Для чего нужна шестнадцатеричная система счисления
Шестнадцатеричная система счисления
Системы счисления в культуре | |
---|---|
Индо-арабская система счисления | |
Арабская Индийские Тамильская Бирманская | Кхмерская Лаоская Монгольская Тайская |
Восточноазиатские системы счисления | |
Китайская Японская Сучжоу Корейская | Вьетнамская Счётные палочки |
Алфавитные системы счисления | |
Абджадия Армянская Ариабхата Кириллическая | Греческая Эфиопская Еврейская Катапаяди |
Другие системы | |
Вавилонская Египетская Этрусская Римская | Аттическая Кипу Майская |
Позиционные системы счисления | |
Десятичная система счисления (10) | |
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60 | |
Нега-позиционная система счисления | |
Симметричная система счисления | |
Смешанные системы счисления | |
Фибоначчиева система счисления | |
Непозиционные системы счисления | |
Единичная (унарная) система счисления | |
Список систем счисления |
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16.
Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Содержание
Применение
Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.
В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).
Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде.
Способы записи
В математике
В математике основание системы счисления принято указывать в десятичной системе в нижнем индексе. Например, десятичное число 1443 можно записать как 144310 или как 5A316.
В языках программирования
В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:
В электронных калькуляторах
Б3-34 и ему подобные используют «-», «L», «C», «Г», «E» « » (space) на их экране.
Перевод чисел из одной системы счисления в другую
Перевод чисел из шестнадцатеричной системы в десятичную
Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.
Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:
5A316 = 3·16 0 +10·16 1 +5·16 2
= 3·1+10·16+5·256 = 3+160+1280 = 144310
Перевод чисел из двоичной системы в шестнадцатеричную и наоборот
Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную нужно заменить каждую его цифру на соответствующую тетраду из нижеприведенной таблицы перевода.
0101101000112 = 0101 1010 0011 = 5A316
Таблица перевода чисел
0hex | = | 0dec | = | 0oct | 0 | 0 | 0 | 0 |
1hex | = | 1dec | = | 1oct | 0 | 0 | 0 | 1 |
2hex | = | 2dec | = | 2oct | 0 | 0 | 1 | 0 |
3hex | = | 3dec | = | 3oct | 0 | 0 | 1 | 1 |
4hex | = | 4dec | = | 4oct | 0 | 1 | 0 | 0 |
5hex | = | 5dec | = | 5oct | 0 | 1 | 0 | 1 |
6hex | = | 6dec | = | 6oct | 0 | 1 | 1 | 0 |
7hex | = | 7dec | = | 7oct | 0 | 1 | 1 | 1 |
8hex | = | 8dec | = | 10oct | 1 | 0 | 0 | 0 |
9hex | = | 9dec | = | 11oct | 1 | 0 | 0 | 1 |
Ahex | = | 10dec | = | 12oct | 1 | 0 | 1 | 0 |
Bhex | = | 11dec | = | 13oct | 1 | 0 | 1 | 1 |
Chex | = | 12dec | = | 14oct | 1 | 1 | 0 | 0 |
Dhex | = | 13dec | = | 15oct | 1 | 1 | 0 | 1 |
Ehex | = | 14dec | = | 16oct | 1 | 1 | 1 | 0 |
Fhex | = | 15dec | = | 17oct | 1 | 1 | 1 | 1 |
См. также
Ссылки
Полезное
Смотреть что такое «Шестнадцатеричная система счисления» в других словарях:
Шестнадцатеричная система счисления — позиционная система счисления с основанием 16, в которой для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. См. также: Позиционные системы счисления Финансовый словарь Финам … Финансовый словарь
шестнадцатеричная система счисления — 01.01.09 шестнадцатеричная система счисления [ hexadecimal (noun); HEX]: Метод представления данных в системе счисления с основанием 16 с использованием цифр от 0 до 9 и букв от А до F. Примечание Используется как удобное краткое средство записи… … Словарь-справочник терминов нормативно-технической документации
Шестнадцатеричная система — счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.… … Википедия
Система счисления — Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия
Шестнадцатиричная система счисления — Шестнадцатеричная система счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для… … Википедия
Восьмиричная система счисления — Восьмеричная система счисления позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7. Восьмеричная система часто используется в областях, связанных с цифровыми устройствами.… … Википедия
Позиционная система счисления — Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия
Шестнадцатиричная система исчисления — Шестнадцатеричная система счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для… … Википедия
Позиционная система — счисления система счисления, в которой один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр … Википедия
Позиционные системы счисления — Позиционная система счисления система счисления, в которой один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на… … Википедия
Для чего нужна шестнадцатеричная система счисления
Содержание статьи
Понятие шестнадцатеричной системы счисления
Привычная для человека система счисления – десятичная. В ее основу входят десять цифр от 0 до 9. Шестнадцатеричную систему отличает наличие в ней первых шести букв латинского алфавита для записи чисел помимо основных цифр. То есть после цифры 9 следует символ «A», который соответствует числу 10 для десятичной системы. Соответственно, F в шестнадцатеричной системе – это 16 в десятичной. Использование шестнадцати символов в системе – неслучайный выбор.
Единица информации – бит. Восемь бит образуют байт. Существует такое понятие, как машинное слово – это единица данных, представляющая собой два байта, то есть шестнадцать бит. Таким образом, используя шестнадцать различных символов, можно описывать любую информацию, которая при обмене данных будет наименьшей частицей. С ними можно производить любые арифметические действия, результат, соответственно, получится тоже в шестнадцатеричной системе.
Для того чтобы отличать, что число записано в шестнадцатеричной системе, после него записывают букву «h» или нижний индекс «16».
Применение
Наиболее широкое применение шестнадцатеричной системы счисления – это коды ошибок программных продуктов, например, операционной системы. Числа, заложенные в этих кодах, стандартизированы. Имея специальную таблицу, всегда можно определить, что именно означает та или иная ошибка.
В языках низкого уровня, максимально приближенным к машинным кодам шестнадцатеричная система применяется для написания программ. Многие программисты используют ее и при работе с языками высокого уровня, потому что числа в этой системе при помощи специальной таблицы соответствия легко переводятся в двоичную систему, на которой основана работа всей цифровой техники. Любая информация в компьютере, будь то музыкальный файл или текстовый документ, после трансляции представлена последовательностью исходного двоичного кода, а его удобнее просматривать представленным символами шестнадцатеричной системы.
Также одно из применений шестнадцатеричных символов – описание цветовых схем, то есть три компонента R, G, B описываются соответствующим данной системе способом. Данный подход к записи получил название шестнадцатеричный цвет
Возможность просмотреть программу в шестнадцатеричном коде позволяет отладить ее, внести изменения, а злоумышленниками данный подход используется для взлома программ.
Шестнадцатиричная система исчисления
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.
Содержание
Применение
Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, БЭСМ-6) использовали восьмеричную систему.
В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).
Способы записи
В математике
В математике систему счисления принято писать в подстрочном знаке. Например, десятичное число 1443 можно записать как 144310 или как 5A316.
В языках программирования
В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:
Перевод чисел из одной системы счисления в другую
Перевод чисел из шестнадцатеричной системы в десятичную
Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.
Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:
Перевод чисел из двоичной системы в шестнадцатеричную
Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.
Программирование на C, C# и Java
Уроки программирования, алгоритмы, статьи, исходники, примеры программ и полезные советы
ОСТОРОЖНО МОШЕННИКИ! В последнее время в социальных сетях участились случаи предложения помощи в написании программ от лиц, прикрывающихся сайтом vscode.ru. Мы никогда не пишем первыми и не размещаем никакие материалы в посторонних группах ВК. Для связи с нами используйте исключительно эти контакты: vscoderu@yandex.ru, https://vk.com/vscode
Шестнадцатеричная система счисления
Системы счисления – одна из самых главных основ информатики. Практически ни в одной школе и ни в одном университете не пропускают данную тему, но зачастую именно с переводом шестнадцатеричной системы у многих возникают проблемы, хотя это не такая уж сложная задача, и её перевод практически не отличается от других систем счисления.
Давайте рассмотрим эту систему поподробнее.
Для чего нужна шестнадцатеричная система
Итак, шестнадцатеричная система счисления, как следует из названия, имеет в своём основании число 16. Почему так? Дело в том, что единица информации в информатике – это бит. Восемь бит образуют байт. Также информационной среде существует такое понятие, как машинное слово – это минимальная единица данных, представляющая собой шестнадцать бит, то есть два байта. Считается, что машинное слово – это минимальная величина разрядности регистров процессора, при которой можно работать с ЭВМ.
Так вот, как мы знаем, компьютер работает на двоичном коде. Однако, если Вы когда-нибудь переводили числа из двоичной системы в десятичную, то замечали, что в ней бывает довольно много разрядов, особенно при переводе больших чисел, например, перевод числа 5132 в двоичной системе будет записано так:
Как можно увидеть, при переводе в двоичную систему этого числа у нас получилось аж 13 разрядов (с 0 до 12). Довольно муторно, а главное, занимает много места на письме и отнимает много времени для перевода.
Именно для этого придумали восьмеричную и шестнадцатеричную системы счисления, для этого придумали и байты. Эти системы помогают сократить затраты на перевод чисел и привести их к более приятному визуальному виду.
Если перевести то же число 5132 в восьмеричную систему счисления, то получится «более сокращённая версия» двоичного кода:
Как мы видим, количество символов сократилось, так как разрядность уменьшилась до 5 (с 0 до 4).
Как можно уже понять, шестнадцатеричная система ещё сильнее сокращает разрядность (с 0 до 3) и ещё сильнее сжимает на письме переведённое число:
Человеку такой вид записи в любом случае удобнее, чем бесконечные нули и единицы.
Таким образом, шестнадцатеричная система используется довольно широко в современных информационных системах. Например, при помощи неё указываются коды цветовых схем, данная система используется для записи кодов ошибок, а также для программирования на языках низкого уровня типа Ассемблера, шестнадцатеричную систему зачастую используют для предоставления данных и адресов в малоразрядных ЭВМ.
Как перевести из десятичной системы в шестнадцатеричную
Выше мы уже немного затронули процесс перевода чисел. Теперь мы рассмотрим его подробнее и на примерах.
Но прежде чем начать, надо узнать одну очень важную особенность шестнадцатеричной системы.
Так как система имеет своим основанием число 16, то, следовательно, всего в этой системе имеется 16 цифр, но если первые десять цифр (0-9) вполне привычные для нас, то остальные имеют вид не совсем цифровой, но, тем не менее, являются цифрами, а именно значения A, B, C, D, E, F, которые соответствуют нашим привычным числам с 10 до 15. Все цифры шестнадцатеричной системы и их «аналоги» в десятичной записаны в таблице ниже.
Итак, допустим, у нас есть число 40 563 в десятичной системе счисления. Переведём его в шестнадцатеричную.
Остаток от деления – 14, а частное, полученное при делении 158 на 16 равно 9. Так как 9 меньше 16, то процесс вычислений закончен, а 9 также выделяется.
Итого весь процесс преобразования приведён на следующем изображении:
Таким образом мы научились переводить числа из десятичной системы в шестнадцатеричную. Теперь давайте попробуем сделать обратное преобразование, но уже с другим числом.
Как перевести из шестнадцатеричной системы в десятичную
Перевести шестнадцатеричное число в привычное нам десятичное также совсем не сложно, более того, мы уже делали это в самом начале статьи, когда сравнивали двоичную, восьмеричную и шестнадцатеричную системы счислений, теперь же разберём этот процесс более подробно.
Давайте сразу приступим к примеру и переведём шестнадцатеричное число 1C3B3 в десятичную систему.
По сути, процесс перевода можно разделить на 2 этапа:
Также обязательно необходимо перевести буквенные обозначения шестнадцатеричной системы в числовые, чтобы можно было посчитать их в десятичном виде, то есть, для данного случая, перевести B в 11 и C в 12.
Теперь нам остаётся только перемножить и сложить всё это:
Таким образом, мы превратили шестнадцатеричное число 1C3B3 в десятичное число 115 635.
Как видите, ничего сложного. Также у нас на сайте имеется статья, описывающая процесс перевода чисел из шестнадцатеричной системы в двоичную.
Спасибо за прочтение!
Шестнадцатеричная система счисления (информатика, 8 класс)
На уроках информатики в 8 классе изучается шестнадцатеричная система счисления. В IT-дисциплинах она применяется достаточно часто. Для декодирования числовой и буквенной информации в этот формат применяются специальные алгоритмы. Чтобы в них разобраться, необходимо иметь некоторые базовые понятия, а также уметь работать с двоичным и десятичным кодами.
Общие сведения
Система счисления (СС) — набор некоторых символов, используемых для кодирования и декодирования информации различной формы. Любое представление имеет определенные свойства, которые и показывают основное отличие одной СС от другой. К ним относятся следующие:
Алфавитом называется набор цифр (иногда и литер), применяемых для построения заданного числового значения. В шестнадцатеричной системе счисления (HEX) применяются все цифры (от 0 до 9), а также буквы английского алфавита (А, B, C, D, E и F). Следует отметить, что для формирования HEX-величины используют шестнадцать знаков.
Специалисты рекомендуют составить таблицу шестнадцатеричной системы, состоящей из двух граф (HEX-кода и его расшифровки в десятичной форме). Ее также можно записать в виде обыкновенного списка:
Cледует отметить, что таблицу шестнадцатеричной системы представления величин специалисты рекомендуют записать на отдельном листе бумаге. Она должна быть постоянно перед глазами.
Мощность кодирования и декодирования данных определяется основанием СС. Чем оно больше, тем больше мощность формы представления чисел. Основанием называется определенный коэффициент, присутствующий в каждой СС. Он и дает название представлениям чисел, т. е. 5 — пятеричная, 6 — шестеричная, 14 — четырнадцатеричная и т. д.
Последняя характеристика (вид получения) показывает возможность кодирования числа в заданную форму представления. Она делится на два типа: прямой и косвенный. В первом случае операция конвертации происходит сразу. Например, для представления числа в двоичном коде его достаточно просто перевести по определенному алгоритму из десятичного формата в двоичную запись.
Иначе дело обстоит с 16-ричной СС, поскольку десятичный элемент нужно конвертировать в двоичный код, а затем уже в заданное hex-представление. Далее нужно рассмотреть классификацию СС.
Виды систем счисления
Системы представления делятся на два вида. К ним относятся следующие: позиционные и не зависящие от позиции символов. Первые включают в свой состав разрядную сетку. Последняя состоит из разрядов-цифр. Они стоят на определенном значимом месте, т. е. каждый из них имеет конкретное значение.
Чтобы был понятен принцип построения числа, необходимо рассмотреть значение «236». Величина состоит из разрядной сетки, в которую входят всего три компонента, а именно: единицы, десятки и сотни. Первое значение эквивалентно 6, второе — 3, а третье — 2. Расписать величину можно следующим образом: 6*10^0+3*10^1+2*10^2=6+30+200. В сумме элементы образуют значение 236.
Если поменять местами элементы, то получаются совершенно разные величины. Это говорит о том, что порядок цифр в разрядной сетке имеет очень важное значение. Исключением являются унарные формы представления чисел.
Унарной, или непозиционной, называется такая система счисления, в которой от положения символов не зависит величина. Например, в известном рассказе герой Робинзон Крузо вел подсчет дней, проведенных на необитаемом острове, при помощи обыкновенных палочек. Он записывал их в ряды, но при перестановке искомых элементов количество дней не менялось. Далее необходимо ознакомиться с применением HEX-чисел в программировании.
Использование в IT-сфере
HEX-форма записи величин получила широкое распространение в программировании с использованием регистров оперативной памяти и жесткого диска. На этих устройствах данные кодируются в определенном формате (шестнадцатеричная система в таблице специального типа). Чтобы проверить правильность работы программы, необходимо знать специальные методики конвертации.
Кроме того, необходимо знать порядок и правила выполнения арифметических операций, таких как сложение, вычитание, умножение и деление. Для этих целей применяются специальные приложения (калькуляторы). Однако бывают случаи, когда их нет под рукой. В этом случае необходимо выполнять конвертацию в десятичную систему представления величин. Следует выполнять необходимые операции, а затем переводить опять в HEX-код.
Следует отметить, что действия, позволяющие складывать или вычитать, можно выполнять без конвертации (прямо в HEX-формате). При этом нужно следить за переполнением разряда. Сложение шестнадцатеричных чисел можно осуществлять при помощи HEX-калькулятора. Если этого не делать, то можно сделать множество ошибок.
Вычитание шестнадцатеричных чисел выполняется по такому же принципу, что и сложение. Однако в этом случае нужно внимательно следить за убыванием старшего разряда. Умножать и делить нужно только при помощи специальных средств вычислительной техники, поскольку операции являются очень сложными.
Для примера можно сложить два числа, записанных в HEX-виде, а именно: F7 и 13. Первое число имеет высший разряд, значение которого равно F (максимальной цифре). При этом будет происходить переполнение разряда, т. к. F+1=1F. Если сложить величины, то получится такое число: 2F0. Начинающий IT-арифметик может потренироваться, придумывая примеры. Однако необходимо помнить, что любой результат должен проверяться при помощи калькулятора.
Методика конвертации
Методика перевода позволяет переводить десятичную форму в HEX-код. Чтобы выполнить данную операцию, нужно научиться переводить величины в двоичный код. Это делается при помощи такого алгоритма:
Обратное преобразование является более простым. Для этого необходимо расписать величину по степеням с коэффициентами (0 — нет значения или 1 — величина присутствует), т. е. 1*2^0+1*2^1+0*2^2+0*2^3+0*2^4+0*2^5+1*2^6=1+2+128=131.
Для перевода в 16-ричную систему исчисления применяется алгоритм. Его реализация имеет следующий вид:
Обратная конвертация осуществляется также по некоторой методике. Она имеет такой вид:
Следует отметить, что IT-специалисты настоятельно рекомендуют проверять результаты вычислений при помощи онлайн-калькуляторов для работы с двоичным и HEX-кодами. Если нет возможности выполнить проверку таким методом, то необходимо при получении результата выполнять на отдельном листе бумаги противоположную операцию, т. е. перевод в HEX-систему и обратно. В последнем случае вычисление должно соответствовать искомому значению в десятичной форме.
Таким образом, при выполнении различных арифметических операций с HEX-кодом необходимо знать методики конвертации и следовать рекомендациям специалистов в области IT-сферы.