Для успешной подготовки к ЕГЭ по физике надо чётко понимать, для чего вам это нужно. Ответ может быть любым: стать высококлассным, востребованным специалистом, получить фундаментальные знания, поступить в конкретный вуз. Поставленная цель даст необходимый импульс в работе при подготовке к ЕГЭ.
Структура экзамена и его продолжительность
На всю экзаменационную работу отводится 235 минут. Примерное время на выполнение заданий составляет:
Число заданий | 30 |
Первичный балл | 54 |
Количество заданий с развёрнутым ответом | 7 |
Количество заданий с кратким ответом в виде числа | 11 |
Количество заданий с кратким ответом в виде набора цифр | 12 |
Темы ЕГЭ по физике
На ЕГЭ-2022 будут проверяться элементы содержания из следующих разделов и тем курса физики:
Первая часть экзаменационной работы включает два блока заданий: первый проверяет освоение понятийного аппарата. Данный блок содержит 21 задание, которые группируются исходя из тематической принадлежности следующим образом: задания 1–2 — интегрированные, 3–8 — механика, 9–13 — молекулярная физика, 14–19 — электродинамика, 20–21 — квантовая физика. Второй блок, куда входят задания 22–23, проверяет методологические умения.
Баллы ЕГЭ по физике
По уровню сложности и по количеству баллов задания распределяются следующим образом.
Уровень сложности | Число заданий | Первичный балл | Процент от максимального балла |
---|---|---|---|
Базовый | 19 | 26 | 48% |
Повышенный | 7 | 15 | 28% |
Высокий | 4 | 13 | 24% |
В демоверсии на сайте ФИПИ отражены изменения, которые будут включены в контрольно-измерительные материалы ЕГЭ-2022. Задание 1 содержит материал из различных разделов курса физики. В нём надо будет выбрать все правильные утверждения о физических явлениях.
Задание 2 — на соответствие: в нём даны различные зависимости физических величин, для которых надо подобрать подходящий вид графика, ответ записать в виде набора цифр. Для того чтобы успешно справиться с этим заданием, достаточно посмотреть, какие зависимости физических величин представлены в кодификаторе, установить вид функции для этой зависимости, начертить нужный график. Это примеры двухбалльных заданий на множественный выбор и соответствие.
Любой вариант содержит задания трёх уровней сложности — базового, повышенного и высокого. Задания базового уровня включены в первую часть работы. Это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов, а также знаний о свойствах космических объектов. Задания повышенного уровня сложности включены в первую и вторую части экзаменационного варианта. Например, задание 1 — это задание базового уровня сложности, задание 2 — повышенного.
В число заданий с развёрнутым ответом включены задания повышенного и высокого уровней сложности:
Задания 25–26 — двухбалльные, 27–29 — трёхбалльные, за задание 30 можно получить 4 балла при полном правильном решении.
Перевод первичных баллов в тестовые
При переводе первичных баллов в тестовые возможны изменения шкалы, поскольку необходимо знать реальные результаты ЕГЭ-2022. Следует отметить, что каждый вуз устанавливает свой минимальный порог баллов, необходимых для поступления. Минимальный балл для получения аттестата —11 первичных баллов, или 36 тестовых. Далее представлен фрагмент таблицы перевода первичных баллов в тестовые. Баллы из этой области свидетельствуют о высоком уровне подготовки, наличии достаточных знаний для успешной учёбы в вузе.
Первичный балл | Тестовый балл |
---|---|
39 | 74 |
40 | 76 |
41 | 78 |
42 | 80 |
43 | 81 |
44 | 83 |
45 | 85 |
46 | 87 |
47 | 89 |
48 | 91 |
49 | 93 |
50 | 95 |
51 | 97 |
52 | 99 |
Что нужно знать при подготовке к ЕГЭ по физике и учитывать во время самого экзамена
Советы по подготовке и напутствие выпускникам
преподаватель физики в «Фоксфорде» и МФТИ,
автор олимпиадных задач
— Просматривайте раздел за разделом. Начать лучше с механики, на ней всё основывается. Затем переходите к молекулярной физике, к термодинамике, электродинамике. Рассматривайте всё в стандартном порядке, изучайте теорию, а затем — практикуйтесь на решении конкретных задач из проверенных источников.
— Для подготовки есть техника-лайфхак — «от простого к сложному». Она работает независимо от изначального уровня подготовки. Нужно начинать с базовых понятий, с теоретического материала, только затем переходить к простым заданиям, а как разберётесь в них — к сложным.
— Самое главное — «качать» каждую из задач, искать и пробовать разные варианты решения. Так вы научитесь по-настоящему думать.
— Не бойтесь ошибок во время подготовки. Разбирайте их, обсуждайте с преподавателем. В диалоге запоминается лучше.
— Не ждите сиюминутного результата. Синдром отличника во время подготовки к ЕГЭ по физике — ни к чему. Если что-то не получается, это ещё не повод прекращать и переставать заниматься. Это повод спокойно отреагировать, разобраться, доучить и работать дальше. Наблюдайте свой прогресс, пусть даже если он медленный.
— Недопустимо прорабатывать только номера из ЕГЭ. Сдать физику на высокий балл можно, если учить её как предмет. Только тогда, при надлежащем опыте и умении анализировать, всё получится.
— Старайтесь сохранять интерес к предмету, азарт. Думайте о положительных моментах, и тогда, если вы будете держать их в голове во время трудностей, у вас будут силы продолжать.
Сложно ли сдать ЕГЭ по физике
Всё зависит от уровня подготовки, нацеленности на успех, готовности трудиться. Нельзя выучить теорию без применения её к решению практических задач. С другой стороны, без знания законов физики, необходимого фактического материала невозможно решать задачи.
Получается, что изучать, повторять теорию и решать задачи нужно одновременно. При этом не надо ничего выдумывать, нужно просто вспомнить логику физических законов — они работают объективно без нас — и приспособить их к конкретной задаче.
Итак, до экзамена ещё почти целый год. За это время можно успеть что-то сделать: решая задания ЕГЭ прошлых лет, выявить пробелы в знаниях, начать работу по их устранению, обратить внимание на оформление задач с развёрнутым ответом, решать больше задач по темам, которые будут проверяться на ЕГЭ. Тогда придёт опыт и будут сформированы необходимые навыки.
Изображение на обложке: Kinga Gazda / Dribbble
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter
Точные науки: куда поступать и кем быть, если сдаёте математику, физику и информатику
Какой вуз выбрать и что ожидает будущих студентов после окончания обучения
В этой статье собран материал открытого занятия с участием преподавателей «Фоксфорда» Владимира Шарича, Павла Труфанова, Михаила и Полины Пенкиных. На вебинаре в январе 2020 они рассказали о поступлении и учёбе в ведущих вузах, а также о перспективных профессиях.
Информатика
Павел Николаевич Труфанов — призёр Всероса по информатике, преподаватель олимпиадных сборов.
Ведущие университеты
Московская Вышка стала популярным вузом по направлению «Информатика», когда в 2014 году «Яндекс» предложил НИУ ВШЭ сделать совместный факультет. Так появился факультет компьютерных наук и программа «Прикладная математика и информатика», где сочетаются сильная математика и информатика. Проходной балл складывается из результатов ЕГЭ по трём предметам и индивидуальных достижений.
На второй строчке рейтинга физтех-школа прикладной математики и информатики МФТИ с проходным баллом 301. Чтобы поступить туда, нужно сдать ЕГЭ на максимальные баллы, либо стать призёром олимпиад, и добрать ещё несколько баллов с помощью портфолио.
Проходной балл на факультет вычислительной математики и кибернетики МГУ — 440 баллов из 510. Абитуриенты сдают 5 вступительных испытаний, и хотя общий балл выглядит внушительно, отдельные экзамены не нужно сдавать на максимальный балл:
4) Информатика и ИКТ (ЕГЭ);
5) Русский язык (ЕГЭ).
В четвёртой строчке таблицы проходные баллы в ИТМО указаны для разных кафедр в рамках одного направления. Чем выше проходной балл, тем популярнее кафедра. Санкт-Петербургский ИТМО является семикратным чемпионом мира по спортивному программированию. Некоторые абитуриенты выбирают ИТМО, чтобы учиться у преподавателей, которые готовят команды к соревнованиям.
Завершают список Петербургский филиал НИУ ВШЭ (бывший университет АУ) и СПбГУ. Питерская Вышка тоже популярна у олимпиадников, поскольку там делают упор на алгоритмистику. В СПбГУ стоит обратить внимание на программу «Математика, алгоритмы и анализ данных». Она открылась в 2019 году при поддержке компаний Яндекс и JetBrains.
Проходные баллы везде высокие, поступить сложно, но это топовые вузы. Если вы понимаете, что ваш балл будет ниже, есть другие хорошие вузы, где учат информатике:
Учёба в вузе
В основном абитуриенты поступают на два направления, но есть и другие. В НИУ ВШЭ на факультете ПМИ (прикладная математика и информатика) готовят специалистов по data science, учат машинному обучению, разработке искусственного интеллекта. Первые два года из информатики будет только алгоритмистика (по сути математика) и какой-нибудь язык программирования. С третьего курса начнутся прикладные дисциплины: распределённые системы, компьютерная безопасность, машинное обучение.
Второе направление — ПИ («Программная инженерия») — более прикладное, где математики меньше и заканчивается она раньше. Здесь учат разрабатывать приложения, программировать десктопные устройства и системы, где нужен качественный код.
Первое направление более престижное: это научная сфера, и зарплата там выше, но лучше выбирать то, что по душе.
Во всех вузах на первых курсах есть математический анализ, аналитическая геометрия, линейная алгебра, общая физика, программирование. Нужно знакомиться с разными направлениями, смотреть, что вам интересно и что из этого востребовано.
Перспективы выпускников
Павел Труфанов: «Лучше начать работать ещё во время учёбы: стажировка, работа с частичной занятостью 20 часов в неделю. Во многих вузах можно успевать совмещать работу и учёбу».
Выбор стажировок не всегда зависит от вуза. Обычно студенты сами ищут и подают заявки на стажировки, «Вышка» сотрудничает с Яндексом — там немного проще устроиться в компанию. Знания, которые дают в вузе, сейчас максимально практические, на рабочем месте вы не услышите «забудьте всё, чему вас учили в вузе и выкиньте диплом».
Чтобы попасть на стажировку, придётся отправить 20-30 писем, прежде чем вас пригласят на собеседование. Инициатива — залог успеха.
Тем, кто задумывается о профессии разработчика игр стоит уделять время и программированию, и физике. Будущие создатели игр изучают искусственный интеллект или занимаются вычислениями на видеокартах, программируют шейдеры.
«Мы с Полиной смотрели вакансии на hh.ru — требуются разработчики компьютерных игр со знанием прикладной физики и информатики», — Михаил Пенкин.
Физика
Михаил Александрович Пенкин — преподаватель кафедры общей физики МФТИ, автор олимпиадных задач.
Полина Васильевна Пенкина — выпускница физфака МГУ, преподаватель и аспирантка кафедры физики НИК ВШЭ, сотрудник МФТИ.
Ведущие университеты
В таблице перечислены вузы, где физическое направление охватывает широкий спектр научных отраслей. Первое место по праву занимает МФТИ: факультеты объединились в физтех-школы, но ничего не поменялось в изучении физики, которую штудируют на 1-3 курсах. Что бы вы ни выбрали, везде будет физика, а по прикладным направлениям вы сможете многому научиться.
Физтех-школа ЛФИ (физические исследования имени Ландау) — результат объединения ФОПФ и ФПФЭ. В плане физики ЛФИ — топовое место, её там больше всего, и помимо базы есть дополнительная теория и практика. ФЭФМ — то, что раньше было «Кванты» (Факультет физической и квантовой электроники).
Ещё стоит выделить физфак МГУ и физфак ВШЭ — там, как и на Физтехе, представлено несколько направлений и фундаментальная физика на хорошем уровне. В ВШЭ физфак появился недавно, там всё в процессе развития, однако в ближайшие несколько лет они могут сравняться и перегнать МФТИ. В этом году планируется первый набор на физфак Вышки в Питере.
«Обычно объявляют балл первой волны, с которым вас точно возьмут. Если людей с оригиналом больше, чем мест, в ВШЭ могут зачислить абитуриентов за счёт средств вуза. То есть у вас будет стипендия, и вы не будете платить за обучение.Официально вы будете числиться на коммерции, просто расходы Вышка берёт на себя.
ВШЭ добавляют места, если олимпиадников много. В прошлом году снизили балл первой волны: набор был 50, а подали 80. Людей взяли за счёт средств ВШЭ, хотя проходной мог быть выше, если бы в приёмной комиссии не перестраховались. В этом году он будет выше», — Полина Пенкина.
Высокий проходной балл в МГУ — 345 — складывается из ЕГЭ и ДВИ.
Для тех, кто любит Санкт-Петербург, отличный вариант — физфак СПбГУ, а у МИФИ открыто 11 региональных филиалов.
Ведущие вузы отличаются высокими проходными баллами и широкими образовательными возможностями. Получить качественное образование можно и в других хороших университетах, например, в НГУ в прошлом году проходной балл составил 243 балла. При этом в НГУ призёров олимпиад 1, 2 и 3 уровня принимали без экзаменов.
