Для чего нужна сварочная смесь
Для чего нужна сварочная смесь
Сварочная смесь нужна для обработки металлов и сплавов методом сварки в защитной среде инертных газов. За счет её применения увеличивается эффективность проводимых работ и повышается качества получаемого шва.
Чаще всего применяются смеси таких технических газов, как аргон, гелий, углекислый газ, кислород. Может быть сочетание двух и трех компонентов. Для низколегированных сталей применяется смесь углекислого газа и аргона. Для получения сварочного шва особой чистоты рекомендуется использовать смесь гелия и аргона. Во всех остальных случаях лучше применять трехкомпонентные составы. Это может быть смесь углекислого газа, кислорода и аргона в разных пропорциях. Так же для сварки некоторых металлов к смеси гелия и аргона добавляется углекислый газ.
При правильном использовании сварочной смеси достигаются следующие результаты:
Примеры использования сварочных смесей
Рассмотрим несколько примеров практического использования разных составов сварочных смесей.
Аргон и кислород – самый распространенный и востребованный состав. Позволяет обеспечивать защиту легированных и нелегированных составов. При этом за счет кислорода полностью исключается вероятность образования скрытых полостей в сварном шве, что повышает его предельную прочность.
Углекислота и кислород – это смесь, применяемая при работе с разными металлами. Основное свойство – полное исключение вероятности разбрызгивания расплавленного металла из зоны обработки. Это повышает многократно качество шва и увеличивает его эластичность и прочность.
Одновременное использование аргона, углекислого газа и кислорода повышает прочность соединения и пластичность при растяжении. Полностью исключается коррозия и деформация металлов.
При работе с полуавтоматами сварочные смеси обеспечивают равномерность прогревания металла, стабилизируют рабочий процесс в случае необходимости использования постоянного напряжения.
Присутствие следов коррозии в области обработки металла допускается только в том случае, если будет использоваться защитная сварочная смесь. Она исключает процесс дальнейшей коррозионной деформации, снижает риск образования каверн в толщине шва.
Преимущества использования в производственном процессе
Существуют преимущества использования сварочных смесей в производственном процессе по сварке металлов и их сплавов. За счет чего эти составы пользуются устойчивым спросом и востребованы? Вот только самые основные преимущества:
Практические преимущества могут быть сведены к минимуму при неправильном выборе сварочной смеси или при покупке некачественных технических газов. Обращайтесь только к производителям с репутацией. Они обеспечат консультационное сопровождение и гарантируют высокое качество продаваемых технических газов.
Сварочная смесь – состав и сфера применения
Вид защитного газа имеет значительное влияние на разные аспекты процесса сварки. При этом сварочная смесь, состав которой определяется в зависимости от технологии и экономической составляющей, может намного повысить качественные показатели и продуктивность выполняемой работы.
Зачем смешивают газы
В определенных условиях каждый защитный газ может осуществлять как положительное, так и отрицательное воздействие. Кроме того, конкретный состав сварочной смеси будет подходить далеко не во всех случаях, ведь на процесс сварки оказывают влияние множество факторов.
Например, аргон делает более простым образование дуги во время TIG сварки, и обеспечивает качественный перенос металла методом MIG. Однако, недостатком применения данного газа является слабая отдача энергии при воздействии на толстостенные детали, особенно при работе с материалами, которые имеют высокие значения теплопроводности. С этой точки зрения, оптимальный вариант – использование гелия. Но в данном случае, будет уже страдать перенос металла и стабильность дуги при MIG и TIG процессах.
Схематичный рисунок процесса сварки с описанием элементов
Каждый защитный газ имеет свои особенности, которые будут отлично работать только в определенных условиях. Поэтому смеси играют, без преувеличения, огромную роль, поскольку позволяют одновременно использовать свойства различных газов, что намного расширяет возможности рабочего процесса. В подтверждение этой теории, читайте статью: сварочная смесь или углекислота – выбираем защитный газ для сварки.
Составы сварочных смесей для разных видов сварки
— Ar + CO2. Данный состав эффективен при сварке низкоуглеродистых сталей. Увеличивается плотность сварных соединений в результате уменьшения пористости шва. Снижается расход электродного металла вследствие уменьшения разбрызгивания. При большом содержании углекислоты (20%) можно варить толстостенные детали, даже в случае загрязненной поверхности.
Аргон и углекислота
Вот видео сварки таким составом:
— Ar + O2. Применяется для методов MAG и TIG сварки высоколегированной и стойкой к кислотам стали. Защитная сварочная смесь, состав которой включает аргон и кислород, способствует стабильности электрической дуги, глубокому проплавлению и гладкости шва.
— Ar + He. Использование такого состава подходит для сварки легких и медных сплавов высокой теплопроводности способами TIG и MIG. Также применяется при работе с хромоникелевой сталью и алюминием.
— Ar + H. Способствует интенсивному наплавлению, благодаря хорошей концентрации энергии в точке соприкосновения с материалом. Используется как защитный газ для работ с никелевыми сплавами и нержавеющей сталью способом TIG.
— Ar + активные газы. Используется в ручном и автоматическом методе MAG при работе с легированной сталью. Обеспечивает двойную экономию расходного материала. В процессе работы практически отсутствует разбрызгивание металла, а шов получается гладким и аккуратным, не требующим дополнительной мехобработки.
Аргон и активные газы
Больше статей о сварочных смесях Вы найдете в этом разделе.
Можно ли самостоятельно смешивать газы?
Теоретически, данную операцию можно осуществить непосредственно на рабочем месте. Для этого достаточно провести замеры расхода в каждом баллоне с помощью ротаметров, и отрегулировать данный показатель при помощи редукторов.
Однако, состав сварочной смеси собственного производства будет далек от идеального, поскольку добиться точного процентного содержания разных компонентов таким способом практически невозможно. Поэтому, придется постоянно использовать метод проб и ошибок, тем самым, увеличивая расход газов и сварочного материала.
Надежный метод получения защитного сварочного газа
Чтобы получить действительно качественный результат и максимальную эффективность от потраченных средств, лучше всего заказать баллоны с готовым составом на заводе-производителе, или у специализированных поставщиков. Дополнительную информацию о правильности такого выбора предоставит статья: сварочная смесь в баллонах – оптимальное решение.
Компания “Промтехгаз” предоставляет широкий выбор защитных газовых смесей для различных типов сварочных работ. Качество продукции и оперативность заправки позволит вам реализовать любые производственные задачи, и добиться максимального результата.
Какая сварочная газовая смесь лучше?
Эффективность высокотемпературной обработки металлов повышают сварочные смеси защитных газов, используемых для создания защитного облака над расплавленным металлом. Специальные газосмеси использовать при сварке гораздо выгоднее, чем чистые газы. Разработано несколько стандартизированных составов, применяемых для углеродистых, низко- и высоколегированных сталей и цветных металлов.
Экспериментально доказано, что смеси повышают качество расплава, снижают количество металлических брызг, увеличивают производительность работы сварщика. Сварочные швы становятся пластичными, заметно стабилизируется горение дуги. Влияние вредных факторов снижается за счет уменьшения задымленности, улучшаются условия труда.
Свойства и назначение
Сварочная смесь, создающая защитное облако над ванной расплава способна оказывать на процесс сварки как положительное, так и отрицательное воздействие. Инертные газы ведут себя по-разному:
Каждый отдельный газ обладает уникальными свойствами, в смеси они нивелируют отрицательное воздействие отдельных компонентов, усиливают положительное влияние. Составы подбирались методом проб и ошибок с целью повышения качества швов и скорости сварки.
В смеси защитные газы намного эффективнее защищают ванну расплава, снижают вероятность образования дефектов.
Смеси газов
Для сварки используют 4 газообразных бесцветных вещества, вытесняющие из рабочей зоны:
Вытеснение газовоздушных компонентов происходит за счет высокой плотности защитных газов, они формируют малоподвижное облако. У всех сварочных смесей газов удельный вес больше, чем у воздуха. Концентрация компонентов подбиралась экспериментальным путем, учитывалось влияние газов на режим сварки. Смеси на основе аргона значительно расширяют возможности сварки, повышают эффективность работы сварщиков. Минимизируют риски образования дефектов в сварочных швах.
Аргон и углекислый газ
Для сваривания цветных металлов, профиля и проката из высоколегированных сталей используется сварочная смесь аргона и углекислоты. Аргон снижает активность углекислоты, а CO2 увеличивает теплопередачу аргона. Сварка углеродистых и низколегированных сталей в защитном облаке Ar+CO2 намного эффективнее, чем в каждом отдельном газе. При концентрации углекислоты в пределах 20% толстостенные металлические конструкции провариваются даже при сильной загрязненности поверхности.
Аргон и кислород
Состав применяют для сваривания низколегированных и легированных никелем сталей. При небольшой концентрации кислорода удается избежать пористости швов, аргон препятствует образованию окислов. Комбинация Ar+O2 применяется с различными видами сварочной проволоки, расширяет возможности сварочного процесса за счет повышения энергии дуги, стабильного горения. Металл быстрее проваривается. Формируются ровные шовные валики при равномерном прогреве присадочного прутка. Прочность соединения увеличивается за счет расширения диффузионного слоя.
Аргон и гелий
Инертные газы сочетают в разных пропорциях. Самые распространенные составы 7:3 и 1:1. Композиция Ar+He используется при работе с различными металлами:
Смесь инертных газов исключает образование окалины, трещин, раковин. Часто применяется в наукоемких отраслях для автоматической сварки, где требуется высокое качество швов.
Аргон и водород
Комбинация Ar+H разрабатывалась для соединения сталей с аустенитной структурой, обладающих жаропрочностью. Смесь обеспечивает эластичность швов, процент водорода зависит от марки стали, львиную долю композиций составляет аргон, формирующий плотное защитное облако.
Аргон и активные газы
Концентрация углекислого газа в подобных газосмесях не превышает 20%, кислорода – 2%. При работе с тонкими видами проката и профиля снижают концентрацию углекислого газа, увеличивают содержание кислорода для быстрого прогрева заготовок в месте соединения. При работе с толстыми деталями повышают содержание углекислого газа. Для работы с медными сплавами в композицию вводят незначительное количество азота.
Что лучше: сварочная смесь или углекислота?
Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы. Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь. С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.
Преимущества применения газосмеси:
Достоинства сварки в атмосфере углекислого газа:
Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.
Подбор сварочной смеси для полуавтомата
Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.
Таблица выбора газосмеси для различных сплавов:
Углеродистые конструкционные стали (листовой, узкопрофильный прокат) | ||||||||
Размер проволоки (мм) | Величина стыка (мм) | Сила тока (А) влияет на скорость сварки | Название смеси по ГОСТ и международному стандарту | Компонентный состав смеси | ||||
Ar | CO2 | O2 | He | |||||
0,8 | 1 | от 45 до 65 | К-3.1 (возможна маркировка Argoshield 5) | 92% | 6% | 2% | – | |
1,6 | от 70 до 80 | |||||||
1 | 3 | от 120 до 160 | К-3.2 (возможна маркировка Argoshield TC) | 86% | 12% | 2% | – | |
6 | от 140 до 160 | |||||||
1,2 | 6 от 140 до 160 | |||||||
1,2 | 10 | от 270 до 310 от 140 до 160 | К-2 (возможна маркировка Pureshield P31) Универсальная смесь | 82% | 18% | – | – | |
1,2 | 10 | от 290 до 330 | К-3.3 возможна маркировка (Argoshield 20) | 78% | 20% | 2% | – | |
Легированные стали (жаростойкие. жаропрочные, нержавеющие, кислотоустойчивые) | ||||||||
0,8 | 1.6 | от 70 до 855 | НП-1 (возможна маркировка Helishield HI) | 13,5% | 1,5% | – | 85% | |
1,0 | 3 от 120 до 150 | НП-2(возможна маркировка Helishield H7) | 43% | 2% | – | 55% | ||
1,2 от 120 до 150 | ||||||||
1,2 | 10 | от 120 до 150 от 270 до 310 | НП-3 (возможна маркировка Helishield H101) | 60% | 2% | – | 38,0% | |
Сплавы на базе алюминия | ||||||||
1 | 1,6 | от 70 до 100 | НП-1 (обозначается также H1 и надписью Helishield-Н1) | 13,5% | 1.5% | – | 85% | |
1.2 | 3 от 120 до 140 | – | ||||||
1,2 | 6 | от 160 до 200 | НП-2 (обозначается также H7 и надписью Helishield-H7) | 43% | 2% | – | 55% | |
10 | от 120 до 140 | |||||||
1,6 | ||||||||
1,2-1,6 | от 130 до 200 | |||||||
1,5-2,4 | от 300 до 500 | НП-3 (возможна маркировка Н101 и Helishield-H101) | 60% | 2% | – | 38% |
При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:
Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.
Применение смесей
Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.
При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.
При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации. Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях. Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.
При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров. Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.
Самостоятельное смешивание газов
Теоретически смесь можно приготовить непосредственно на рабочем месте, на сварочных участках предусмотрены специальные посты с установкой ротаметров – аппаратов, контролирующих расход компонентов за единицу времени из каждого баллона. По показателям ротаметров с помощью редукторов регулируют состав газовой смеси, подаваемой к рабочим местам сварщиков.
При работе с несколькими баллонами одновременно состав сварочной смеси не будет идеальным. Делая газосмеси самостоятельно невозможно добиться точного процентного содержания компонентов до десятых. Обязательно увеличится расход газов и, соответственно, присадки.
Защитный сварочный газ – оптимальная смесь, используемая при термической обработке металлов. Готовые составы заказывают у специализированных поставщиков или непосредственно на заводах-изготовителях.
Разновидности газовых смесей для сварки полуавтоматом. Классификация, различия и области применения
Выбор необходимой смеси будет зависеть от вида свариваемых материалов.
Какие газовые смеси используются для сварки полуавтоматом
Полуавтоматом чаще всего работают:
Работа с другими материалами затруднена тем, что нет соответствующей присадочной проволоки, поставляемой в стандартных катушках. Создают смеси в соответствии с ТУ 2114-002-45905715-2011.
В качестве составных газов применяют:
Допускается использование готовых смесей, однако, содержание компонентов в полученной смеси должно соответствовать техническим регламентам.
Краткое описание газов, применяемых при создании смесей
Аргон — бесцветный газ без запаха и вкуса, негорюч и нетоксичен. Однако любая смесь Ar с иными газами может вытеснить кислород из помещения, что способно привести к удушью работников, если доля кислорода упадёт ниже 19% от общего объема. Аргон тяжелее воздушной смеси и способен скапливаться в плохо проветриваемых помещениях у пола.
Азот — газ бесцветный и негорючий. Без запаха и вкуса, нетоксичен. Однако скопление газообразной смеси азота может вызвать кислородную недостаточность и даже удушье при уменьшении концентрации кислорода менее 19% от объёма.
Углекислота — газ без цвета, не воспламеняется и нетоксичен, отличается специфическим кисловатым вкусом. Максимально допустимая концентрация соединения в воздухе рабочей зоны 9 г/м3 (что равно 0,5% объёма). Если концентрация становится больше 5%, то двуокись углерода может оказать вредное влияние на физическое состояние работников. Углекислота в полтора раза тяжелее воздушной смеси и способна скапливаться в непроветриваемых помещениях у пола, в ямах. При снижении концентрации кислорода в воздухе ниже 19% наступает кислородное голодание, удушье.
Гелий — бесцветный газ, не имеет вкуса и запаха, нетоксичен и негорюч, легче смеси воздуха, поэтому накапливается вверху цехов.
Кислород — бесцветный негорючий газ без запаха и вкуса, хотя сам не является токсичным и взрывоопасным, однако, будучи сильным окислителем, значительно повышает предрасположенность иных материалов к горению. Если кислород накапливается в воздухе цехов, это может стать причиной возникновения возгораний и впоследствии — пожаров. Важно, что объемная доля газа в рабочих (производственных) зонах не должна быть более 23%.
Аргон, углекислота и кислород
Углекислый газ (5-20%) и аргон (80-95%) используют для создания неразъёмных соединений из сталей: конструкционных легированных и углеродистых. Плюсы: перенос осуществляется струйно или капельно. Дуга при этом горит стабильно. Если применять смесь с добавлением кислорода (2%), уменьшив содержание углекислого газа до 6%, то сварщику будет легче справиться с тонкими сплавами.
Аргон и гелий
Сочетание гелия (70%) и аргона (30%) позволит работать с любыми толстыми сплавами:
При этом увеличится скорость сварки за счёт исключения операции по предварительному подогреву деталей. Количество дефектов — пористость швов, трещины — будет сведено к минимуму.
Минусом следует считать высокую стоимость таких смесей из-за высокого содержания редкого гелия. Поэтому используют подобные пропорции при сварке особо ответственных конструкций — при создании изделий для космоса или ВПК.
Аргон плюс гелий (по 50%) — смесь считается универсальной инертной. Благодаря этому, можно работать с большинством сплавов — как с цветными, так и чёрными. Состав из 70% аргона и 30% гелия по сравнению с чистым аргоном лучше охлаждает зону сварки, применяется для соединения деталей средней толщины, если нужно получение швов с минимумом дефектов. Смесь из 60% аргона, 38% гелия и 2% углекислоты используют для сварки легированных и конструкционных углеродистых сплавов. Дуга при этом получается стабильной, уменьшается количество брызг.
Аргон и водород
Применяют на производстве при работе с аустенитными (жаропрочными) сплавами. Смесь позволяет улучшить характеристики полученного шва, добиться большей эластичности. Часто применяют при работе во время создания космической и авиатехники. Процент содержания химических элементов зависит от марки сталей.
От чего зависит расход газа при сварке
Установку силы обдува сварочной ванны следует устанавливать, учитывая:
Также придётся принять во внимание условия в цехе или на площадке. При наличии сквозняков, открытого ветра следует либо защищать рабочее место ширмами, либо увеличивать расход газовой смеси.
Диаметр проволоки, мм | Сила сварочного тока, А | Средний расход, л/мин |
0,8-1 | 60-160 | 7-8 |
1-1,2 | 100-250 | 9-12 |
1,2 | 250-320 | 12-15 |
Для уменьшения расхода газа во время работы следует тщательно проверять соединения шлангов, исправность редукторов, элементов горелки и сварочного полуавтомата.