Для чего нужна система координат

Система координат

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты — широта, долгота и высота над известным общим уровнем (например, океана). См. географические координаты.

В астрономии координаты — величины, при помощи которых определяется положение звезды, например, прямое восхождение и склонение.

Небесные координаты — числа, с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой систему полярных координат на сфере с соответствующим образом выбранным полюсом. Систему небесных координат задают большим кругом небесной сферы (или его полюсом, отстоящим на 90° от любой точки этого круга) с указанием на нём начальной точки отсчёта одной из координат. В зависимости от выбора этого круга системы небесных координат называлась горизонтальной, экваториальной, эклиптической и галактической.

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Содержание

Список наиболее распространённых систем координат

Основные системы

В этом разделе даются разъяснения к наиболее употребляемым системам координат в элементарной математике.

Декартовы координаты

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат:

В пространстве же необходимо уже 3 координаты Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат:

Полярные координаты

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

В полярной системе координат положение точки определяется расстояние до центра координат и углом радиус-вектора с осью Ox.

Термин «полярные координаты» используется только на плоскости, в пространстве применяются цилиндрические и сферические системы координат.

Цилиндрические координаты

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Цилиндрические координаты — трехмерный аналог полярных, в котором точка P представляется трехкомпонентным кортежем Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат. В терминах декартовой системы координат,

Полярные координаты имеют один недостаток: значение θ теряет смысл, если r = 0.

Цилиндрические координаты полезны для изучения систем, симметричных вокруг некой оси. Например, длинный цилиндр в декартовых координатах имеет уравнение Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат, тогда как в цилиндрических оно выглядит как r = c

Сферические координаты

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Сферические координаты — трехмерный аналог полярных

Обозначения, принятые в Америке

В сферической системе координат, расположение точки P определяется тремя компонентами: Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат. В терминах декартовой системы координат,

Сферическая система координат также имеет недостаток: φ теряет смысл если ρ = 0, также и θ теряет смысл, если ρ = 0 или φ = 0 или φ = 180°.

Для построения точки по её сферическими координатами, нужно: от полюса отложить отрезок, равный ρ вдоль положительной z-оси, вернуть его на угол φ вокруг оси y в направлении положительной x-оси, и вернуть на угол θ вокруг z-оси в направлении положительной y-оси.

Сферические координаты полезны при изучении систем, симметричных вокруг точки. Так, уравнение сферы в декартовых координатах выглядит как Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат, тогда как в сферических становится намного проще: Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат.

Европейские обозначения

В Европе принято использовать другие обозначения. Положение точки задаётся числами: Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат, Где r — расстояние от точки до начала координат, Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат— полярный угол, который изменяется в пределах от 0 до π, Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат— Азимутальный угол, который изменяется в пределах от 0 до 2π. То есть, в европейской системе, которая применяется также и в России, обозначения для углов переставлены по сравнению с американской.

Переход из одной системы координат в другую

Декартовы и полярные

Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат Для чего нужна система координат. Смотреть фото Для чего нужна система координат. Смотреть картинку Для чего нужна система координат. Картинка про Для чего нужна система координат. Фото Для чего нужна система координат

Источник

Координаты. Системы координат. Название МСК по регионам

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве.

Общие сведения о системах координат

Система координат — это комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В общем и целом систему координат можно определить как опорную систему для определения положения точек в пространстве или на плоскостях и поверхностях относительно выбранных осей, плоскостей или поверхностей.

Систему координат широко применяют во многих отраслях науки:

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Что такое координатная сетка?

Одним из элементов географической карты является сетка координатных линий. Существуют два вида координатной сетки: картографическая, образуемая линиями меридианов и параллелей, и сетка прямоугольных координат, образуемая линиями, параллельными осям координат OX и OY.

На топографических картах меридианы и параллели являются границами листа карты; в углах карты подписываются их долгота и широта. Внутри листа вычерчивается сетка прямоугольных координат в виде квадратов, называемая иногда километровой сеткой, так как на картах масштаба 1:10 000 и мельче линии сетки проводятся через целое число километров.
Вертикальные линии сетки параллельны осевому меридиану зоны (оси OX) и имеют уравнение Y = Const; значение координаты Y подписывается у каждой линии. Горизонтальные линии сетки параллельны оси OY и имеют уравнение X = Const; значение координаты X подписывается у каждой линии.

Для удобства пользования листами карт, на которых изображены граничные участки зоны, на них показывается сетка прямоугольных координат соседней зоны. Ширина граничной полосы с сеткой соседней зоны составляет 2 градуса по долготе с обоих сторон зоны. Выходы линий координатной сетки соседней зоны наносятся на внешнюю сторону рамки листа карты.

Классификация систем координат

1. Прямоугольная (плоская) система координат: XY
За основную плоскость XOY в данном случае принята плоскость земного экватора. Основная координатная ось OX направлена в определенную точку. Ось OY расположена в плоскости земного экватора под углом 90º к востоку от принятого начального меридиана. Ось OZ совмещена с северным направлением оси вращения Земли.

2. Пространственная прямоугольная система координат: XYZ
Начало пространственных прямоугольных координат либо определяется под условием совмещения с центром масс Земли (в общеземных системах), либо находится вблизи от него.
Ориентировка оси Z в каждой системе координат выполняется с учетом ориентировки средней оси вращения Земли. При установлении системы среднего полюса, в том числе и полюса в Системе МУН, не накладывают условия прохождения средней оси вращения через центр масс Земли, поэтому и в референцных и в общеземных системах оси Z не совпадают со средней осью вращения, а параллельны ей.
Плоскость XOY перпендикулярна оси Z и средней оси вращения Земли. Плоскость XOZ выбирается под условием ее параллельности плоскости начального астрономического меридиана.

3. Геодезическая (эллипсоидальная) система координат: BLH
Геодезическая эллипсоидальная система координат строится на базе эллипсоида вращения, поверхность которого используется в качестве поверхности относимости, на которую проецируются и затем обрабатываются результаты геодезических измерений.
B– геодезическая широта, угол между нормалью к эллипсоиду, проведенной через заданную точку M на поверхности Земли, и плоскостью экватора;
L – геодезическая долгота, двугранный угол между плоскостями гринвичского G и заданного геодезического меридианов;
H – геодезическая высота над референц-эллипсоидом, расстояние по нормали от поверхности эллипсоида до точки M.

Назначение систем координат

1. Общеземные (мировые ) WGS 84, ПЗ 9011, ITRS
Общеземными принято называть такие системы координат, которые получены под условием совмещения их начала с центром масс Земли. Они устанавливаются в отношении территории, покрывающей весь земной эллипсоид. И используется для решения общеземных задач. Наиболее удобными являются географические координаты (широта и долгота) отсчитываемые от поверхности экватора и начального меридиана в виде дуг, которым соответствуют центральные углы.

2. Государственные (СК-95, СК-63, ГСК-2011)
Эта система координат ограничивается территорией одного государства и используется, для осуществления геодезических и картографических работ внутри этого государства. В РФ в качестве координатной поверхности в этой системе используется поверхность эллипсоида Красовского.

3. Местные (МСК-50, МСК-50.2, Московская)
Под местной системой координат понимается условная система координат, устанавливаемая в отношении ограниченной территории, не превышающей территорию субъекта Российской Федерации, начало отсчета координат и ориентировка осей координат которой смещены по отношению к началу отсчета координат и ориентировке осей координат единой государственной системы координат, используемой при осуществлении геодезических и картографических работ. Местные системы координат устанавливаются для проведения геодезических и топографических работ при инженерных изысканиях, строительстве и эксплуатации зданий и сооружений, межевании земель, ведении кадастров и осуществлении иных специальных работ. Обязательным требованием при установлении местных систем координат является обеспечение возможности перехода от местной системы координат к государственной системе координат, который осуществляется с использованием параметров перехода (ключей). Каждая местная система координат может создаваться с одной или несколькими трех или шести градусными зонами. Параметры местных систем координат и ключи перехода к государственной системе координат (формулы и правила, по которым координаты точек в одной системе можно получить в другой системы) устанавливает Росреестр по согласованию с Минобороны РФ.

Определение положения точек в различных СК

Положение точек непосредственно на физической поверхности Земли или в околоземном пространстве, а также на поверхности земного эллипсоида могут определяться в различных как прямолинейных, так и криволинейных системах координат. Однако в теории и практике производства топографо-геодезических работ наибольшее распространение получили следующие СК:

Пространственные прямоугольные декартовы СК – Х, У, Z;
Отличительной особенностью использования в геодезии системы пространственных полярных геодезических координат является то, что ее основная плоскость выбирается на поверхности и представляет собой плоскость геодезического горизонта (или параллельная плоскости горизонта). За полярную ось принимается линия пересечения плоскости горизонта с плоскостью геодезического меридиана данной точки О (полюса системы) с положительным направлением на северный полюс Земли. Положение точки Q в этой СК определяется тремя величинами (координатами): S – длина прямой OQ; А – геодезический азимут (двугранный угол между плоскостью геодезического меридиана начальной точки О и нормальной плоскостью точки О, содержащей точку Q); Zг – зенитное расстояние (угол между нормалью точки О и линией OQ).

Криволинейные эллипсоидальные геодезические координаты – B, L, H;
Также очень широкое распространение имеют криволинейные эллипсоидальные системы геодезических координат. Эти СК непосредственно связаны с некоторой математической моделью земной поверхности, в качестве которой в настоящее время принимается поверхность эллипсоида вращения с определенными параметрами и ориентировкой его в теле Земли, и обычно называется он просто – земным эллипсоидом. Таким образом, земным эллипсоидом является эллипсоид вращения, форма и размеры которого с той или иной степенью точности соответствуют форме и размерам Земли. Для определения формы и размеров земного эллипсоида достаточно задать его основные параметры а – большую и b – малую полуоси. Однако на практике обычно для этих целей используются два других его элемента – одна линейная величина, например, большая полуось и одна относительная. В качестве относительной величины чаще всего используется его сжатие α, вычисляемое по формуле:

Если земной эллипсоид наилучшим образом представляет собой всю землю в целом, то такой эллипсоид называется общим земным эллипсоидом, и определяться он должен с соблюдением следующих условий:
1. Совпадение центра эллипсоида с центром масс Земли и плоскости его экватора с плоскостью земного экватора;
2. Минимум суммы квадратов уклонений по высоте квазигеоида (геоида), во всех его точках, от поверхности эллипсоида.

Различные виды систем полярных координат как пространственных, так и на поверхностях (сферы, эллипсоида, плоскости);

Название Местных Систем Координат по регионам

МСК-01 Республика Адыгея
МСК-02 Республика Башкортостан
МСК-03 Республика Бурятия
МСК-04 Республика Алтай
МСК-05 Республика Дагестан
МСК-06 Республика Ингушетия
МСК-07 Кабардино-Балкарская Республика
МСК-08 Республика Калмыкия
МСК-09 Республика Карачаево-Черкесия
МСК-10 Республика Карелия
МСК-11 Республика Коми
МСК-12 Республика Марий Эл
МСК-13 Республика Мордовия
МСК-14 Республика Саха (Якутия)
МСК-15 Северная Осетия — Алания
МСК-16 Республика Татарстан
МСК-18 Удмуртская Республика
МСК-20 Чеченская Республика
МСК-21 Чувашская Республика
МСК-22 Алтайский край
МСК-23 Краснодарский край
МСК-24 Красноярский край
МСК-25 Приморский край
МСК-26 Ставропольский край
МСК-27 Хабаровский край
МСК-28 Амурская область
МСК-29 Архангельская область
МСК-30 Астраханская область
МСК-31 Белгородская область
МСК-32 Брянская область
МСК-33 Владимирская область
МСК-34 Волгоградская область
МСК-35 Вологодская область
МСК-36 Воронежская область
МСК-37 Ивановская область
МСК-38 Иркутская область
МСК-39 Калининградская область
МСК-40 Калужская область
МСК-41 Камчатский край
МСК-42 Кемеровская область
МСК-43 Кировская область
МСК-44 Костромская область
МСК-45 Курганская область
МСК-46 Курская область
МСК-47 Ленинградская область
МСК-1964 город Санкт-Петербург
МСК-48 Липецкая область
МСК-49 Магаданская область
МСК-50 Московская область
МГГТ Москва
МСК-51 Мурманская область
МСК-52 Нижегородская область
МСК-53 Новгородская область
МСК-54 Новосибирская область
МСК-55 Омская область
МСК-56 Оренбургская область
МСК-57 Орловская область
МСК-58 Пензенская область
МСК-59 Пермский край
МСК-60 Псковская область
МСК-61 Ростовская область
МСК-62 Рязанская область
МСК-63 Самарская область
МСК-64 Саратовская область
МСК-65 Сахалинская область
МСК-66 Свердловская область
МСК-67 Смоленская область
МСК-68 Тамбовская область
МСК-69 Тверская область
МСК-70 Томская область
МСК-71 Тульская область
МСК-72 Тюменская область
МСК-73 Ульяновская область
МСК-74 Челябинская область
МСК-75 Забайкальский край
МСК-76 Ярославская область
МСК-83 Ненецкий автономный округ
МСК-86 Ханты-Мансийский автономный округ — Югра
МСК-87 Чукотский автономный округ

Источник

Система координат

Из Википедии — свободной энциклопедии

Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Источник

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *