Склянка Тищенко с серной кислотой служит исключительно для критроля скорости подачи SO2 в реакционную смесь. [1]
Склянка Тищенко ( 4) должна стоять так, чтобы воздух после серной кислоты проходил сначала через хлористый кальций, а затем уже через аскарит. [3]
Склянки Тищенко служат для промывания и высушивания Хазов. Для этого в склянку наливают не более чем на V4 промывную или высушивающую жидкость. Иногда склянки Тищенко применяют в качестве предохранительных склянок при вакуум-насосах, но для этой цели они менее удобны, чем склянки Вульфа. [5]
Склянки Тищенко служат для промывки и высушивания газов и иногда в качестве предохранительных, однако для этой цели они менее удобны, чем склянки Вульфа. В первом случае жидкость, через которую будет пропускаться газ, наливается не больше чем на / 4 объема склянки. [8]
Склянки Тищенко для жидких промывателей ( рис. 33) представляют собой сосуды с перегородкой внутри, у основания которой сделано небольшое отверстие для прохода газов. [9]
Склянки Тищенко ( рис. 76) отличаются от склянок Вульфа тем, что внутри имеют перегородку, делящую склянку на две сообщающиеся между собой части. [10]
Склянки Тищенко служат для промывания и высушивания газов. Для этого в склянку наливают не более чем на / 4 промывную или высушивающую жидкость. Иногда склянки Тищенко применяют в качестве предохранительных склянок при вакуум-насосах, но для этой цели они менее удобны, чем склянки Вульфа. [12]
Склянка Тищенко 10, заполненная концентрированным раствором едкого натра, служит для улавливания уксусного альдегида и частично диэтилового эфира. Неконденсирующиеся газообразные продукты реакции проходят в градуированный газометр / /, наполненный насыщенным раствором поваренной соли. [14]
Склянка Тищенко 10, заполненная концентрированным раствором едкого натра, служит для улавливания уксусного альдегида и частично диэтилового эфира. Неконденсирующиеся газообразные продукты реакции проходят в градуированный газометр 11, наполненный насыщенным раствором поваренной соли. [15]
В лабораториях часто требуется очистить газы от влаги, посторонних примесей, механических загрязнений. Обычно для очистки применяют специализированную стеклянную посуду: • склянки Дрекселя; • склянки Тищенко; • стеклянные промывалки; • бутыли Вульфа с несколькими горловинами; • хлоркальциевые трубки.
Склянки Дрекселя
Классическая склянка Дрекселя выполняется в виде цилиндрического высокого сосуда с пришлифованной горловиной и вставленным в него адаптером с двумя выходящими трубками. Одна трубка, по которой в склянку подается газ для очистки, опускается до самого дна. В некоторых модификациях склянок Дрекселя, в частности, производства Simax, на ее конце дополнительно устанавливается фильтр из спеченной стеклянной крошки. Выходная трубка вплавляется прямо в адаптер.
Для очистки газов в бутыль наливается жидкость, заполняющая не более половины объема сосуда. Это может быть серная кислота для очистки от влаги (осушения), вода для удаления механических частиц, или химический реагент, рассчитанный на удаления конкретных примесей в газе. Потом к трубке, опускающейся до дна, подсоединяют источник газа, а ко второй трубке — гибкий отвод для очищенного газа. Достаточно часто используют несколько последовательно соединенных друг с другом склянок Дрекселя для более полной очистки. После последней склянки обычно устанавливают еще один предохранительный сосуд, для удаления из потока газа частиц очищающей жидкости.
Выпускаются также склянки Дрекселя не с пришлифованной горловиной, а под завинчивающуюся крышку, в которую вставляется разработанный под нее адаптер. В остальном конструкция и способ применения у них такие же.
Бутыли Вульфа с несколькими горловинами
Бутыли Вульфа с двумя или тремя горловинами применяются так же, как и склянки Дрекселя. В горловины вставляют трубки для подачи газа и его отвода. Бутыли Вульфа удобны тем, что позволяют налить большой объем раствора для очищения. Проходя через толстый слой жидкости, газ за один раз очищается полнее, да и самого очистителя хватает на обработку большего объема газа. Кроме этого, бутыль Вульфа можно заполнить твердым поглотителем/осушителем.
Промывалки
Об этом типе сосудов мы подробно написали в статье «Промывалка — простое, но полезное приспособление для лабораторий». Стеклянные промывалки с двумя трубками можно использовать также, как и склянку Дрекселя, заполнив жидкостью для очистки конкретного типа газов. Газ подается в длинную трубку, доходящую до дна сосуда, а выходит из короткой трубки.
Склянки Вульфа (с двумя или тремя горлами) служат для тех же целей, что и склянки Дрекселя. Эти склянки можно также применять в качестве реакционных сосудов при получении газообразных продуктов и в качестве предохранительного сосуда при водоструйных насосах.
Склянки Вульфа (рис. 75) большой емкости можно использовать для хранения титрованных растворов.
Иногда склянки Вульфа имеют в нижней части тубус.
Склянки Тищенко (рис. 76) отличаются от склянок Вульфа тем, что внутри имеют перегородку, делящую склянку на две сообщающиеся между собой части. Есть два типа склянок Тищенко: для жидкостей и для твердых тел. У склянок для жидкостей внутренняя перегородка доходит до дна и обе половины сообщаются при помощи отверстия в середине перегородки у самогф дна. В склянках для твердых тел перегородка немного не доходит до пробки, которая служит дном.
Склянки Тищенко служат для промывания и высуши» вания газов. Для этого в склянку наливают не более чем на промывную или высушивающую жидкость.
Рис. 75. Склянки Вульфа.
Рис. 76. Склянки Тищенко: а —для жидких поглотителей; б —для твердых поглотителей.
Иногда склянки Тищенко применяют в качестве предохранительных склянок при вакуум-насосах, но для этой цели они менее удобны, чем склянки Вульфа.
Промывалка Хюбнера для газов (рис. 77). Промы-валка состоит из основного корпуса, внутри которого находится сосуд 1, содержащий промывную жидкость. Промывная жидкость при помощи сифона может переливаться в части 2 и 3 прибора. Газ через боковой патрубок поступает в часть 2 и через отверстия 4 в часть 3, но может также пройти из части 3 в часть 2 В обоих случаях высота столба жидкости в сифоне показывает среднее давление в последующей аппаратуре.
Редуктор Джонса. Для восстановления того или иного элемента до низших степеней валентности раствор пропускают через слой подходящего гранулированного металла или амальгамы, помещенных в стеклянную трубку. Обычно для проведения этого процесса применяют редуктор Джонса (рис. 78). Редуктор состоит из стеклянной трубки диаметром 18—20 мм и длиной 35—55 см, в нижней части ее имеется стеклянный кран.
Выше крана внутри трубки помещают фарфоровый перфорированный диск, затем немного стеклянной ваты для предупреждения засорения стеклянного крана восстановителем. Конец трубки вставлен в резиновую пробку, закрывающую горло колбы для фильтрования соответствующей емкости (обычно 500 мл). Колба присоединена в вакуум-насосу. Стеклянную трубку редуктора перед использованием заполняют дистиллированной водой и постепенно, мелкими порциями, вносят в нее нужное количество выбранного твердого восстановителя, уплотняя его стеклянной палочкой. Нужно заботиться о том, чтобы в промежутках между зернами твердого восстановителя не оставался воздух. Слой твердого восстановителя в редукционной бюретке обычно не превышает 30 см.
В качестве твердых восстановителей применяют амальгамированный цинк, металлические кадмий, висмут и др.
Рис. 77. Промывалка Хюбнера.
Рис. 78. Редуктор Джонса.
Для предупреждения окисления твердых восстановителей трубку оставляют наполненной водой и закрывают пробкой. Перед употреблением восстановитель промывают несколько раз (не менее 4 раз, лучше больше) 2 н. раствором серной кислоты, применяя каждый раз 25— 30 мл жидкости.
Нужно следить за тем, чтобы уровень жидкости в трубке всегда был на 3—4 мм выше слоя восстановителя. Это необходимо для предупреждения попадания пузырьков воздуха между зернами твердого восстановителя. Количество восстановителя, заполняющего трубку, бывает достаточно на несколько десятков (30—50) определений, что зависит от концентрации восстанавливаемого иона в исследуемом растворе.
Скорость пропускания исследуемого раствора через слой твердого восстановителя регулируют стеклянным краном и устанавливают опытным путем, т. е. проверкой пропущенной через восстановитель жидкости на восстанавливаемый ион. Для этого достаточно взять каплю жидкости и проделать с ней качественную реакцию на окисленную форму иона. Если этот ион обнаруживается, жидкость снова пропускают через редукционную бюретку. Обычно раствор пропускают со скоростью около 10 мл/мин.
После восстановления твердый восстановитель промывают 5—6 раз 2 н. раствором серной кислоты, применяя каждый раз не более 30 мл жидкости, а затем один раз таким же количеством воды.
Раствор, вытекающий из редукционной бюретки, собирают в коническую колбу. Более удобны редукторы Джонса, у которых вместо фарфорового перфорированного диска в трубку вплавлен крупнопористый фильтр из прессованного стекла.
Аппарат Киппа (рис. 79) служит для получения двуокиси углерода, сероводорода и других газов. Нижняя часть аппарата состоит из широкого резервуара / (у некоторых аппаратов этот резервуар имеет тубус); над ним находится шарообразное расширение 2, имеющее тубус 3 для отвода газа; верхняя часть аппарата представляет собой грушевидную воронку 5. Верхнюю часть прибора вставляют в нижнюю через горло 4 шарообразного расширения 2. В этом месте верхняя часть аппарата Киппа притерта к нижней.
Для того чтобы зарядить аппарат Киппа, поступают следующим образом.
Сначала вынимают резиновую пробку из тубуса 3 и через него в среднюю расширенную часть 2 аппарата вводят вещество, служащее для получения газа (мрамор — для получения двуокиси углерода, сернистое железо — для получения сероводорода, цинк — для получения водорода и т. д.). Куски насыпаемого твердого вещества должны быть не менее 1 см3, но и не очень большими. (Пользоваться порошком не рекомендуется, так как при этом слишком бурно выделяется газ и возможен прорыв его через верхнюю часть.) В тубус 3 вставляют резиновую пробку, снабженную трубкой со стеклянным краном. Затем в аппарат, открыв газоотводный кран тубуса 3, наливают через горло 6 тот или иной раствор (например, разбавленный раствор соляной’кислоты при получении двуокиси углерода, сероводорода или водорода). Жидкость наливают в таком количестве, чтобы уровень ее (при открытом газоотводном кране) достигал половины верхнего шарообразного расширения нижней части. Пропускают газ в течение 5—10 мин, чтобы вытеснить воздух из аппарата, после чего закрывают газоотводный кран, а в горло 6 вставляют предохранительную воронку 7. Газоотводную трубку тубуса 3 соединяют с тем прибором, куда нужно пропускать газ.
Пока край закрыт, выделяющийся газ вытесняет кислоту из шарообразного расширения аппарата и последний перестает работать.
Если же открыть газоотводный кран, кислота вновь попадает в резервуар с мрамором или с другим веществом и аппарат начинает работать. Аппарат периодически очищают, заряжают его свежими веществом и кислотой. При очистке аппарата, когда из него удалены кислота и куски непрореагиро-вавшего вещества, его следует промыть водой. При разборке (проводить которую нужно под тягой) у обычных аппаратов вначале вынимают предохранительную воронку и аппарат закрывают резиновой пробкой. После этого вынимают верхнюю часть, осторожно поворачивая ее вокруг оси; необходимо иметь наготове какой-либо сосуд, в который выливают кислоту, содержащуюся в вынимаемой верхней части аппарата Киппа. Далее, повернув нижнюю часть аппарата, высыпают из нее вещество, служившее для получения того или иного газа, и выливают кислоту в заранее приготовленную посуду. Только после этого аппарат промывают водой.
Для разборки аппаратов с тубусом в нижнем резервуаре сперва открывают тубус нижней широкой части аппарата и сливают через него кислоту; затем споласкивают сосуд водой и, если нужно, разбирают весь аппа-. рат. Когда ограничиваются только сменой кислоты, то после ополаскивания сосуда водой тубус снова плотно закрывают, привязывают пробку и через горло 6 наливают свежий раствор кислоты.
Выделяющийся из аппарата Киппа газ может захватывать мелкие капли кислоты и частицы твердого вещества (например, FeS при получении H2S, мрамор при получении СОг и пр.), поэтому газ для промывания следует пропускать через предохранительную склянку Вульфа, в которую наливают воду. Эта буферная скляика может быть соединена с другой склянкой для высушивания. Для этой же цели можно применять и газопромыватели.
Аппараты Киппа бывают различных размеров. Однако они мало удобны, когда требуются небольшие количества газов; поэтому для работы по микро- или полумикроанализу для получения газов применяют другие, упрощенные аппараты, работа которых построена по принципу работы аппарата Киппа.
С упрощенным аппаратом (рис. 80) можно работать без тяги, так как количество газа, получаемое с его помощью, очень невелико. Чтобы собрать и зарядить прибор, сначала в прорези пробки 4 вставляют трубки 6 и 7 и конец трубки 6 вставляют в пробку 2 (пробки следует подобрать заранее). В трубку 1 (или в пробирку с отрезанным дном) помещают немного чистого асбеста или стеклянной ваты и кладут на них несколько кусочков вещества, служащего для получения газа, закрывают пробирку пробкой 2 и открывают кран 5. В чистый пустой цилиндр 3 наливают 10%-ную соляную кислоту, которая должна занимать не больше 2/з и не меньше ‘/з объема цилиндра.
Рис. 80. Прибор для получения малых количеств газа: 1 — трубка или пробирка с отрезанным дном; 2, 4— пробки; 3 — цилиндр; 5— кран; 6. 7 — газоотводные трубки.
Рис. 81. Микрогенератор для получения газа: 1 — резиновая пробка; 2 — пробирка; 3 — куски Fe3; 4 — стеклянная палочка с расплющенным концам.
Пробирку опускают в цилиндр с кислотой (при этом кран 5 должен быть открытым) и, как только начнется выделение газа, кран 5 закрывают. Выделяющийся газ вытеснит всю кислоту из пробирки в цилиндр. Если газа выделится очень много, он будет проходить через слой жидкости в цилиндре и выходить наружу через трубку 7. Таким образом, давление газа в пробирке уравновесится с наружным. При открывании крана 5 кислота из цилиндра снова поступает в пробирку и выделение газа возобновляется. Выделяющийся газ выходит из прибора по трубке 6.
Микрогенератор (рис. 81) для получения газа можно сделать из пробирки диаметром 20 мм. Внутрь эт®й пробирки вставляют другую на резиновой пробке. У внутренней пробирки в донной части сделано одно широкое или несколько мелких отверстий. Внутрь этой пробирки, помещают кусок стеклянной палочки с расплющенным концом. На эту палочку кладут куски твердого вещества, например сернистого железа. Кислота наливается в широкую пробирку. Образующийся газ отводится по трубке, снабженной краном или зажимом Мора, который открывают только тогда, когда нужно получить газ.
Капельницы (рис. 82) — сосуды для жидкостей, расходуемых по каплям. Наибольшим распространением пользуются: капельницы, снабженные стеклянной пробкой* с желобком, через который жидкость может вытекать каплями; капельницы, в пробку которых вставляют маленькую пипетку, снабженную резиновым баллоном; капельницы, в пробку которых вставляют оплавленную стеклянную палочку.
При выборе капельниц для лаборатории предпочтение следует отдавать капельницам второго типа, так как они являются наиболее удобными. При отсутствии готовой капельницы ее можно изготовить самому. К склянке емкостью не более 50 мл подбирают резиновую пробку, в которую вставляют вытянутую из стеклянной трубки пипетку. Суженная часть пипетки должна доходить почти до дна склянки и иметь внутренний диаметр на конце не меньше 1 мм. Над пробкой пипетка должна выступать не менее чем на 1,5—2 см. На этот выступающий конец надевают маленький резиновый баллончик или кусочек резиновой трубки длиной 3—5 см, верхний конец которой закрывают кусочком стеклянной палочки.
Капельные палочки. Это — изогнутые стеклянные палочки (рис. 83), при помощи которых можно выливать каплями жидкость из сосуда любой формы. Изменяя диаметр палочки, можно получать капли различного размера.
Хлоркальциевые трубки (рис. 84) применяют для предохранения различных веществ и растворов от попадания в них нежелательных примесей из воздуха, как, например, паров воды, двуокиси углерода и пр.
Сосуд с титрованным раствором щелочи для предохранения ее от действия двуокиси углерода обычно снабжают хлоркальциевой трубкой, наполненной кусками аскарита или натронной извести. Если нужно предохранить содержимое сосуда от попадания паров воды, То хлоркальциевую трубку наполняют прокаленным ан-Гидроном или хлористым кальцием.
Рис. 83. Капельная палочка.
Для наполнения простой хлоркальциевой трубки (рис. 85) прежде всего в шарообразную часть ее кладут чистую вату так, чтобы она заполнила шарик не менее чем на половину. Затем насыпают поглотительное вещество (поглотитель) в виде зерен величиной с горошину, крупные куски применять не следует, так как адсорбирующая поверхность у них относительно меньше. Насыпанный слой поглотителя должен не доходить до конца трубки на 1—1,5 см. Сверху кладут небольшой слой чистой ваты и хлоркальциевую трубку закрывают пробкой, в которую вставлена небольшая стеклянная трубка.
Нужно помнить, что нельзя набивать туго ни вату, ни поглотитель, которым наполняют трубку. Хлоркальциевую трубку присоединяют к сосуду при помощи резиновой трубки. Хлористый кальций для заполнения трубки берут только свежепрокаленный. Хлористый кальций и патронную известь следует менять не реже чем один раз в полгода (в зависимости от условий применения трубки).
Для поглощения паров воды лучше применять Mg(ClО4)2 (ангидрон), являющийся лучшим водопоглощающим соединением. Для поглощения двуокиси углерода чаще всего применяют аскарит. Он поглощает в 5—10 раз больше СОг, чем натронная известь. Недостатком аскарита является то, что при поглощении СОг он набухает, что может привести к закупориванию трубки. В таком случае раскаленной иглой или раскаленным шилом прокалывают образовавшийся твердый слой аскарита, он плавится, и в нем образуется канал. Трубкой с аскаритом можно пользоваться до тех пор, пока он не побелеет на конце, обращенном к прибору.
Отработанный аскарит удаляют из трубки растворением, но не механически. Трубки с аскаритом помещают в теплую воду, время от времени перемешивая ее и меняя. Растворение ускоряется, если применять не воду, а растворы соляной кислоты, однако это может привести к растрескиванию трубки.
Переходные оливы (рис. 86)— стеклянные трубки, на концах которых сделан ряд утолщений с убывающими диаметрами, предназначенные для соединения резиновых трубок различного диаметра.
Склянки Тищенко похожи на бутыли Вульфа, но универсальнее, так как могут использоваться как с жидким, так и твердым поглотителем. Внутри склянки есть перегородка, делящая ее объем на две части. Части могут сообщаться друг с другом, чтобы газ мог проходить из одной половины в другую. В склянке для жидкого поглотителя в перегородке у дна есть отверстие. В склянке для твердого очистителя перегородка немного не доходит до дна с пробкой. Отводные трубки для подачи и вывода газа впаяны в разные части склянки. Такая конструкция замедляет прохождение газа через поглотитель и улучшает качество очистки.
Хлоркальциевые трубки
Хлоркальциевые трубки предназначены для очистки воздуха от примесей, которые могут повредить реактиву или раствору при контакте. Чаще всего с помощью хлоркальциевых трубок защищают чистые или прокаленные вещества от влаги или углекислого газа, содержащихся в воздухе. Кроме этого, трубки могут использоваться для поглощения нежелательных паров в перегонных аппаратах и дистилляторах.
Хлоркальциевые трубки бывают прямыми, изогнутыми и U-образными. Все они используются с твердыми поглотителями.
Прямые трубки имеют шарообразное расширение, которое наполовину заполняют ватой. Остальную верхнюю часть трубки заполняют гранулированным поглотителем (у гранул большая эффективная поверхность, а газ свободно проходит сквозь них). Сверху опять кладут слой ваты. После этого трубку закрывают пробкой со вставленным стеклянным отводом. Далее трубку с помощью пришлифованного соединения или резиновой пробки подсоединяют к сосуду с веществом или прибору, воздух к которым должен поступать только в очищенном виде.
Изогнутые и U-образные трубки используются аналогично.
Тип поглотителя зависит от того, какое соединение следует удалять из воздуха. Это может быть прокаленный хлорид кальция, натронная известь (смесь гидроокиси натрия NaOH с гашеной известью Ca(OH)2), ангидрон (Mg(ClО4)2, безводный перхлорат магния), аскарит (асбест, пропитанный расплавом гидроокиси натрия), силикагель, окись алюминия и т.п. Или смесь нескольких поглотителей для удаления из воздуха сразу нескольких компонентов.
Склянки Вульфа (с двумя или тремя горлами) служат для тех же целей, что и склянки Дрекселя. Эти склянки можно также применять в качестве реакционных сосудов при получении газообразных продуктов и в качестве предохранительного сосуда при водоструйных насосах.
Склянки Вульфа (рис. 75) большой емкости можно использовать для хранения титрованных растворов. Иногда склянки Вульфа имеют в нижней части тубус.
Склянки Тищенко (рис. 76) отличаются от склянок Вульфа тем, что внутри имеют перегородку, делящую склянку на две сообщающиеся между собой части. Есть два типа склянок Тищенко: для жидкостей и для твердых тел. У склянок для жидкостей внутренняя перегородка доходит до дна и обе половины сообщаются при помощи отверстия в середине перегородки у самого дна. В склянках для твердых тел перегородка немного не доходит до пробки, которая служит дном.
Склянки Тищенко служат для промывания и высушивания газов. Для этого в склянку наливают не более чем на промывную или высушивающую жидкость.
Рис. 75. Склянки Вульфа.
Рис. 76. Склянки Тищенко: а —для жидких поглотителей; б —для твердых поглотителей.
Иногда склянки Тищенко применяют в качестве предохранительных склянок при вакуум-насосах, но для этой цели они менее удобны, чем склянки Вульфа.
Промывалка Хюбнера для газов (рис. 77). Промывалка состоит из основного корпуса, внутри которого находится сосуд 1, содержащий промывную жидкость. Промывная жидкость при помощи сифона может переливаться в части 2 и 3 прибора. Газ через боковой патрубок поступает в часть 2 и через отверстия 4 в часть 3, но может также пройти из части 3 в часть 2 В обоих случаях высота столба жидкости в сифоне показывает среднее давление в последующей аппаратуре.
Редуктор Джонса. Для восстановления того или иного элемента до низших степеней валентности раствор пропускают через слой подходящего гранулированного металла или амальгамы, помещенных в стеклянную трубку. Обычно для проведения этого процесса применяют редуктор Джонса (рис. 78). Редуктор состоит из стеклянной трубки диаметром 18—20 мм и длиной 35—55 см, в нижней части ее имеется стеклянный кран.
Выше крана внутри трубки помещают фарфоровый перфорированный диск, затем немного стеклянной ваты для предупреждения засорения стеклянного крана восстановителем. Конец трубки вставлен в резиновую пробку, закрывающую горло колбы для фильтрования соответствующей емкости (обычно 500 мл). Колба присоединена в вакуум-насосу. Стеклянную трубку редуктора перед использованием заполняют дистиллированной водой и постепенно, мелкими порциями, вносят в нее нужное количество выбранного твердого восстановителя, уплотняя его стеклянной палочкой. Нужно заботиться о том, чтобы в промежутках между зернами твердого восстановителя не оставался воздух. Слой твердого восстановителя в редукционной бюретке обычно не превышает 30 см.
В качестве твердых восстановителей применяют амальгамированный цинк, металлические кадмий, висмут и др.
Рис. 77. Промывалка Хюбнера.
Рис. 78. Редуктор Джонса.
Для предупреждения окисления твердых восстановителей трубку оставляют наполненной водой и закрывают пробкой. Перед употреблением восстановитель промывают несколько раз (не менее 4 раз, лучше больше) 2 н. раствором серной кислоты, применяя каждый раз 25— 30 мл жидкости.
Нужно следить за тем, чтобы уровень жидкости в трубке всегда был на 3—4 мм выше слоя восстановителя. Это необходимо для предупреждения попадания пузырьков воздуха между зернами твердого восстановителя. Количество восстановителя, заполняющего трубку, бывает достаточно на несколько десятков (30—50) определений, что зависит от концентрации восстанавливаемого иона в исследуемом растворе.
Скорость пропускания исследуемого раствора через слой твердого восстановителя регулируют стеклянным краном и устанавливают опытным путем, т. е. проверкой пропущенной через восстановитель жидкости на восстанавливаемый ион. Для этого достаточно взять каплю жидкости и проделать с ней качественную реакцию на окисленную форму иона. Если этот ион обнаруживается, жидкость снова пропускают через редукционную бюретку. Обычно раствор пропускают со скоростью около 10 мл/мин.
После восстановления твердый восстановитель промывают 5—6 раз 2 н. раствором серной кислоты, применяя каждый раз не более 30 мл жидкости, а затем один раз таким же количеством воды.
Раствор, вытекающий из редукционной бюретки, собирают в коническую колбу. Более удобны редукторы Джонса, у которых вместо фарфорового перфорированного диска в трубку вплавлен крупнопористый фильтр из прессованного стекла.
Аппарат Киппа (рис. 79) служит для получения двуокиси углерода, сероводорода и других газов. Нижняя часть аппарата состоит из широкого резервуара / (у некоторых аппаратов этот резервуар имеет тубус); над ним находится шарообразное расширение 2, имеющее тубус 3 для отвода газа; верхняя часть аппарата представляет собой грушевидную воронку 5. Верхнюю часть прибора вставляют в нижнюю через горло 4 шарообразного расширения 2. В этом месте верхняя часть аппарата Киппа притерта к нижней.
Для того чтобы зарядить аппарат Киппа, поступают следующим образом.
Сначала вынимают резиновую пробку из тубуса 3 и через него в среднюю расширенную часть 2 аппарата вводят вещество, служащее для получения газа (мрамор — для получения двуокиси углерода, сернистое железо — для получения сероводорода, цинк — для получения водорода и т. д.). Куски насыпаемого твердого вещества должны быть не менее 1 см3, но и не очень большими. (Пользоваться порошком не рекомендуется, так как при этом слишком бурно выделяется газ и возможен прорыв его через верхнюю часть.) В тубус 3 вставляют резиновую пробку, снабженную трубкой со стеклянным краном. Затем в аппарат, открыв газоотводный кран тубуса 3, наливают через горло 6 тот или иной раствор (например, разбавленный раствор соляной кислоты при получении двуокиси углерода, сероводорода или водорода). Жидкость наливают в таком количестве, чтобы уровень ее (при открытом газоотводном кране) достигал половины верхнего шарообразного расширения нижней части. Пропускают газ в течение 5—10 мин, чтобы вытеснить воздух из аппарата, после чего закрывают газоотводный кран, а в горло 6 вставляют предохранительную воронку 7. Газоотводную трубку тубуса 3 соединяют с тем прибором, куда нужно пропускать газ.
Пока край закрыт, выделяющийся газ вытесняет кислоту из шарообразного расширения аппарата и последний перестает работать.
Если же открыть газоотводный кран, кислота вновь попадает в резервуар с мрамором или с другим веществом и аппарат начинает работать. Аппарат периодически очищают, заряжают его свежим веществом и кислотой. При очистке аппарата, когда из него удалены кислота и куски не прореагировавшего вещества, его следует промыть водой. При разборке (проводить которую нужно под тягой) у обычных аппаратов вначале вынимают предохранительную воронку и аппарат закрывают резиновой пробкой. После этого вынимают верхнюю часть, осторожно поворачивая ее вокруг оси; необходимо иметь наготове какой-либо сосуд, в который выливают кислоту, содержащуюся в вынимаемой верхней части аппарата Киппа. Далее, повернув нижнюю часть аппарата, высыпают из нее вещество, служившее для получения того или иного газа, и выливают кислоту в заранее приготовленную посуду. Только после этого аппарат промывают водой.
Для разборки аппаратов с тубусом в нижнем резервуаре сперва открывают тубус нижней широкой части аппарата и сливают через него кислоту; затем споласкивают сосуд водой и, если нужно, разбирают весь аппарат. Когда ограничиваются только сменой кислоты, то после ополаскивания сосуда водой тубус снова плотно закрывают, привязывают пробку и через горло 6 наливают свежий раствор кислоты.
Выделяющийся из аппарата Киппа газ может захватывать мелкие капли кислоты и частицы твердого вещества (например, FeS при получении H2S, мрамор при получении СО2 и пр.), поэтому газ для промывания следует пропускать через предохранительную склянку Вульфа, в которую наливают воду. Эта буферная склянка может быть соединена с другой склянкой для высушивания. Для этой же цели можно применять и газопромыватели.
Аппараты Киппа бывают различных размеров. Однако они мало удобны, когда требуются небольшие количества газов; поэтому для работы по микро- или полумикроанализу для получения газов применяют другие, упрощенные аппараты, работа которых построена по принципу работы аппарата Киппа.
С упрощенным аппаратом (рис. 80) можно работать без тяги, так как количество газа, получаемое с его помощью, очень невелико. Чтобы собрать и зарядить прибор, сначала в прорези пробки 4 вставляют трубки 6 и 7 и конец трубки 6 вставляют в пробку 2 (пробки следует подобрать заранее). В трубку 1 (или в пробирку с отрезанным дном) помещают немного чистого асбеста или стеклянной ваты и кладут на них несколько кусочков вещества, служащего для получения газа, закрывают пробирку пробкой 2 и открывают кран 5. В чистый пустой цилиндр 3 наливают 10%-ную соляную кислоту, которая должна занимать не больше 2/3 и не меньше 1/3 объема цилиндра.
Рис. 80. Прибор для получения малых количеств газа: 1 — трубка или пробирка с отрезанным дном; 2, 4— пробки; 3 — цилиндр; 5— кран; 6. 7 — газоотводные трубки.
Капельницы (рис. 82) — сосуды для жидкостей, расходуемых по каплям. Наибольшим распространением пользуются: капельницы, снабженные стеклянной пробкой* с желобком, через который жидкость может вытекать каплями; капельницы, в пробку которых вставляют маленькую пипетку, снабженную резиновым баллоном; капельницы, в пробку которых вставляют оплавленную стеклянную палочку.
При выборе капельниц для лаборатории предпочтение следует отдавать капельницам второго типа, так как они являются наиболее удобными. При отсутствии готовой капельницы ее можно изготовить самому. К склянке емкостью не более 50 мл подбирают резиновую пробку, в которую вставляют вытянутую из стеклянной трубки пипетку. Суженная часть пипетки должна доходить почти до дна склянки и иметь внутренний диаметр на конце не меньше 1 мм. Над пробкой пипетка должна выступать не менее чем на 1,5—2 см. На этот выступающий конец надевают маленький резиновый баллончик или кусочек резиновой трубки длиной 3—5 см, верхний конец которой закрывают кусочком стеклянной палочки.
Капельные палочки. Это — изогнутые стеклянные палочки (рис. 83), при помощи которых можно выливать каплями жидкость из сосуда любой формы. Изменяя диаметр палочки, можно получать капли различного размера.
Хлоркальциевые трубки (рис. 84) применяют для предохранения различных веществ и растворов от попадания в них нежелательных примесей из воздуха, как, например, паров воды, двуокиси углерода и пр.
Сосуд с титрованным раствором щелочи для предохранения ее от действия двуокиси углерода обычно снабжают хлоркальциевой трубкой, наполненной кусками аскарита или натронной извести. Если нужно предохранить содержимое сосуда от попадания паров воды, То хлоркальциевую трубку наполняют прокаленным ангидроном или хлористым кальцием.
Рис. 83. Капельная палочка.
Для наполнения простой хлоркальциевой трубки (рис. 85) прежде всего в шарообразную часть ее кладут чистую вату так, чтобы она заполнила шарик не менее чем на половину. Затем насыпают поглотительное вещество (поглотитель) в виде зерен величиной с горошину, крупные куски применять не следует, так как адсорбирующая поверхность у них относительно меньше. Насыпанный слой поглотителя должен не доходить до конца трубки на 1—1,5 см. Сверху кладут небольшой слой чистой ваты и хлоркальциевую трубку закрывают пробкой, в которую вставлена небольшая стеклянная трубка.
Нужно помнить, что нельзя набивать туго ни вату, ни поглотитель, которым наполняют трубку. Хлоркальциевую трубку присоединяют к сосуду при помощи резиновой трубки. Хлористый кальций для заполнения трубки берут только свежепрокаленный. Хлористый кальций и патронную известь следует менять не реже чем один раз в полгода (в зависимости от условий применения трубки).
Для поглощения паров воды лучше применять Mg(ClО4)2 (ангидрон), являющийся лучшим водопоглощающим соединением. Для поглощения двуокиси углерода чаще всего применяют аскарит. Он поглощает в 5—10 раз больше СО2, чем натронная известь. Недостатком аскарита является то, что при поглощении СО2 он набухает, что может привести к закупориванию трубки. В таком случае раскаленной иглой или раскаленным шилом прокалывают образовавшийся твердый слой аскарита, он плавится, и в нем образуется канал. Трубкой с аскаритом можно пользоваться до тех пор, пока он не побелеет на конце, обращенном к прибору.
Отработанный аскарит удаляют из трубки растворением, но не механически. Трубки с аскаритом помещают в теплую воду, время от времени перемешивая ее и меняя. Растворение ускоряется, если применять не воду, а растворы соляной кислоты, однако это может привести к растрескиванию трубки.
Переходные оливы (рис. 86)— стеклянные трубки, на концах которых сделан ряд утолщений с убывающими диаметрами, предназначенные для соединения резиновых трубок различного диаметра.
Каплеуловители — стеклянные приборы, применяемые при некоторых исследованиях и анализах. Они предназначены для улавливания капель, уносимых парами кипящей жидкости, или для улавливания воды при определении содержания ее аппаратом Дина и Старка.
Существует несколько типов каплеуловителей. На рис. 87 показан каплеуловитель, известный в лабораториях под названием насадки Кьельдаля. Насадка Кьельдаля была применена впервые как часть аппарата для перегонки жидкости. При перегонке жидкости насадку вставляют нижним концом в сосуд с кипящей жидкостью, а верхним — в холодильник.
Более удобен в работе так называемыйчешский каплеуловитель (рис. 88). Его можно применять почти во всех случаях, когда необходимо отделять капли от пара жидкости.
Пар с капельками жидкости поступает в каплеуловитель через трубку 1 и затем распределяется по трубкам 2. В результате этого скорость движения пара уменьшается и наиболее крупные капельки жидкости, унесенные паром, оседают на стенки и стекают обратно в сосуд. Затем пар попадает в конусообразные части 3 каплеуловителя, где объем пара увеличивается, при этом пар несколько охлаждается и унесенные мелкие капли оседают на стенках конусообразных трубок и стекают в сосуд. Пар, проходя через жидкость, стекающую по сужениям в трубках 2, дополнительно освобождается от капелек жидкости. Через верхнее отверстие насадки пар поступает в дефлегматор, холодильник и т. п.
Каплеуловители с водяным затвором. Каплеуловитель с водяным затвором (рис. 89, а) присоединяют к пароотводной трубке, вставленной в пробку колбы. В расширенную часть каплеуловителя наливают воду так, чтобы конец внутренней трубки погрузился в жидкость примерно на 1 см. При кипячении пар проходит через воду и капли задерживаются в ней.
После окончания нагревания давление внутри колбы с кипящей жидкостью уменьшается и в нее засасывается часть воды из каплеуловителя. Этот каплеуловитель используют и как счетчик капель.
При некоторых анализах применяют каплеуловитель по Ульшу (рис. 89,6). Принцип действия данного прибора такой же, как и описанного выше.
При проведении аналитических работ иногда применяют насадку Конта — Геккаля (рис. 89, в), являющуюся капле- и газоуловителем. Насадку вставляют
в горло конической колбы через резиновую или корковую пробку. Воду или другую поглощающую жидкость наливают в эту насадку так, чтобы кончик загнутой трубки был только немного погружен в жидкость. Капли жидкости и пар при кипячении проходят через небольшой слой поглотителя. При остывании в колбе создается вакуум и часть жидкости из насадки засасывается в колбу. Если попадание поглотителя в колбу нежелательно, то насадку вынимают сразу же после прекращения нагревания.
Толстостенный колпак, или колокол (рис. 90). Толстостенный колпак, или колокол, используют в лабораториях для различных целей. Имеется три разновидности этих колпаков: с верхним тубусом, с боковым тубусом и без тубуса, со стеклянным шаром в верхней части для удерживания колпака или колокола. Последний вид чаще всего используют для защиты различных приборов, например микроскопа и инструментов, от пыли, для хранения препаратов, осадков и пр. Два первых вида иногда используют вместо эксикаторов, для хранения веществ в атмосфере инертного газа и пр. Для этих це« лей колпак с предварительно смазанными вазелином или другой смазкой краями помещают на кусок стекла, лучше зеркального и притирают его. Верхний или боковой тубус закрывают резиновой пробкой с вставленным в нее двухходовым или трехходовым стеклянным краном. Через этот кран колпак или колокол можно соединить с вакуум-насосом или с источником инертного газа.
Мерная посуда
Мерной называют посуду, применяемую для измерения объема жидкости.
Мерные цилиндры — стеклянные толстостенные сосуды с нанесенными на наружной стенке делениями, указывающими объем в миллилитрах (рис. 92). Они бывают самой разнообразной емкости: от 5—10 мл до 1 л и больше. Чтобы отмерить нужный объем жидкости, ее наливают в мерный цилиндр до тех пор, пока нижний мениск не достигнет уровня нужного деления.
Иногда встречаются цилиндры, снабженные притертыми пробками. Обычно их применяют только лишь при специальных работах.
Кроме цилиндров, для той же цели употребляют мензурки (рис. 93). Это сосуды конической формы, на стенке которых имеются деления. Они очень удобны для отстаивания мутных жидкостей, когда осадок собирается в нижней, суженной части мензурки.
Пипетки служат для точного отмеривания определенного объема жидкости. Различают пипетки для жидкостей и газовые пипетки.
Пипетки для жидкостей(рис. 94). Обычные пипетки (пипетки Мора) представляют собой стеклянные трубки небольшого диаметра с расширением посредине.
Нижний конец пипетки слегка оттянут и имеет диаметр около 1 мм. Пипетки бывают емкостью от 1 до 100 мл, в верхней части их имеется метка, до которой набирают жидкости. Широко применяют также градуированные пипетки различной емкости, на наружной стенке которых нанесены деления в 0,1 мл.
Для наполнения пипетки нижний конец ее опускают в жидкость и втягивают последнюю при помощи груши или ртом, но лучше при этом пользоваться специальными приспособлениями.
Засасывание жидкости нужно научиться делать отрывистыми сосательными движениями языка (или губами), но только не вдыхая воздух из пипетки (обычная ошибка начинающих). Проводя засасывание, нужно совершенно свободно дышать через нос и следить, чтобы кончик пипетки все время находился в жидкости. Жидкость набирают так, чтобы она поднялась на 2— 3 см выше метки, затем быстро закрывают верхнее отверстие указательным пальцем правой руки, придерживая в то же время пипетку большим и средним пальцами. Очень полезно указательный палец слегка увлажнить, так как влажный палец более плотно закрывает пипетку.
Когда пипетка наполнена, ослабляют нажим указательного пальца, в результате чего жидкость будет медленно вытекать из пипетки; как только нижний мениск жидкости окажется на одном уровне с меткой, палец снова прижимают (рис. 95).
Если на конце пипетки после этого будет висеть капля, ее следует осторожно удалить. Введя пипетку в сосуд, отнимают указательный палец и дают жидкости стечь по стенке сосуда. После того как жидкость вытечет, пипетку держат в течение еще 5 сек (считая до 5) прислоненной к стенке сосуда, слегка поворачивая вокруг оси, после чего удаляют пипетку, не обращая внимания на оставшуюся в ней жидкость.
Выливание раствора из пипетки в коническую колбу показано на рис. 96. Очень важно, чтобы раствор стекал именно по стенке конической колбы и не разбрызгивался, так как при этом часть выливаемого раствора может попасть на стенку колбы и при последующем титровании не вступит в реакцию с раствором, выливаемым из бюретки.
Следует помнить, что объем жидкости, вытекающей из пипетки, зависит от способа вытекания и последний должен быть таким же, как и применяемый при калибровании пипеток. Поэтому никогда не следует стремиться выгонять остатки жидкости из пипетки выдуванием или нагреванием рукой расширенной части пипетки.
Рис. 94. Пипетки: а-простая; б—градуированная
Рис. 95. Выливаниераствора из пинетки
Рис. 96. Положениепипетки при установлении мениска на уровне метки
Пипетку крепят в штативе при помощи большой муфты. Применяются автоматические пипетки (рис. 105)’ емкостью 1 и 10 мл, с притертой пробкой и без нее.
Пипетку можно укрепить с помощью резиновой пробки на любой колбе. Для заполнения пипетки наклоняют колбу так, чтобы жидкость вливалась в пипетку через внутреннее отверстие. Затем колбу приводят в первоначальное положение. При этом избыток жидкости стекает обратно в колбу. Отмеренный объем жидкости выливают через сливное отверстие.
Рис. 105. Автоматическая пипетка.
Рис. 106. Микропипетки.
В тех случаях, когда нужно отобрать пипеткой жидкость, в которой взвешены твердые частицы, к пипетке можно сделать приспособление для фильтрования набираемой жидкости. Оно состоит из небольшого куска стеклянной трубки, внутрь которой помещают какой-либо фильтрующий материал, например стеклянную вату. Стеклянную трубку соединяют с нижним концом пипетки при помощи небольшого куска резиновой, но лучше — прозрачной полиэтиленовой трубки и набирают фильтрующуюся жидкость обычным образом. После того как пипетка будет заполнена, приспособление снимают. В качестве фильтра можно применить фильтровальную палочку с вплавленным фильтром из прессованного стекла.
Для отмеривания малых объемов жидкостей применяют микропипетки емкостью 1, 2, 3 и 5 мм. Микропипетки (рис. 106) часто градуируют, они имеют деления вч0,01 мл, что позволяет делать отсчет с точностью 0,002—0,005 мл.
Градуированной пипеткой можно отбирать не только один определенный объем жидкости (как обыкновенными пипетками), но любой в пределах ее емкости. Жидкость набирают в пипетку до нужной метки (нижний мениск жидкости находится на уровне последней) и затем выливают ее, как обычно.
Пипетки должны быть всегда чисто вымытыми; их следует ставить в особый штатив (рис. 107) и закрывать сверху маленькими пробирками или куском чистой фильтровальной бумаги. Если штатива в лаборатории нет, пипетки можно храниаъ в стеклянном цилиндре, на дно которого предварительно кладут несколько слоев чистой фильтровальной бумаги, вырезанной кружками; После работы пипетку ополаскивают несколько раз ди1 стиллированной водой и помещают в стеклянный цилиндр, каждый раз заменяя верхний слой фильтровальной бумаги свежим.
Обычными пипетками нельзя отмеривать жидкости, вязкость которых заметно отличается от вязкости воды, например концентрированные кислоты, щелочи и т. п., так как объем отобранной’жидкости не будет соответствовать указанному. Для отбора таких жидкостей пользуются специально прокалиброванными пипетками.
При обращении со всеми видами пипеток нужно обязательно придерживаться следующих правил:
1. Пипетка при отборе жидкости всегда должна находиться в строго вертикальном положении.
2. При установке нижнего мениска на уровне черты глаз наблюдателя должен быть расположен в одной плоскости с меткой (метки на передней и задней стенках должны при этом сливаться в одну).
Газовые пипетки. Это — стеклянные приборы, которые служат для пропускания и отбора газов, подлежащих анализу. Газ поглощают жидким или твердым сорбентом, заполняющим газовую пипетку.
Простейшая газовая пипетка (рис. 108) состоит из двух стеклянных шаров, соединенных между собой коленчатой стеклянной трубкой и укрепленных в деревянном штативе. Шар, расположенный выше, имеет емкость около 100 мл, а расположенный ниже — около 150 мл. Больший шар пипетки снабжен коленчатой капиллярной трубкой, выступающей из штатива на несколько сантиметров и оканчивающейся оттянутым концом. Абсорбирующую жидкость наливают через широкую трубку верхнего шара при помощи воронки до тех пор, пока не заполнится нижний шар пипетки и капиллярная трубка.
Газовую пипетку для увеличения поверхности абсорбирующей жидкости заполняют твердым носителем (стеклянной дробью и т. п.).
В верхнюю часть шара для взрывания, возле капиллярной трубки, впаяны две тонкие платиновые проволоки, отстоящие одна от другой на расстоянии около 2 мм.
Рис. 108. Газовая пипетка.
Рис.109. Взрывная газовая пипетка.
На трубке, соединяющей нары, находится стеклянный кран. Верхняя часть шара для взрывания переходит в коленчатый капилляр, конец которого закрывают короткой резиновой трубкой, снабженной зажимом.
Бюретки применяют при титровании, для измерения точных объемов и пр. Различают бюретки объемные, весовые, поршневые, микробюретки и газовые.
Объемные бюретки. Это — стеклянные трубки с несколько оттянутым нижним концом или снабженные краном. На наружной стенке по всей длине бюретки нанесены деления в 0,1 мл, так что отсчеты можно вести с точностью до 0,02 мл.
Бюретки (рис. 110) бывают двух типов: с притертым краном (б) и бескрановые с оттянутым концом (а), к которому посредством резиновой трубки присоединяют оттянутую в капилляр стеклянную трубку; резиновую трубку зажимают зажимом Мора или же внутрь ее закладывают стеклянную бусину (рис. 111).
Вместо бусинки можно применять гладкую стеклянную палочку. Резиновая трубка должна иметь стенку толщиной не менее 1,5 мм, а внутренний диаметр — около 3 мм. Таким образом, наружный диаметр резиновой трубки — около 6 мм. Конец выбранной стеклянной палочки закругляют на пламени газовой горелки при постоянном вращении, пока на нем не появится небольшое утолщение.
Рис. 110. Бюретки объемные. Рис. 111. Резиновая насадка с бусиной для бюреток.
После охлаждения отрезают кусок длиной 8 мм, для этого проводят на палочке черту, помещают палочку в отверстие в пробке до черты и отламывают. Острые края в месте излома проще всего сгладить напильником. После этого отрезанный кусок вставляют в резиновую трубку закругленным концом вниз.
В бюретки с краном можно наливать все жидкости за исключением щелочей, которые могут вызывать заедание притертого крана. Для работы со щелочами применяют бескрановые бюретки с резиновой насадкой.
Рис. 112. Крепление бюреток.
Для работы в учебных лабораториях или в тех случаях, когда титрование проводят редко, и при всех временных работах бюретки укрепляют на лабораторных штативах в лапках. Однако лапки (рис.. 112, а) закрывают часть делений бюретки, поэтому значительно удобнее применять держатели для бюреток (рис. 112,6). Держатели делают из проволоки и закрепляют бюретку таким образом, чтобы они не мешали отсчету.
Так как бюретки предназначены для очень ответственной работы— титрования, их следует содержать в особенной чистоте.
Объем некоторых растворов, например К2Сr2О7, бывает трудно отмерить при помощи бюретки, даже вымытой самым тщательным образом, так как на внутренней стенке бюретки остаются прилипшие капли раствора. Отметить положение мениска у таких растворов также трудно. Для подобных растворов рекомендуют делать внутреннюю стенку бюретки не смачиваемой, что достигается нанесением на стекло тончайшего слоя вазелина или вазелинового масла. Тогда мениск раствора делается не вогнутым, а выпуклым (как у ртути в стеклянной трубке), жидкость к стенкам не пристает и положение мениска отмечают без труда.
Кроме того, отличные результаты дает покрытие внутренней поверхности бюреток и другой измерительной и химической посуды тончайшей силиконовой пленкой.
После работы бюретку следует вымыть водой и оставить ее. в штативе, перевернув открытым концом вниз. Чтобы в бюретку не попадала пыль, ее лучше заткнуть кусочком ваты. У бюреток с краном нужно вынуть кран, обернуть его один раз куском чистой фильтровальной бумаги и снова вставить в бюретку. Если этого не сделать, шлиф может испортиться и кран будет протекать.
Для обычных работ кран у бюретки можно смазать очень тонким слоем вазелина, которым слегка смазывают шлиф и, поворачивая кран взад и вперед, добиваются равномерного распределения смазки. Имеются также специальные смазки для кранов.
При работе с бескрановыми бюретками следует учитывать, что некоторые растворы могут вредно действовать на резиновую трубку. Например, такое действие оказывают даже очень разбавленные растворы иода. Окислители также не следует надолго оставлять в соприкосновении с резиной, так как они хотя и очень медленно, но все же действуют на резиновую трубку, придавая ей хрупкость.
У бескрановых бюреток пузырек воздуха можно удалить, загнув резиновую трубку с капилляром так, чтобы кончик капилляра был направлен вверх и в сторону от работающего и его соседей. Затем осторожно открывают зажим и вытесняют раствором весь воздух. Зажим закрывают, когда из кончика капилляра начнет вытекать жидкость.
На рис. 113 показано, как нужно удалять пузырек воздуха из кончика бескрановой бюретки.
Если пузырек воздуха остается в бюретке с краном, его нужно попробовать удалить быстрым спусканием жидкости (кран открыт полностью). Если это не помогает, нижний конец бюретки опускают в стакан с той же жидкостью и через верхний конец всасывают немного раствора. При этом пузырек воздуха всплывает.
Бюретку устанавливают на нуль только после того, как работающий убедится что в капилляре или кончике бюретки не осталось пузырьков воздуха.
Бюретки можно заполнять также и через нижний конец, для этого на него надевают резиновую трубку подходящего диаметра, на другой конец которой насаживают чистую тонкую стеклянную трубку. Эту трубку опускают в колбу или сосуд, в которых находится раствор для заполнения бюретки.
В верхний открытый конец бюретки вставляют резиновую пробку, в которую вставлен кусок стеклянной трубки (длиной 5—6 см). На выступающий наружу конец этой стеклянной трубки надевают резиновую трубку.
Открыв кран или зажим у бюретки, через верхний конец засасывают раствор до нужного уровня или немного выше, затем закрывают кран или зажим и освобождают бюретку. Заполнять бюретку можно, непосредственно засасывая жидкость из стакана.
Засасывать можно при помощи резиновой груши или резинового баллона с краном и даже при помощи водоструйного насоса. Бюретку следует заполнять так, чтобы вначале уровень жидкости был несколько выше нулевого деления шкалы (до 3—4 см). Затем, осторожно приоткрывая кран, аккуратно устанавливают уровень жидкости на нулевое деление. Каждое титрование следует начинать только после заполнения бюретки до нуля. Уровень жидкости прозрачных растворов устанавливают по нижнему мениску, а непрозрачных — по верхнему.
Если деления на бюретке заметны плохо, их следует зачернить. Для облегчения отсчета на бюретке делают простые приспособления (рис. 114) либо на куске бумаги проводят тушью продольную черту шириной 2—3 мм (рис. 114,а), либо чернят тушью нижнюю половинку взятого куска бумаги (рис. 114,6). В том и другом случае на бумаге делают два поперечных надреза и через них надевают ее на бюретку.
Для облегчения отсчета на бюретке можно применять также приспособление из тонкой жести или алюминия. Для этого кусок тонкой жести или алюминия- вырезают так, как показано на рис. 115, а, и в центре внутренней поверхности полученной гильзы проводят тушью по всей длине полоску шириной 2 мм. Гильзу надевают на бюретку, прижимают боковинками и, передвигая к мениску, делают отсчет.
Встречаются бюретки (рис. 114,в), на задней стенке которых нанесена темная или цветная полоса (чаще всего — синяя). При пользовании первым приспособлением или бюреткой с продольной цветной чертой у поверхности жидкости проектируются два конуса, сходящиеся вершинами точно на уровне жидкости. При пользовании вторым приспособлением следует черное поле подвести к уровню жидкости так, чтобы мениск касался верхней линии поля; в этом случае мениск примет черную окраску и четко обозначится, что значительно облегчает отсчет.