Для чего нужна стабилизация
Для чего нужен стабилизатор напряжения — несколько советов по выбору стабилизатора
Стабилизатор – это устройство, представляющее собой электрический прибор, который используется для выравнивания колебаний напряжения сети при подаче тока на технику, такую как компьютеры, кондиционеры, насосы и др.
Для чего нужен стабилизатор напряжения? Регулятор в основном предназначен:
Этот аппарат имеет множество уникальных особенностей, которые позволяют экономить электроэнергию, влиять на производительность и повышать надежность техники. На дисплее аппарата высвечиваются основные параметры электрической сети, быть всегда в курсе о них – это значит владеть ситуацией. Функция задержки включения обеспечивает передышку и стабилизирует питание перед подачей на нагрузку, следовательно, увеличивает срок службы приборов.
И всё-таки, зачем нужен стабилизатор? Его использование представляет собой самую доступную и эффективную меру энергосбережения, сохранения приборов от выхода из строя и душевного спокойствия домочадцев.
Несколько советов по выбору стабилизатора
Если устройство выбрано правильно, то на него всегда можно положиться и довериться. Если в технике не особо разбираться, то можно положиться на предложения и советы продавца по выбору стабилизатора напряжения. Профессионал порекомендует для начала:
Исходя из полученных данных, затем приступить к выбору устройства.
Как правильно рассчитать мощность прибора? В идеале нужно определить, какой самый мощный потребитель присутствует в схеме электроснабжения. Допустим, электроприёмниками являются насосная станция мощностью 1, 5 кВт, сауна – 10 кВт плюс ещё какой-либо прибор с большим энергопотреблением. Все значения в киловаттах необходимо сложить и получить искомую мощность прибора.
Стабилизатор выбирается с небольшим запасом мощности (20%), особенно если в цепи присутствует оборудование с большим пусковым током. Речь идёт об электродвигателях и насосах, которые при пуске потребляют энергии больше, чем в обычном режиме.
Запас мощности обеспечивает долгую жизнь прибора, благодаря щадящему режиму работы, и создаёт резервный потенциал для подключения нового оборудования.
Выбирая стабилизатор также нужно учитывать сервисное обслуживание, потому что прибор следует правильно и качественно подключить, а также воспользоваться гарантийным сроком и отремонтировать в случае неисправности.
Как правильно выбирать стабилизатор напряжения для дома?
Можно воспользоваться самым простым вариантом: определить потребление мощности из сети по номиналу вводного автомата в квартирном щитке. Таким образом, узнаётся пропускная способность автомата и максимально возможная мощность потребления на бытовые нужды.
Приведём простой пример. Как выбрать стабилизатор напряжения 220 В для дома, если на вводе стоит автомат S40. С таким номинальным током от сети можно получить не более 10 кВт. Исходя из расчётных данных, и выбирается аппарат.
На сегодняшний день низкое напряжение в сети – проблема весьма актуальная и решить её лучше всего одним способом – приобрести стабилизатор, который защитит всю технику в доме от выхода из строя. Чтобы правильно выбрать устройство, сначала нужно разобраться с его разновидностями, а также преимуществами каждого варианта исполнения.
Типы защитных устройств
Самыми популярными типами стабилизаторов на сегодня являются:
Электронные стабилизаторы напряжения – это приборы наилучшего качества. Ввиду отсутствия механических частей характеризуются большим сроком службы, минимум 15 лет, и довольно высокой надёжностью. Можно подбирать по рабочему диапазону напряжений практически под любые задачи.
Электромеханические стабилизаторы напряжения характеризуются небольшим быстродействием, узким диапазоном напряжений, но зато хорошей перегрузочной способностью.
Полезная информация о стабилизаторах напряжения по поводу высокой точности
Многие стараются выбрать устройство с максимальной точностью стабилизации, вплоть до 0,5 %. Однако, как правило, отклонение в 10–15 В считается нормальным режимом работы для большинства техники. И только в редких случаях оборудование при таких отклонениях не работает или капризничает. Большая часть предлагаемых на рынке стабилизаторов обеспечивает именно такой режим работы.
Частым заблуждением покупателей является то, что приобретаемое устройство с высокой точностью стабилизации – это гарантия стабильного напряжения и отсутствие мерцания света. На самом деле, получается наоборот: чем больше точность у прибора, тем чаще он переключается, подстраиваясь под входную сеть, поэтому и лампочки не перестают мерцать. Это касается ламп накаливания и галогенок.
При установке стабилизатора симисторного и релейного типа мерцание лампочек стопроцентно будет сохраняться. Исключение составляют лишь стабилизаторы с плавной регулировкой сигнала. Это касается новых разработок стабилизаторов, таких как Вольтер. При выборе регулятора желательно руководствоваться рекомендациями от производителя или профессионалов. Можно для верности ещё почитать положительные и отрицательные отзывы в интернете на конкретную модель или бренд.
Какой выбрать однофазный или трехфазный?
Если в дом заведены три фазы, совсем необязательно устанавливать трёхфазный стабилизатор. Чаще всего, оказывается, можно обойтись однофазниками. При этом преимуществ можно получить очень много.
Во-первых, по стоимости, которая в общей сложности у трёх однофазных меньше, чем у трёхфазного. Во-вторых, по ремонтопригодности более надёжно. Одно дело – снять один блок и отвести его на ремонт, другое – снять полностью аппарат.
Коммерческая выгода от установки стабилизатора напряжения
Отечественные электросети физически сильно изношены, а местами и морально устарели. А потребителей становится всё больше и больше. Установка стабилизаторов выгодна по нескольким причинам:
Во всех этих и других непредвиденных случаях стабилизатор напряжения поможет сберечь время, средства и нервы.
Возможные последствия для приборов (электрических потребителей) в условиях отклонения напряжения от нормы
Вот, что такое стабилизатор напряжения и зачем он нужен.
Подведём небольшой итог
Ценными качествами регуляторов являются быстрая реакция прибора на изменение параметров в сети, расширенный диапазон рабочего напряжения, хорошая перегрузочная способность, синусоида правильной формы на выходе, бесшумность.
Но сколько бы ни говорилось о достоинствах той или иной марки, для потребителя наиболее приоритетной характеристикой всегда остаётся соотношение цены и качества. Поэтому золотой серединой, несомненно, станет выбор качественной отечественной продукции.
Оптическая или цифровая: какая стабилизация лучше и зачем она вообще нужна
Чтобы изображения получались резкими даже при съемке «с рук», в гаджетах используют системы стабилизации. Но не все они одинаковы: рассказываем, какие из них лучше.
Зачем вообще нужна стабилизация изображения в смартфонах и камерах? Для получения четкого снимка и объект, и камера должны быть жестко зафиксированы. И если с объектом проблем не возникает (конечно, если это не ребенок или активное животное, которым правила съемки не объяснишь), то с самим гаджетом сложнее.
Если снимать в хорошую погоду с небольшого расстояния, выдержка на аппарате будет довольно короткой.
А если нет возможности использовать короткую выдержку? Например, вы снимаете в облачный день и света не так много. Хорошо, когда есть штатив или хотя бы неподвижный элемент, куда можно поставить гаджет (например, гранитный парапет). Но если все же приходится снимать с рук, приходит на выручку система стабилизации. Ее задача — компенсировать дрожания вашей руки.
Стабилизация: внешняя и встроенная
Стабилизация делится на активную и пассивную. К первой относятся всевозможные подвесы, стедикамы и другие устройства, стабилизирующие камеру в пространстве. Подобные аксессуары в наши дни применяются не только профессионалами, но и всеми подряд — в продаже достаточно стабилизаторов от множества брендов, рассчитанных на самый разный кошелек. Другое дело, что всем этим нужно уметь пользоваться, а пассивная стабилизация никаких особых знаний не требует.
Пассивная стабилизация уже встроена в саму камеру и работает либо по принципу оптической стабилизации изображения (Optical Image Stabilizer, OIS), либо по принципу цифровой стабилизации изображения (Electronic Image Stabilizer или Digital Image Stabilizer, EIS или DIS). Оба решения используются в современных смартфонах, но чем они отличаются и какое из них лучше?
Оптическая стабилизация: чистая механика
Общая задача стабилизаторов — сделать итоговое изображение четким, но добиваются этого системы разным способом. OIS, появившаяся раньше, представляет собой целый комплекс: стабилизирующий элемент объектива, способный двигаться по вертикали и горизонтали, с помощью электроприводов «маневрирует» по командам от гироскопических датчиков ради того, чтобы во время экспозиции фотоаппарата полностью компенсировать движения камеры в проекции изображения на пленке или матрице цифровых фотоаппаратов.
Позднее появилась система, в которой движения компенсируются уже с помощью подвижной матрицы внутри корпуса камеры — это позволило использовать сменные объективы, хотя и ценой чуть меньшей эффективности. Но заметить это можно только в очень сложных условиях съемки.
Оптические системы стабилизации со временем появились и в смартфонах. Не так давно мы тестировали vivo X60 Pro, где использована именно такая система. Можно посмотреть на видео, как она работает.
Цифровая стабилизация: программное решение
Цифровая стабилизация также борется с нечетким изображением, но делает это без механической «помощи». При EIS часть пикселей матрицы камеры не формирует картинку, а работает в качестве резерва — при движении процессор понимает, что изображение будет смазанным и использует эти «запасные» пиксели, чтобы компенсировать потери. В итоге кадры получаются четкими, но зачастую менее качественными, чем то же изображение, выполненной с помощью устройства с оптической стабилизацией. При этом реализация подобного решения требует меньших затрат, а потому цифровая стабилизация часто встречается в бюджетных устройствах.
Флагманские смартфоны обычно имеют комбинированную систему стабилизации, в которой OIS дополняется EIS. Это позволяет добиться максимально качественного изображения, хотя, например, Google в своей линейке Pixel использует только цифровую стабилизацию — софт у компании написан качественный, и он дает возможность делать весьма хорошие кадры. Другое дело — бюджетные устройства, создатели которых экономят на комплектующих и в итоге получается, что сами по себе компоненты камеры не лучшие, к тому же слабое «железо» не позволяет реализовать максимально качественные алгоритмы EIS, так что на выходе получаются фотографии, которые без слез можно разглядывать только на экране этого же смартфона.
Оптическая или цифровая стабилизация: что лучше?
Так что в итоге, какой из вариантов лучше? Однозначно, оптическая. Но реализовать ее не так просто — особенно, в компактных объективах смартфонов. Поэтому такие системы используют, главным образом, в дорогих гаджетах. Например, в большинстве моделей из нашей подборки лучших камерофонов 2021 года.
Цифровая стабилизация — «эконом-вариант». Лучше, чем никакой, но не так эффективная, как оптическая. Такие встречаются, как правило, в смартфонах среднего класса.
Домашний стабилизатор напряжения: что это такое и в каких случаях он нужен
Содержание
Содержание
Как работают стабилизаторы напряжения? На что обращать внимание при выборе, как их подключать, чтобы продлить жизнь особо требовательным домашним электроприборам? Как определить, что стабилизатор нужен и можно ли как-то обойтись без него? Сейчас разберемся.
Что такое стабилизатор напряжения
Стабилизатор напряжения — это прибор, который поддерживает заданное напряжение и тем самым организует «здоровое электропитание». Например, если в сети вместо 220 вольт осталось всего 200 вольт, то после подключения стабилизатора на его выходе снова получится 220 вольт.
Аналогично стабилизатор справляется с повышенным напряжением, скачками напряжения в электросети и прочими трудностями. Прибор полезный, но нужен ли он лично вам? Это надо выяснить.
Как определить нестабильное напряжение в сети
Как понять, что в сети нестабильное напряжение? Проверить мультиметром либо ваттметром. Измерять напряжение в сети нужно в разное время: утром, вечером и в течение дня.
Многие источники бесперебойного питания, которые используют для защиты компьютера, не только работают как стабилизаторы, но и умеют вести журналы и строить графики, из которых видно, что даже в городских условиях напряжение неплохо «гуляет».
Перепады напряжения можно отследить и визуально. Например, по лампам накаливания — они будут менять яркость. Также можно заметить, что некоторые приборы работают вполсилы, некорректно или вовсе отключаются.
Современный стандарт — плюс-минус 230 вольт. Многие приборы способны работать в довольно широком диапазоне напряжений, но перестраховаться, особенно если прибор дорогостоящий, будет не лишним.
Что защищать стабилизатором
Какие именно приборы нужно защищать стабилизатором напряжения? Наиболее требовательны к качеству электропитания устройства, оснащенные электродвигателем или компрессором. Это холодильники, кондиционеры, стиральные машины, котлы отопления, насосы и т. д. А также любые устройства с импульсным блоком питания. То есть практически каждый электроприбор: от зарядного устройства для смартфона до телевизора.
И если зарядку мобильного можно поменять, то для сложной техники решение проблемы обойдется дороже. Особенно не любят скачки напряжения инверторные холодильники, а их ремонт может серьезно ударить по карману. Звучит пугающе. Но насколько проблема существенна?
Насколько опасно низкое напряжение
Чтобы выяснить, насколько опасно низкое напряжение, проведем простой и наглядный тест с лампочкой и электрочайником. Устройства настолько простые, что могут работать буквально при любом напряжении. В тестах поможет лабораторный трансформатор. С помощью него выходное напряжение можно регулировать, как в плюс, так и в минус.
Один светильник включаем в сеть трансформатора, где напряжение может плавать, а второй подключим через стабилизатор. И вот он — первый результат. При напряжении в 190 вольт лампочка ощутимо тусклее, а вот лампа, подключенная к стабилизатору, светит штатно.
Стоит отметить, что при перепадах напряжения в больших диапазонах, некоторые стабилизаторы, например, релейного типа, влияют на работу ламп: несмотря на подключенный стабилизатор, лампочки будут то ярко светить, то тускнеть.
Но если с лампочкой дело обстоит довольно неплохо — она все-таки продолжает светить, то с чайником получилось интереснее. При заниженном напряжении чайник в принципе работает. Но время закипания увеличилось почти в два раза, а автоматическое отключение сработало спустя минуту после того, как чайник закипел. Если выставить напряжение еще меньше, автоматика не сработает и чайник будет кипеть до последнего. Это уже опасно, поскольку чревато возгоранием.
Если даже такие примитивные приборы чувствительны к уровню напряжения, что говорить о более сложной технике. По этой причине стабилизатор лишним не будет. Но на какие параметры обращать внимание?
Диапазон и мощность стабилизатора
Минимальное и максимальное напряжение, с которым может работать стабилизатор, определяет диапазон стабилизации. Если напряжение выйдет за эти пределы, стабилизатор просто отключится. Важно выбирать модель, которая подойдет под конкретные условия.
Например, если напряжение часто бывает пониженным, то лучше подбирать диапазон от 140, а не от 180 вольт. Или еще ниже — некоторые модели работают даже при напряжении ниже ста вольт. Но это скорее промышленное решение. Следует также учитывать, что это повлияет на стоимость: чем шире диапазон, тем обычно дороже стабилизатор. В бытовых условиях лучше обратить внимание на мощность.
Модель на 600 Вт сможет защитить разве что телевизор или небольшой холодильник. Поэтому в квартире может потребоваться несколько таких устройств. А вот стабилизатор на 10 кВт можно ставить в квартиру, и он в одиночку защитит все устройства.
Бывают устройства на 30кВт. Этого хватит на большой частный дом, чтобы охватить все электроприборы, включая даже электрическое отопление.
Что же будет, если превысить максимальную нагрузку? К примеру, если к какому-нибудь малышу подключить двухкиловатный чайник? Сразу сработает автоматический выключатель, а стабилизатор отключится. Так что рассчитывайте нагрузку заблаговременно, еще до покупки, и выбирайте мощность с запасом.
Как подключить стабилизатор
С обычными маломощными стабилизаторами все понятно, у них обычная вилка и несколько розеток. А что делать с более серьезными моделями? У них нет ни кабеля, ни розетки, ни вилки.
Производитель не забыл положить их в комплект. Дело в том, что такой стабилизатор устанавливается на всю квартиру сразу. Если решились самостоятельно подключать такой аппарат, помните: электричество — серьезная вещь. Подходить к таким работам нужно со всей ответственностью. Заранее продумайте схему. Подключение несложное: два кабеля — на вход, два — на выход и еще два — на землю. Если кабель многопроволочный, его нужно обжать кримпером в клеммы. Это удобно, быстро и надежно.
Само подключение не составит труда, тут все просто. На корпусе стабилизатора есть все обозначения. Если проводка изначально подключена правильно, то синий кабель — это ноль, и обозначается он латинской N, коричневый — это фаза (латинская L), а желто-зеленый — это земля, она обозначается специальным значком.
На единицу заводим нестабильное напряжение, а на двойку подключаем «потребителя» т. е. кабель который идет в распределительный щиток с автоматическими выключателями. Вот и все.
Выводы
У стабилизатора, по большому счету, всего одна функция — уберечь подключенные устройства от скачков напряжения и обеспечить им «здоровое электропитание». Особенно уместны стабилизаторы в поселках, гаражах или загородном доме. Но даже в большом городе с, казалось бы, стабильным электроснабжением, не помешает дополнительно обезопасить дорогостоящие устройства.
Как выбрать стабилизатор напряжения
Содержание
Содержание
Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.
Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.
Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.
Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.
Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.
Защита электроприборов
Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.
Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.
Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.
СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.
Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.
Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.
Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.
Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.
Характеристики стабилизаторов
Тип стабилизатора напряжения
Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.
При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.
Преимущества релейных стабилизаторов:
– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.
– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.
– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.
– Шумность. Реле при переключении щелкает довольно громко.
– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.
Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.
Преимущества электромеханических стабилизаторов:
– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.
– Высокая точность регулирования.
– Низкий уровень шума при регулировании.
– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.
– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.
Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.
Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.
Недостатки инверторных стабилизаторов:
– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.
– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.
Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.
Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.
Но свои недостатки есть и у этого вида стабилизаторов:
– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.
– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.
Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.
Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:
Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.
Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:
Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.
Пусковая мощность будет равна:
Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.
Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.
Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.
Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.
Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.
Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.
Варианты выбора стабилизаторов
Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.
Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.
С защитой всех домашних электроприборов справится мощный стабилизатор.
Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.
Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.