В Санкт-Петербургском ИТМО сильная фотоника, они даже называют это подразделение мегафакультетом. В МИРЭА развиваются отдельные направления: «магнетизм», «информатика», «математика».
МГТУ им. Баумана физику преподают по чётным семестрам, например, на 1 и 2 курсе только со второго семестра. По уровню эта дисциплина не сильно отличается от школьной.
«В наш перечень вошли вузы, где будущие учёные могут углублённо изучать физику. Бауманка даёт возможность получить инженерное образование. Там и в ряде других вузов физику изучают как инструмент для погружения в инженерное дело и технические специальности», — Владимир Шарич.
Учёба в вузе
Лабораторные работы
Обычно в школе вся физика теоретическая, а в вузе с первых недель начинаются лабораторные работы. Приходится быстро разбираться, как их оформлять, как считать погрешность, как строить графики.
«Не всегда студенты понимают, для чего нужны лабы, как это в жизни применить. Нужно просто потерпеть», — Михаил Пенкин.
По общей физике лабораторные выполняют на 1-3 курсе. На третьем курсе либо начинаются спецпрактикумы, либо небольшие работы по экспериментальной физике, либо научная работа по вашему направлению на кафедре.
Объём работ разный. В МГУ на физфаке в первом триместре 12 лабораторных по механике и 4 — введение в технику эксперимента. На Физтехе восемь работ за семестр.
«В МГУ ты целыми днями считаешь практические работы — это объёмно и поэтому тяжело. Там ещё и матан! Дают время досдать, но приходится попотеть. Я была в шоке первый месяц. Это тяжело, но вам понравится!», — Полина Пенкина.
В ВШЭ лабораторных еще меньше, чем на Физтехе, но нет описаний, как выполнять работу. Нужно самому собирать установку и программировать: в высокоуровневой среде Labview студенту предстоит соединять ниточками модули, которые могут понадобиться в настоящей работе. Это более творческое занятие, когда приходится с нуля учиться самому собирать всё. Школьникам, знакомым с робототехникой, будет несложно справиться с такой задачей.
На Физтехе лабораторные выполняют на протяжении 3 курсов: темп работы ниже, но объём тоже большой.
Для физики нужна математика, которую расскажут позже
«Уже на первой неделе преподаватели на лекциях будут интегрировать, производные считать направо и налево, будто вы это хорошо умеете. Придётся погружаться в математику, разбираться, что такое интеграл, зачем и как их считать, для чего производная и как провести с ней обоснование. Так будет на протяжении всего обучения в вузе», — Михаил Пенкин.
«Обычно страшно на 2 курсе. Есть такая дисциплина в матанализе — теорпол (теория поля). Там изучают роторы, дивергенции, градиенты и др. Этот «тяжёлый» математический аппарат необходим в электромагнетизме, который, как правило, изучают на 2 курсе. Приходится тратить немало времени на математику, чтобы понять физику», — Михаил Пенкин.
«До некоторых вещей я «дошла» только когда окончила университет. Так что советую студентам ходить на дополнительные курсы, которые вузы начали вводить в последние несколько лет. Например, в Вышке со второго семестра уже начинается термех, поэтому на 1 курсе появился предмет «математический аппарат в физике»», — Полина Пенкина.
Чтобы не сойти с ума от сложных математических вычислений в физике, можно смотреть онлайн-курсы по математике от зарубежных вузов. Так вы сможете понять материал, который на лекциях в вашем вузе будут разбирать нескоро.
Высокий темп подачи материала
Некоторые вузы пробуют новые схемы, но в основном учебный процесс состоит из лекций и семинаров. На лекциях рассказывают теорию, а на семинарах в подгруппах решают задачи. Преподаватели везде разные, и к каждому нужно привыкать.
В крупных вузах много лекторов. Например, на Физтехе может быть восемь лекторов по физике, а семинаристов в десять раз больше. Они не договариваются, кто в какой последовательности рассказывает темы. Если семинарист игнорирует вопросы студентов, имеет смысл менять семинариста или изучать теорию самому.
«Когда вы переходите из школы в вуз, о вас перестают заботиться. Нет классного руководителя, вы сами по себе и только от вас зависит прогресс в учёбе», — Владимир Шарич.
Домашнее задание в вузе не всегда проверяют — это зависит от университета и семинариста.
Михаил Пенкин: «У нас был план на семестр: перечень подтем в «задавальнике» — список всех задач, которые ты должен сделать. Я садился и писал себе план в зависимости от тяжести недели. На семинары ходить — это для решения задач самое важное. Бывает, к одному лектору ходить комфортно, к другому нет. Сходите на несколько лекций. Если никто не понравился, всегда есть книжка или онлайн-курсы».
Несмотря на высокую учебную нагрузку, важно рассчитывать силы, успевать отдыхать, заниматься спортом. Постарайтесь составить своё расписание так, чтобы было время сходить в кино, встретиться с друзьями.
Владимир Шарич: «Если не иметь времени на досуг, кончится запас сил и продуктивность снизится, знания не будут лезть в голову».
Хорошие отметки важны для тех, кто планирует стажироваться и учиться за рубежом. При этом не обязательно быть круглым отличником, важно успевать по предметам своего профиля. При поступлении в магистратуру заграничные вузы смотрят на публикации, а когда их мало, учитывают средний балл студента.
Перспективы выпускников
Студенты физфака во время учёбы занимаются в лабораториях, выбирают направление, ведут научную работу. Со 2-3 курса нужно проявлять инициативу.
Полина Пенкина: «Если вы учитесь на физике, есть академический трек: бакалавриат, магистратура, аспирантура. Кто-то уезжает за границу, кто-то остаётся здесь. Нужно выбрать научного руководителя, хорошую лабораторию и потихонечку развиваться. В вузах много направлений, так что не надо бояться поменять кафедру, если сразу не получилось выбрать место по душе.
В компаниях есть отделы исследований и разработки. Раньше они были только за границей, но сейчас Samsung и Huawei открыли эти подразделения в России. В Samsung занимаются оптикой, Huawei — связью по оптоволоконным каналам. Так что можно найти работу по специальности и вне академической науки».
Михаил Пенкин: «Мой одногруппник изучал прикладную физику и информатику, а затем уехал получать Phd по математике (степень кандидата наук по российской системе) в США. В результате он оказался в Диснее, работал над мультфильмами «Моана», «Холодное сердце», «Зверополис»: выстраивал физику движения мышц или, например, полёты снежков».
На Физтехе более сотни базовых кафедр и столько же мест для стажировки. При желании любой сможет найти точку приложения своих сил и ума.
Математика
Владимир Златкович Шарич — преподаватель московских олимпиадных сборов, член жюри математических соревнований.
Ведущие университеты
«Чистая математика мало где встречается, и я советую трижды подумать, прежде чем за это браться», — Владимир Шарич.
В перечень вошли вузы, где изучают чистую математику в отличие от прикладной. Прикладные математики — это люди с базовым математическим образованием, которые решают задачи из других сфер. Они могут заниматься моделированием: перекладывать жизненную задачу на язык переменных, формул, графиков, либо заниматься решением этих моделей, например, с помощью вычислительных методов.
Прикладная математика есть почти везде, она применяется и в социально-гуманитарной сфере, например, в психологии и социологии. Проходные баллы разные, что не говорит о качестве обучения. Значок бесконечности в строке матмеха СПбГУ стоит потому, что всех взяли без вступительных испытаний по олимпиадам. Никого не зачислили по баллам, поэтому проходного балла просто нет.
ФМ — это факультет математики ВШЭ, ФПМИ — физтех-школа прикладной математики и информатики. Когда говорят о мехмате и матмехе, под механикой подразумевается раздел физики, а не починка автомобилей.
Учёба в вузе
«Программы обучения мало отличаются в разных вузах, поэтому уровень знаний зависит от усилий самого студента. Можно поступить в крутой вуз и ничего не знать к 3 курсу, а можно в среднем по рейтингам региональном университете стать востребованным специалистом», — Владимир Шарич.
Студента матфака ждут объёмные домашние задания: необходимость прорешивать 100500+ задач. Вместо школьных пятиминуток у доски вам предстоят долгие беседы один на один с преподавателем — сдача задач, когда студент рассказывает свои решения. При этом математика в вузе — это совершенно новый уровень абстракции, так что лучше вникать в определения и теоремы до начала учёбы в университете.
Перспективы выпускников
В математике сейчас востребованы статистика, вероятность, дискретная математика и механика. Любители абстрактной чистой математики могут найти себя в преподавании. Некоторые вузы сотрудничают с Центром педагогического мастерства: студенты помимо основной специальности получают опыт преподавания в школе.
Что запомнить
Информатика
Физика
Математика
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter