Для чего нужна шкала кельвина

Зачем нужны разные шкалы? (Цельсия, Фаренгейта, Реомюра, Кельвина) Для чего они нужны?

Была предложена зимой 1709 года немецким учёным Габриэлем Фаренгейтом. По этой шкале за нуль принималась точка, до которой в один очень холодный зимний день (дело было в Данциге) опустилась ртуть в термометре учёного. В качестве другой отправной точки он выбрал температуру человеческого тела. По этой не слишком логичной системе точка замерзания воды на уровне моря оказалась равной +32º, а точка кипения воды +212º. Шкала популярна в США и Великобритании.

В 1731 году французский учёный Рене де Реомюр предложил температурную шкалу, основанную на использовании спирта, обладающего свойством расширяться. За нижнюю реперную точку была принята точка замерзания воды. Градус Реомюр произвольно определил как одну тысячную от объёма, который занимает спирт в резервуаре и трубке термометра при нулевой точке. При нормальных условиях точка кипения воды по этой шкале составляет 80º. Шкала Реомюра ныне повсеместно вышла из употребления.

В 1742 году шведский астроном Андерс Цельсий предложил шкалу, в которой за нуль принималась температура смеси воды и льда, а температура кипения воды приравнивалась к 100º. За градус принимается сотая часть интервала между этими реперными точками. Эта шкала более рациональна, чем шкалы Фаренгейта и Реомюра, и широко используется в науке.

Была предложена шотландским инженером и физиком Уильямом Ранкином. Нуль её совпадает с нулём термодинамической температуры, а по размеру 1ºRa равен 5/9 К. Т. е. принцип тот же, что и в шкале Кельвина, только по размерности шкала Ранкина совпадает не со шкалой Цельсия, а со шкалой Фаренгейта. Данная система измерения температуры распространения не получила.

Формулы перевода шкал Фаренгейта, Кельвина, Реомюра и Ранкина в шкалу Цельсия

Источник

Кельвин

Кельвин.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвинаДля чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Кельвин – единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Имеет русское обозначение – К и международное обозначение – K.

Кельвин, как единица измерения:

Кельвин – единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ, названная в честь английского физика Уильяма Томсона (лорда Кельвина).

Кельвин имеет русское обозначение – К и международное обозначение – K.

С 1954 года до 2019 года кельвин определялся как 1/273,16 части термодинамической температуры тройной точки воды. До 1968 года кельвин официально именовался градусом Кельвина ( о K).

Начало шкалы (0 К) совпадает с абсолютным нулём. Шкала была предложена в 1848 году Уильямом Томсоном. Уильям Томсон (будущий лорд Кельвин) в своей работе «Об абсолютной термометрической шкале» пишет о необходимости шкалы, нулевая точка которой будет соответствовать предельной степени холода (абсолютному нулю), а ценой деления будет градус Цельсия. Эта абсолютная шкала на сегодняшний день известна как термодинамическая шкала Кельвина. Значение «минус 273» было получено как обратное от 0,00366 — коэффициента расширения газа на градус Цельсия.

Третья резолюция Х Генеральной конференции по мерам и весам (ГКМВ, 1954 г.) дала шкале Кельвина современное определение, взяв температуру тройной точки воды в качестве второй опорной точки и приняв, что её значение составляет ровно 273,16 кельвина («градуса Кельвина» в терминологии того времени, или 0,01 °C).

Цветовая температура:

Кельвин также применяется для измерения цветовой температуры, характеризующей ход интенсивности излучения источника света как функции длины волны в оптическом диапазоне. Цветовая температура определяется как температура абсолютно чёрного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение.

Примеры цветовой температуры различных источников света:

1500-2000 К – свет пламени свечи;

2800 К – лампа накаливания 100 Вт ( вакуумная лампа);

3400 К – Солнце у горизонта;

3500 К – люминесцентная лампа белого света;

6500 К – стандартный источник дневного белого света, близкий к полуденному солнечному свету;

9500 К – синее безоблачное небо на северной стороне перед восходом Солнца ;

20000 К – синее небо в полярных широтах.

Применение кельвина:

Кельвины используются для измерения термодинамической температуры, для измерения цветовой температуры и при вычислении энтропии экосистем (в Дж/К).

Источник

О различных температурных шкалах

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Источник

Что за Кельвин такой?

Мы, фотографы, Кельвина знаем непонаслышке — сегодня эту шкалу применяют при определении цветовой температуры. Однако, что это такое и как этим правильно пользоваться, а самое главное, откуда все взялось, знают не все. Кому неинтересно, можно и не читать, а мы вот решили копнуть чуть глубже…

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Во-первых, откуда пошло… жил-был такой довольно известный физик, Уильям Томсон, который в британской науке сделал довольно большое количество открытий, среди которых открытие собственной шкалы температуры далеко не самое значительное, хотя работал он, в основном, в сфере матанализа и термодинамики в Университете Глазго (хотя стоит, наверное, упомянуть, что родился он в Белфасте, ныне столице Северной Ирландии, которая тогда уже была частью Соединенного Королевства Великобритании и Северной Ирландии — да, такой вот истый ирландец, проработавший в шотландском университете на благо Британской Короны). Впрочем, известен он стал за распространение трансатлантического электротелеграфа (понятно ведь, для чего он нужен был в Британии?) — за него и получил титул барона. С момента посвящения его в рыцари Британской Короны Королевой Викторией его стали величать уже «сэром» Уильямом Томсоном, с постфиксом «Лорд Кельвин». Звание обычно привязывается к роду или географическим местам — а рядом с университетом в Глазго как раз протекает речушка под названием Кельвин. Естественно, он и начал свой знатный род, а свои достижения на научном поприще стал именовать соответственно своему титулу — сюда пришлось и придумывание новой температурной шкалы, которая нужна была ему, в основном, для его работ в термодинамике.

За основу своей он взял шкалу Цельсия, просто начал ее с абсолютного нуля в терминологии термодинамики. Температура замерзания воды по его шкале стала соответствовать 273,16 К (значок ° ставить не принято), отрицательных величин и предела у этой шкалы вообще нет — наверху просто куча условных величин, одной из которых является и цветовая температура. Нет, это не температура свечения или горения инертных газов, иначе что можно было бы считать дневным светом?! Естественно, шкалу Кельвина можно применять и к обычной температуре, просто для определения температуры, к примеру, кипения воды или плавки металла пользуются шкалой Цельсия, оставив Кльвина физикам… и фотографам. Нам на интересы физиков, откровенно говоря, наплевать, как и им на наши, потому займемся только интересующим нас спектром…

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Цветовую температуру в фотографии называют еще и балансом белого. Причина этого в хроматической адаптации нашего глаза — другими словами, в любой ситуации глаз полностью или частично адаптируется под существующее освещение, как минимум, по цвету, и снег всегда видит белым, мышей серыми, а черные лимузины черными. Если бы этого не было, не было бы и проблемы — не надо было бы фотоаппараты соответствующим образом подстраивать, чтобы они видели цвет хотя бы похоже. Они же ведь честные, что видят, то и показывают.

Цветовая температура изменяется от 800 К до 10000 К. Нижние показания — красноватые, верхние синеватые, что обусловлено привычным человеку изменением цвета даже при накаливании металла (сначала красный, потом оранжевый, затем желтый, потом почти белый… дальше обычно никто не доходит). 800°К — это слабое красноватое свечение, сюда же относится инфракрасный диапазон.

К сведению, если вы снимаете в RAW, при съемке фотографий в ИК-спектре возможности установить «правильный» (ха-ха) баланс белого в Lightroom у вас не будет, так как нижняя граница ББ там только 2000 К, поэтому просто пользуйтесь другими конвертерами или снимайте в JPEG с предустановкой температуры в фотоаппарате. Выпадают отсюда и часть значений температуры горящей спички или свечи, которая находится как раз на рубеже 2000 К (по некоторым данным, от 1700 К), но ведь есть, к примеру, температура тлеющих углей, верно? Понятно, что делать их белыми никто не будет, но ведь иногда и пригодиться может (невольно приходит в голову вариант с CaptureOne — в нем установка ББ начинается гораздо раньше).

Дальше идут стандартные температуры света различного качества:

По сути, больше 10000 К нет необходимости устанавливать ББ, разве что для каких-то экстремальных случаев съемки в горах, когда в свете есть очень существенный компонент поляризованного света, от которого не избавились поляризационным фильтром. Зачем возможность в LR устанавливать его вплоть до 50000 К, лично я не знаю — лучше бы слева дали больше места.

Точные данные цветовой температуры вам знать не нужно, хотя иногда это может помочь с его установкой. В большинстве случаев, это просто рецепт «как сделать белый лист белым в любых условиях». Более того, о цветовой температуре с современными технологиями вообще думать не стоит — ведь постфактум все можно поправить уже в конвертере, к тому же, можно использовать возможность извращения над цветовой температурой, которое мы как-то показывали в одном из наших подкастов, посвященном коррекции ББ и цветовому сдвигу.

Кстати, наверняка вы видели, что есть и второй ползунок, отвечающий за цвет — это уже не температура, а оттенок, называемый технарями «смещением» (в английском «tint»), который «смещает» цвет в пурпурную или цианистую сторону, но проще говорить, в малиновую или зеленую. Говорят, что двух этих ползунков достаточно, чтобы передать всю гамму видимых через ваш монитор цветов.

Следует знать и о другом — вы наверняка помните, что мы говорили о настройке монитора, который у хорошего фотографа сродни глазам, его надо ценить, холить и лелеять… а также, тренировать, протирать и настраивать. Дело в том, что мало его сделать нормальным по яркости, его надо настроить еще и по температуре. Нормальная температура для монитора — 6500 К (она по умолчанию установлена во всех телевизорах и даже на экранах правильных фотоаппаратов), однако, полиграфисты ориентируются не на потребительский, а на нейтральный, которому соответствует температура 5000 К, которую еще называют стандартом D50 (а 6500, соответственно, D65). 5000 К куда ближе к цвету дневного освещения, и для полиграфистов, привыкших работать со световыми стендами, это норма, чтобы не видеть никаких оттенков.

Вам, как фотографу, который ориентируется на конечного потребителя, имеет смысл и пользоваться 6500 К, если монитор позволяет ее устанавливать (если не позволяет, она там установлена по умолчанию) и время от времени проверять настройки при настройке монитора (обращайте внимание и на тесты по градиентам для разных каналов — знак, что в мониторе есть определенный сдвиг в нежелательную сторону… мониторы тоже стареют). Более того, в интернете эта температура — безусловный стандарт, так как ее предусматривает цветовой профиль sRGB, в котором опубликованы 99% всех фотографий в сети. Если вам кажется, что лучше остановиться на D50, так и сделайте — я вас все равно переубедить не смогу (да и не нужно мне это), потому что глаз все равно адаптируется к цвету: стоит вам посидеть некоторое время в LR, глядя на оранжеватые или синеватые «серые» панели, и ваш мозг совершенно искренне поверит в то, что они чисто серые, «вычитая» ненужный цветовой компонент и из фотографий. До того самого момента, когда вы наконец оторветесь от компьютера и станете рассматривать документ, отвещенный обычной лампой накаливания.

Кстати, не стоит сильно себя мучить, если вдруг ваш фотоаппарат сильно лажанул с балансом белого даже при съемке в JPEG — в этом случае, можете воспользоваться нашим рецептом из статьи про коррекцию баланса белого.

Во всем остальном, просто успехов. Вполне возможно, что и статья про цветовые профили будет небесполезной.

Источник

Температурные шкалы

Немного бесполезной информации.

Все элементарное просто, но все простое не всегда элементарно. Все мы слышали про различные температурные шкалы, но не все мы знаем, что их на самом деле несколько больше, чем те три, что у всех на слуху. Итак, начнем с самым распространенных, а закончим рассолом.

Шкала Цельсия (Цельсий, Celsius, °C)

Используется в быту, но не везде (вспомним Фаренгейта). 0° — точка замерзания воды, 100° — точка кипения воды при нормальном атмосферном давлении. Придумана Андерсом Цельсием аж в 1742 году.

Шкала Фаренгейта (Фаренгейт, Fahrenheit, °F)

Используется в быту, но не везде, а в основном в Англии и США. Определение ее такое (из Википедии) — это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при нормальном атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Придумал Габриэль Фаренгейт в 1724 году.

Формула перевода в градусы Цельсия:

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Шкала Кельвина (Кельвин, Kelvin, K)

В быту как-то не очень. Родилась от желания получить шкалу с абсолютным нулем (отсутствием термодинамической энергии).

Названа в честь Уильяма Томсона. Казалось бы — причем здесь Кельвин. А вот Уильям Томсон был Lord Kelvin, вот так вот.

А в 1954 году на десятой главной конференции мер и весов (Conférence Générale des Poids et Mesures, CGPM) решили, что фиксированной точкой шкалы Кельвина будет тройная точка воды (нашел старенький пост @Chemicat, ), и температура ее будет 273.16K.

Кстати, K пишется без значка градуса с 1968 года после 13 главной конференции, и градус после этой конференции стал 1/273.16 температуры тройной точки воды (ну как бы все равно тот же один градус как у Цельсия получился, только теперь научно).

Шкала Ранкина (Ранкин, Rankine, °Ra)

Шкала Делиля (Делиль, Delisle, °De)

Уже давно не используется, но была когда-то. Придумал в 1732 году Жозеф Николя Делиль. Ноль — температура кипения воды, а один градус это минус две трети градуса Цельсия (потому что температура замерзания воды по этой шкале 150°De).

Отсчет положительных значений идет в противоположном направлении таковому у Цельсия.

Вообще, это не очень удивительно — у Цельсия все тоже было сначала наоборот, но производители термометров развернули. А до Делиля руки не добрались — быстро как-то эта шкала зачахла.

Формула перевода в градусы Цельсия:

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Шкала Реомюра (Реомюр, Réaumur, °Ré, °Re)

Предложил Рене Антуан Реомюр в 1730 году. Собственно точка замерзания воды — 0°Re, точка кипения воды 80°Re.

Почему 80 — потому что 80 можно было делить пополам 4 раза, и все время получать целое число. Очень было модно у французов.

Формула перевода в градусы Цельсия:

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Шкала Рёмера (Рёмер, Rømer, °Rø)

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Почему же все эти забавные шкалы (ну, кроме верхних трех, с натяжкой, четырех) отвалились? Потому что французы, когда изобретали метрическую систему, решили что десятки — это то, что нам надо, и приняли судьбоносное решение использовать шкалу Цельсия. Так метрическая система, в лице Цельсия, заборола всех остальных.

Такую историю я слышал в школе.

0° — точка замерзания воды, 100° — точка кипения воды при нормальном атмосферном давлении. Придумана Андерсом Цельсием аж в 1742 году.

В той шкале, что Андерс Цельсий придумал, 0° ― был точкой кипения, а 100° ― тройная точка воды.

То что сейчас используется ― это шкала Цельсия-Линнея от 1745-го.

До сих пор не понимаю, почему наглосаксы не перешли на Цельсия и ед. измерения СИ

Типа: «еб%%ие шакалы же есть, почему бы не быть температурным».

Вполне соответствовало первому предложению поста, кстати.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены?

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Согласно распространённой версии, немецкий естествоиспытатель собирался зафиксировать важную отметку на своей шкале на уровне нормальной температуры человеческого тела. Однако у его супруги в этот момент был жар, из-за чего сегодня 100 °F соответствует 37,8 °C. Мы проверили, насколько правдоподобна эта легенда и разобрались в истории появления температурных делений.

(Спойлер для ЛЛ: неправда)

Контекст. Шкала Фаренгейта — одна из основных температурных шкал, которая используется в ряде стран мира, в частности в США. Вот что сообщает об истории её появления портал newtonov.ru, помогающий школьникам в изучении физики:

«В своей шкале Фаренгейт использовал не две, а три основные реперные точки. За ноль была принята температура замерзания смеси льда, воды и нашатыря, которая, по одной из версий, соответствовала температуре самого холодного дня зимы 1709 года. Вторая точка — это температура замерзания воды. Она заняла отметку в 32°. И третьей точкой, в 100°, должна была стать температура здорового человека. Но то ли 300 лет назад люди были более горячие, то ли Фаренгейт что-то намерил неправильно.
В общем, 100 °F — это температура не здорового человека, а самого что ни на есть больного. Существует версия, согласно которой за эталон температуры здорового человека Фаренгейт взял температуру своей жены. Но на тот момент она приболела, и получилось то, что получилось».

Если воспользоваться онлайн-калькулятором для перевода градусов Фаренгейта в более привычные нам градусы Цельсия, то получим следующий результат:

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

То есть, действительно, если версия с температурой тела как мотивом истинна, то эталоном для Фаренгейта должен был послужить не совсем здоровый человек. Ознакомимся с историей появления его изобретения поподробнее.

Даниэль Габриэль Фаренгейт родился в 1686 году в Данциге (нынешнем Гданьске) в немецкой семье. С юных лет он проявил интерес к естественнонаучным экспериментам, и позднее, когда уже обосновался в Нидерландах, изготовил термометр и барометр. Сначала термоскопической жидкостью ему служил спирт, однако около 1714 года он заменил спирт ртутью, чем достиг гораздо большей точности измерений. Наконец, в 1724 году он предложил принципиально новую шкалу, которая станет стандартом в англоязычных странах для метеорологических, промышленных и медицинских целей на следующие два с половиной века. Для перевода температуры по этой шкале в градусы Цельсия и обратно используются следующие формулы:

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Многие люди, впервые сталкивающиеся с ними, сетуют на неудобство подобного преобразования. Однако шкала Цельсия была предложена на 18 лет позже, в 1742 году, то есть вопросы в данном случае должны быть обращены не к Фаренгейту.

Итак, что мы знаем сегодня о трёх калибровочных точках шкалы Фаренгейта?

Задумавшись о подходящей разметке для своего будущего термометра, Фаренгейт в 1708 году посетил пожилого датского астронома Оле Рёмера (не путать с Реомюром), который разработал собственную шкалу. Следует отметить, что у Рёмера температура кипения воды равнялась 60 градусам, за ноль была взята температура очень холодной зимы в Дании, вода замерзала при 7,5 градуса, а нормальная температура тела составляла 22,5 градуса.

Много лет спустя в письме к другому физику Фаренгейт расскажет об этом своём визите:

«Я застал его [Рёмера] ранним утром, он поместил термометры в воду со льдом. Позднее он помещал их в воду с температурой тела. После того как он отметил эти две точки на всех термометрах, он добавил половину расстояния меж точек ниже точки со льдом и поделил получившийся отрезок на 22,5 равной части, начиная с нуля. 7,5 градуса — на точке со льдом и 22,5 на температуре тела. Я использовал эту градуировку вплоть до 1717 года с тем лишь отличием, что разделил каждый градус ещё на четыре части. Эта градуировка очень неудобна из-за дробей, поэтому я решил поменять шкалу и использовать 96 вместо 22,5 или 90, с тех пор я использую её».

Таким образом, за базу своей шкалы Фаренгейт взял разработку Оле Рёмера, однако для удобства умножил некоторые (но не все, как мы убедимся далее) числа на 4. При этом уже в описании шкалы датчанина упоминается некая «температура тела». Однако это не даёт точного ответа на вопрос о калибровочных точках. В своей публикации 1724 года Фаренгейт пишет, что в его шкале таковых используется три: максимально низкая температура смеси льда, воды и нашатыря или даже морской соли» (0 °F), температура таяния льда (32 °F) и температура тела (96 °F). Однако это не совсем корректное сообщение. Как отмечают современные учёные, в первом случае можно получить +5 °F или даже –8 °F (в случае морской соли), то есть это даже не одна и та же величина, не говоря уже о несоответствии нулю. Возможно, права легенда о том, что за ноль было взято положение столбика в аномально холодную зиму 1708–1709 годов в Данциге (а не в Дании).

После смерти Фаренгейта его шкала немного поменялась. В 1776 году комиссия Лондонского Королевского общества во главе с Генри Кавендишем приняла решение откалибровать шкалу так, чтобы вода замерзала ровно при 32 °F, а кипела, соответственно, при 212 °F (расстояние в 180 градусов — круглое число, особенно для градусов). Так что сегодня «нормальная температура тела» составляет не 96 °F, как при Фаренгейте (сейчас это было бы равно 35,56 °С), а 97,88 °F (в подмышечной впадине) и 98,6 °F (во рту).

Да, и, наконец, о жене Даниэля Фаренгейта. Увы, увлечённый своими опытами, за всю свою жизнь он так ни разу и не женился.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

В сообществах отсутствуют спам, реклама и пропаганда чего-либо (за исключением здравого смысла), а в день обычно публикуем не больше двух постов.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Праздники градусов

Подставим в формулу:

х = 1 681,2972625 = 1681 год, 19 апреля.

В это время ни один из этих ученых еще не родился. Фаренгейту было минус 5 лет и 35 дней, Цельсию минус 20 лет и 222 дня.

После этого решено было посчитать такую же дату для Фаренгейта/Кельвина.

Подставим в формулу:

х = 2 571,688615 = 2571 год, 8е сентября.

Добавление дней в расчеты сместило праздничную дату на 1 год.

Все, упоротый расчет закончен.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

То же самое

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Как зубы чувствуют холод

Зубные клетки реагируют на резкий холод с помощью собственного температурного рецептора.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Зубы болят от холода потому, что у них повреждена эмаль – из-за бактерий ли, или из-за пищевых кислот. В эмали образуются впадины, полости, выемки, которые делают зубы сверхчувствительными к низкой температуре. Связь между повреждениями эмали и повышенной чувствительностью к холоду была известна давно, но как именно зубы его чувствуют, долгое время оставалось загадкой.

Предполагалось, что здесь всё дело в крохотных каналах с жидкостью, которые пронизывают зуб: от перепада температуры жидкость двигается, и вот это движение жидкости воспринимается как холодовая боль. Но всё упирается в то, где у зубов холодовые рецепторы. Всё-таки зубы – не кожа, обычных терморецепторов на эмали у них нет, и в дентине, который лежит под эмалью, тоже нет. Но где-то они должны быть.

Любой рецептор – это белок (или комплекс белков), который встроен в мембрану сенсорной клетки и который работает как ионный канал. Рецептор реагирует на определённые воздействия – например, на понижение температуры. Когда становится холодно, белок-рецептор открывает поток ионов между наружной и внутренней стороной мембраны. Электрические параметры мембраны из-за этого мгновенно меняются, и возникает электрохимический импульс, который бежит к мозгу.

Около пятнадцати лет назад сотрудники Медицинского института Говарда Хьюза обнаружили ионный канал TRPC5, который оказался сверхчувствителен к холоду. Но обнаружили его как ген и соответствующий ему белок. Где в теле находится TRPC5, было неясно. Точно не в коже: мыши, у которых выключали ген TRPC5, продолжали чувствовать холод. Но тут кто-то вспомнил, что есть ещё один орган, который чувствует холод – это зубы.

Дальнейшие эксперименты на мышах показали, что TRPC5 действительно находится в зубах: у животных с отключённым геном TRPC5 никаких болевых сигналов в ответ на холод от зубов не передавалось. Точно также не было болевых сигналов, если ионный канал TRPC5 блокировали химически, чтобы он не работал. Кстати, вещества, что блокируют канал TRPC5, содержатся в гвоздичном масле – в старые (да и не в очень старые) времена его широко использовали, чтобы снять зубную боль.

Вместе с коллегами из Университета Эрлангена – Нюрнберга и других научных центров исследователи опубликовали статью в Science Advances, в которой говорится, что рецептор TRPC5 несут на себе клетки одонтобласты. Они сидят не границе между пульпой зуба и дентином; собственно, одонтобласты дентин и производят. У них есть длинные отростки, которые заполняет канальцы внутри дентина – те самые канальцы, о которых шла речь выше. Канальцы вместе с отростками одонтобластов могут достигать эмали. И если эмаль повреждена, отросток клетки легко почувствует резкий холод с помощью рецептора TRPC5. Одонтобласты соединены с нейронами, и потому сразу отправляют болевой импульс в мозг.

Конечно, лучше всего, когда сам следишь за зубами и не допускаешь, чтобы бактерии и кислота разрушали их эмаль. Но зубы у всех разные, и у кого-то они всю жизнь остаются плохими, несмотря на все усилия. Может быть, с новыми данными об одонтобластах и их рецепторах у нас появятся эффективные средства, которые позволят людям с холодочувствительными зубами спокойно есть мороженое.

Автор: Кирилл Стасевич

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

90 градусов

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Дорожный знак во время жары в Юте

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Это температура воздуха, а не лимит скорости

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Даже в Кельвинах проще

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Высокий интеллект

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Градусы

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Такие разные градусы

Сколько сегодня градусов? Как часто вы задаетесь этим вопросом, особенно перед тем как выйти из дома. Температура воздуха (наряду с наличием или отсутствием осадков) стала для нас ключевым параметром текущей погоды, а термометр – привычной частью быта. Но еще несколько столетий назад люди вообще не заботились измерением температуры воздуха, а термометры встречались лишь в немногочисленных научных лабораториях (да и то с XVI века). В этом плане, термометр и телескоп практически ровесники, но сравните, как часто вы пользуетесь телескопом и термометром…И редко задумываемся о том, что термометр имеет свою весьма занимательную историю.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Отличать тепло от холода умеет большинство живых организмов, это мы не можем записать в «актив» достижений человеческого разума. Но еще в древности люди заметили, что при нагревании воздух расширяется. Используя это свойство, александрийский математик и инженер Герон еще во II веке до н.э. построил систему поднятия воды путем нагревания.

Очевидным следующим шагом было научиться измерять степень нагревания/охлаждения воздуха. И, полтысячелетия спустя, другой математик, Филон Византийский якобы сконструировал некий прибор для измерения температуры воздуха и воды. По крайней мере, об этом есть упоминания в некоторых трактатах того времени. Но ни прибор, ни его чертежи так и не найдены, равно как нет информации о попытках повторить работу Филона. Поэтому эту попытку создания термометра мы не засчитываем. Пока не будет доказано иное.

Тысячу лет с лишним подвижек к решению этой задачи (измерения температуры) не было, а затем просто понеслось. Понеслось не случайно: в позднем Средневековье естествознание переживает очередной расцвет, растут университеты, открываются научные лаборатории. И им позарез нужна приборная база. В частности, инструмент, который мог бы точно измерить, как меняется температура (воздуха, растворов и проч.). Над созданием такого инструмента работали многие и сегодня лавры создателя термометра приписывают сразу нескольким ученым.

Перечислю лишь некоторых.

Итальянский физик Галилео Галилей. Сам он такой прибор не описывал, но его ученики засвидетельствовали, что в 1597 году он создал термоскоп.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Он представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой, которая помещалась в жидкость. Воздух в стеклянном шаре посредством горелки или простым растиранием ладонями нагревался, в результате чего он начинал вытеснять жидкость в стеклянной трубке, показывая тем самым степень увеличения температуры: чем тоньше была трубка, тем выше была «точность» прибора. Считается, что на эти изыскания Галилея вдохновили описания устройств Герона.

Итальянский же врач Санторио, много лет занимавшийся изучением анатомии и физиологии. Кстати, он преподавал в Падуанском университете примерно в те же годы, когда там обучался Уильям Гарвей, человек, объяснивший, как работает сердце. Для своих опытов Санторио сам придумывал и изготавливал оборудование. Так в 1626 году он построил ртутный термометр, который мог измерять температуру человеческого тела. Прибор мало напоминал современные градусники: имело форму шара и продолговатую извилистую трубку, на которой были нарисованы деления, свободный конец трубки заполняли подкрашенной жидкостью. Измерения были грубыми, но, с точки зрения медицины, главным достижением Санторио было то, что он установил: у здорового человека должна быть постоянная температура тела. Нам это кажется очевидным, но до Санторио врачи об этом не задумывались.

Были и другие претенденты. На протяжении определенного времени, усовершенствования термометров касались их формы и содержимого, но не точности. Голландец Ван-Дребель доработал термоскоп, сделав его более чувствительным и окрасил воду, что облегчило работу с ним. В Флорентийской академии научились делать термометры, не зависящие от атмосферного давления: вместо воды, термометры стали заполнять подкрашенным спиртом, а верх стеклянной трубки запаивать. Но чем больше становилось термометров, тем острее вставал вопрос их «стандартизации», появления общепринятых единиц измерения температуры.

В 1672 году немецкий физик и, по совместительству, бургомистр города Марбурга Отто фон Герике создал семиметровый прибор измерения температуры с восемью делениями, от «великого холода» до «великой жары».

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Термометр Герике. Иллюстрация из книги Otto von Guericke’s Experimenta Nova Magdeburgica.

Текущую температуру на шкале указывала подвижная фигурка ангела, а в качестве начальной точки (того самого «великого холода») он взял температуру первых осенних заморозков. Проблема в том, это была величина переменная, а приборам в качестве «точки отсчета» требуется константа.

Примерно в те же годы известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно. Сначала, с подачи Гюйгенса в качестве второй точки стали брать температуру кипения воды. Далее Ньютон сделал еще более подробную шкалу с шестью температурными отметками: 1° – тающего льда, 2° – человеческой крови, 3° – плавления воска, 4° – кипения воды, 5° – плавления сплава свинца, висмута и олова и 6° – плавления чисто свинца.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Есть и криптоисторическая версия о том, что Фаренгейт был масоном и имел в ложе степень посвящения «32 градуса». Отсюда, дескать, и взята разница в 32 градуса между нулем на его шкале и точкой таяния льда, ставшая отправной для определения всех последующих констант.

Что там было на самом деле с масонами, история темная. Но достоверно известно, что достижения Фаренгейта были отмечены принятием в члены Лондонского королевского общества (одной из первых европейских Академий наук), а его шкала используется по сей день (главным образом в Великобритании и США). Есть относительно несложный способ перевести температуру по Фаренгейту в привычные нам градусы по Цельсию: следует от данного числа отнять предварительно 32, а затем полученный остаток помножить на 5/9. Соответственно, если требуется обратный перевод («из Цельсия в Фаренгейта»), градусы их следует помножить на 9/5 и к произведению прибавить 32.

Система Фаренгейта оказалась не единственной. В 1730 году французский ученый Рене Антуан Реомюр предложил свой вариант шкалы.

Для чего нужна шкала кельвина. Смотреть фото Для чего нужна шкала кельвина. Смотреть картинку Для чего нужна шкала кельвина. Картинка про Для чего нужна шкала кельвина. Фото Для чего нужна шкала кельвина

Некоторые дореволюционные термометры Реомюра благополучно дожили до наших дней

Реомюр построил ее в соответствии с тепловым расширением жидкости. Обнаружив, что при нагревании смесь воды со спиртом между температурами замерзания и кипения воды расширяется на 80 тысячных своего объема (современное значение — 0,084), Реомюр разделил этот интервал на 80 градусов. Термометры Реомюра были весьма распространены вплоть до начала ХХ века, пока их не вытеснили приборы, работающие по шкале Цельсия.

Свой вариант температурной шкалы шведский астроном Андреас Цельсий предложил еще в 1742 году. Он поделил расстояние между точками на 100 интервалов, цифрой 100 была отмечена точка таяния льда, а 0 — точка кипения воды. И на сегодня это самый распространенный способ измерять температуру.

А дальше произошел своеобразный повтор ситуации времен Галилея и Санторио – термометры изготавливали повсеместно, но использовали при этом самые разные шкалы, помимо упомянутых Фаренгейта, Реомюра и Цельсия был еще с десяток вариантов. Использованию в быту это сильно не мешало, другое дело в науке или на производстве (а термометры к тому времени перестали быть исключительно научным прибором). Ведь для того, чтобы воспроизвести процесс по чьим-то записям, предварительно требовалось «перевести» градусы, которыми пользовался автор в те, что были на вашем термометре. Кроме того, вскоре выяснилось, что даже тщательно проградуированные приборы с разными жидкостями показывают разную температуру. При 50° С по ртутному термометру спиртовой показывал 43 ° С, термометр с оливковым маслом – 49 ° С, а с соленой водой – 45,4 ° С.

В общем, требовалось довести процесс стандартизации до конца. И это успешно проделал другой известный физик У. Томсон (лорд Кальвин). В 1848 году он предложил измерять не температуру, а количество тепла, которое в определенном процессе, называемом циклом Карно, передается от горячего тела к холодному: оно определяется только их температурами и совершенно не зависит от нагреваемого вещества. В термодинамической, или абсолютной, шкале температур, построенной на этом принципе, единица температуры называется кальвин.С точки зрения науки шкала Кальвина была оптимальным решением. Но с позиций повседневной практики, весьма неудобной, да и воспроизвести цикл Карно вне метрологической лаборатории было затруднительно. Поэтому шкала Кельвина (доработанная в прошлом веке) востребована в основном в науке, а в остальных сферах человечество обходится шкалами Фаренгейта и Цельсия (а кое-где и шкалой Реомюра).

Ну и напоследок, еще один интересный факт из истории термометров. Внедрение их в широкую терапевтическую практику в нашей стране связано с именем знаменитого врача Сергея Петровича Боткина. Ко времени начала его работы в Императорской медико-хирургической академии уже были созданы предпосылки для перехода от эмпирической терапии к научной, с обоснованными объективными методами диагностики и лечения больных. Но именно он стал «локомотивом» этого процесса в русской медицине. В частности, методологически обосновал необходимость измерения температуры пациента, как при первичном осмотре, так и в процессе лечения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *