Для чего нужна цитоплазма инфузории туфельки
Инфузории (ресничные)
Инфузория-туфелька
Если бы не сократительные вакуоли, удаляющие избыток воды, клетка лопнула, как переполненный воздушный шарик.
При конъюгации две инфузории соединяются в области клеточных ртов (цитостом), между ними возникает цитоплазматический мостик. Вегетативное ядро (полиплоидное) каждой клетки растворяется, а генеративное (2n) мейотически делится, в результате образуется 4 ядра (n), 3 из которых растворяются, а одно оставшееся (n) делится митотически на мужское (n) и женское (n) ядро.
Женское ядро каждой инфузории остается на месте, а мужское (n) по цитоплазматическому мостику перемещается в клетку партнера, где сливается с женским (n) ядром клетки-партнера.
В результате в каждой клетке сливается женское ядро (которое никуда не перемещалось) с мужским ядром клетки-партнера, переместившимся по цитоплазматическому мостику. При слиянии образуется синкарион.
Это и есть половой процесс у инфузорий, в результате него происходит обмен генетической информацией между клетками.
Балантидий
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Инфузория-туфелька
Среда обитания, строение и передвижение
Инфузория-туфелька обитает в мелких стоячих водоёмах. Это одноклеточное животное длиной 0,5 мм имеет веретеновидную форму тела, отдалённо напоминающую туфлю. Инфузории все время находятся в движении, плавая тупым концом вперёд. Скорость передвижения этого животного достигает 2,5 мм в секунду. На поверхности тела у них имеются органоиды движения — реснички. В клетке два ядра: большое ядро отвечает за питание, дыхание, движение, обмен веществ; малое ядро участвует в половом процессе.
Строение инфузории туфельки
Организм инфузории устроен сложнее. Тонкая эластичная оболочка, покрывающая инфузорию снаружи, сохраняет постоянную форму её тела. Этому же способствуют хорошо развитые опорные волоконца, которые находятся в прилегающем к оболочке слое цитоплазме. На поверхности тела инфузории расположено около 15 000 колеблющихся ресничек. У основания каждой реснички лежит базальное тельце. Движение каждой реснички состоит из резкого взмаха в одном направлении и более медленного, плавного возвращения к исходному положению. Реснички колеблются примерно 30 раз в секунду и, словно вёсла, толкают инфузорию вперёд. Волнообразное движение ресничек при этом согласованно. Когда инфузория-туфелька плывёт, она медленно вращается вокруг продольной оси тела.
Процессы жизнедеятельности
Питание
Туфелька и некоторые другие свободно живущие инфузории питаются бактериями и водорослями.
Реакция инфузории-туфельки на пищу
Тонкая эластичная оболочка, (клеточная мембрана) покрывающая инфузорию снаружи, сохраняет постоянную форму тела. На поверхности тела расположено около 15 тысяч ресничек. На теле имеется углубление — клеточный рот, который переходит в клеточную глотку. На дне глотки пища попадает в пищеварительную вакуоль. В пищеварительной вакуоле пища переваривается в течение часа, вначале при кислой, а затем при щелочной реакции. Пищеварительные вакуоли перемещаются в теле инфузории током цитоплазмы. Не переваренные остатки выбрасываются наружу в заднем конце тела через особую структуру — порошицу, расположенную позади ротового отверстия.
Дыхание
Дыхание происходит через покровы тела. Кислород поступает в цитоплазму через всю поверхность тела и окисляет сложные органические вещества, в результате чего они превращаются в воду, углекислый газ и некоторые другие соединения. При этом освобождается энергия, которая необходима для жизни животного. Углекислый газ в процессе дыхания удаляется через всю поверхность тела.
Выделение
В организме инфузории-туфельки находятся две сократительные вакуоли, которые располагаются у переднего и заднего концов тела. В них собирается вода с растворёнными веществами, образующимися при окислении сложных органических веществ. Достигнув предельной величины, сократительные вакуоли подходят к поверхности тела, и их содержимое изливается наружу. У пресноводных одноклеточных животных через сократительные вакуоли удаляется избыток воды, постоянно поступающей в их тело из окружающей среды.
Раздражимость
Инфузории-туфельки собираются к скоплениями бактерий в ответ на действие выделяемых ими веществ, но уплывают от такого раздражителя, как поваренная соль.
Раздражимость — свойство всех живых организмов отвечать на действия раздражителей — света, тепла, влаги, химических веществ, механических воздействий. Благодаря раздражимости одноклеточные животные избегают неблагоприятных условий, находят пищу, особей своего года.
Размножение
Бесполое
Инфузория обычно размножается бесполым путём — делением надвое. Ядра делятся на две части, и в каждой новой инфузории оказывается по одному большому и по одному малому ядру. Каждая из двух дочерних получает часть органоидов, а другие образуются заново.
Половое
При недостатке пищи или изменении температуры инфузории переходят к половому размножению, а затем могут превратиться в цисту.
При половом процессе увеличения числа особей не происходит. Две инфузории временно соединяются друг с другом. На месте соприкосновения оболочка растворяется, и между животными образуется соединительный мостик. Большое ядро каждой инфузории исчезает. Малое ядро дважды делится. В каждой инфузории образуются четыре дочерних ядра. Три из них разрушаются, а четвёртое снова делится. В результате в каждой остаётся по два ядра. По цитоплазматическому мостику происходит обмен ядрами, и там сливается с оставшимся ядром. Вновь образовавшиеся ядра формируют большое и малое ядра, и инфузории расходятся. Такой половой процесс называется конъюгацией. Он длится около 12 часов. Половой процесс ведёт к обновлению, обмену между особями и перераспределению наследственного (генетического) материала, что увеличивает жизнестойкость организмов.
Инфузория туфелька. Описание, особенности, строение и размножение инфузории туфельки
Инфузория туфелька — обобщающее понятие. За названием скрываются 7 тысяч видов. У всех постоянная форма тела. Она напоминает подошву туфли. Отсюда и название простейшего. Еще все инфузории владеют осморегуляцией, то есть регулируют давление внутренней среды организма. Для этого служат две сократительные вакуоли. Они сжимаются и разжимаются, выталкивая излишки жидкости из туфельки.
Описание и особенности организма
Инфузория туфелька — простейшее животное. Соответственно, оно одноклеточное. Однако в клетке этой есть все, чтобы дышать, размножаться, питаться и выводит отходы наружу, двигаться. Это список функций животных. Значит, к ним относятся и туфельки.
Простейшими одноклеточных называют за примитивное в сравнение с прочими животными устройство. Среди одноклеточных даже есть формы, относимые учеными как к животным, так и к растениям. Пример — эвглена зеленая. В ее теле есть хлоропласты и хлорофилл — пигмент растений. Эвглена осуществляет фотосинтез и почти неподвижна днем. Однако ночью одноклеточное переходит на питание органикой, твердыми частицами.
Инфузория туфелька и эвглена зеленая стоят на разных полюсах цепи развития простейших. Героиня статьи признана среди них наиболее сложным организмом. Организмом, кстати, туфелька является, поскольку имеет подобие органов. Это элементы клетки, отвечающие за те или иные функции. У инфузории есть отсутствующие у прочих простейших. Это и делает туфельку передовиком среди одноклеточных.
К передовым органеллам инфузории относятся:
Тело инфузории туфельки содержит две сократительные вакуоли. Накапливая токсины, они выбрасывают их вместе с излишками жидкости, попутно поддерживая внутриклеточное давление.
Еще совершенным простейшим инфузорию делают 2 ядра. Одно из них большое, именуется макронуклеусом. Второе ядро малое — микронуклеус. Информация, хранящаяся в обоих органеллах идентична. Однако в микронуклеусе она не тронута. Информация макронуклеуса рабочая, постоянно эксплуатируется. Поэтому возможны повреждения каких-то данных, как книг в читальном зале библиотеки. В случае таких сбоев резервом служит микронуклеус.
Инфузория туфелька под микроскопом
Большое ядро инфузории имеет форму боба. Малая органелла шаровидная. Органоиды инфузории туфельки хорошо видны под увеличением. Все простейшее в длину не превышает 0,5 миллиметра. Для простейших это гигантизм. Большинство представителей класса не превышают в длину 0,1 миллиметра.
Строение инфузории туфельки
Строение инфузории туфельки отчасти зависит от ее класса. Их два. Первый называется ресничным, поскольку его представители покрыты ресничками. Это волосковидные структуры, иначе именуются цилиями. Их диаметр не превышает 0,1 микрометра. Реснички на теле инфузории могут распределяться равномерно или собираться в своеобразные пучки — цирры. Каждая ресничка — пучок фибрилл. Это нитевидные белки. Два волокна являются стержнем реснички, еще 9 располагаются по периметру.
Когда обсуждается реснитчатый класс, инфузории туфельки могут иметь несколько тысяч ресничек. В противовес встают сосущие инфузории. Они представляют отдельный класс, лишены ресничек. Нет у сосущих туфелек и рта, глотки, пищеварительных вакуолей, характерных для «волосатых» особей. Зато, у сосущих инфузорий есть подобие щупалец. Таковых видов несколько десятков против многих тысяч реснитчатых.
Строение инфузории туфельки
Щупальца сосущих туфелек — полые плазматические трубочки. Они проводят питательные вещества в эндоплазму клетки. Питанием служат другие простейшие. Иначе говоря, сосущие туфельки — хищники. Ресничек сосущие инфузории лишены, поскольку не двигаются. У представителей класса есть особая ножка-присоска. С ее помощью одноклеточные закрепляются на ком-то, к примеру, крабе или рыбе, или внутри их и других простейших. Реснитчатые же инфузории активно передвигаются. Собственно за этим и нужны цилии.
Среда обитания простейшего
Обитает героиня статьи в пресных, мелких водоемах со стоячей водой и обилием разлагающейся органики. Во вкусах сходятся инфузория туфелька, амеба. Стоячая вода им нужна, дабы не преодолевать течение, которое попросту снесет. Мелководье гарантирует прогрев, необходимый для активности одноклеточных. Обилие же гниющей органики — пищевая база.
По насыщенности воды инфузориями, можно судить о степени загрязненности пруда, лужи, старицы. Чем больше туфелек, тем больше питательной базы для них — разлагающейся органики. Зная интересы туфелек, их можно разводить в обычных аквариуме, банке. Достаточно положить туда сено и залить прудовой водой. Скошенная трава послужит той самой разлагающейся питательной средой.
Среда обитания инфузории туфельки
Нелюбовь инфузорий к соленой воде наглядна, при помещении в обычную частиц поваренной соли. Под увеличением видно, как одноклеточные уплывают подальше от нее. Если же простейшие засекают скопление бактерий, напротив, направляются к ним. Это именуется раздражимостью. Сие свойство помогает животным избегать неблагоприятных условий, находить пищу и других особей своего рода.
Питание инфузории
Питание инфузории зависит от ее класса. Хищные сосальщики орудуют щупальцами. К ним прилипают, присасываются, проплывающие мимо одноклеточные. Питание инфузории туфельки осуществляется за счет растворения клеточной оболочки жертвы. Пленка разъедается в местах контакта со щупальцами. Изначально жертва, как правило, захватывается одним отростком. Прочие щупальца «подходят к уже накрытому столу».
Реснитчатая форма инфузории туфельки питается одноклеточными водорослями, захватывая их ротовым углублением. Оттуда еда попадает в пищевод, а затем, в пищеварительную вакуоль. Она закрепляется на коне «глотки», отцепляясь от нее каждые несколько минут. После, вакуоль проходит по часовой стрелке к заду инфузории. Во время пути цитоплазмой усваиваются полезные вещества пищи. Отходы выбрасываются в порошицу. Это отверстие, подобное анальному.
Во рту инфузории тоже есть реснички. Колышась, они создают течение. Оно увлекает частицы пищи в ротовую полость. Когда пищеварительная вакуоль перерабатывает еду, образуется новая капсула. Она тоже стыкуется с глоткой, получает пищу. Процесс цикличен. При комфортной для инфузории температуре, а это около 15 градусов тепла, пищеварительная вакуоль образуется каждые 2 минуты. Это указывает на скорость обмена веществ туфельки.
Размножение и продолжительность жизни
Инфузория туфелька на фото может быть в 2 раза больше, чем по стандарту. Это не зрительная иллюзия. Дело в особенностях размножения одноклеточного. Процесс бывает двух типов:
Как видно, при половом размножении число инфузорий остается прежним. Это называется конъюгацией. Происходит лишь обмен генетической информацией. Число клеток остается прежним, но сами простейшие по факту получаются новыми. Генетический обмен делает инфузорий живучее. Поэтому к половому размножению туфельки прибегают в неблагоприятных условиях.
Если условия становятся критическими, одноклеточные образуют цисты. С греческого это понятие переводится как «пузырь». Инфузория сжимается, становясь шаровидной и покрывается плотной оболочкой. Она защищает организм от неблагоприятных влияний среды. Чаще всего туфельки страдают от пересыхания водоемов.
Размножение инфузории туфельки
Когда условия становятся пригодными для жизни, цисты расправляются. Инфузории принимают обычную форму. В цисте инфузория может прибывать несколько месяцев. Организм находится в своеобразной спячке. Обычное же существование туфельки длится пару недель. Далее, клетка делится или обогащает свой генетический фонд.
Инфузория туфелька
Строение. Чтобы ознакомиться со строением и образом жизни этих интересных одноклеточных организмов, обратимся сначала к одному характерному примеру. Возьмем широко распространенных в мелких пресноводных водоемах инфузорий туфелек (виды рода Paramecium). Этих инфузорий очень легко развести в небольших аквариумах, если залить прудовой водой обычное луговое сено.
В таких настойках развивается множество различных видов простейших и почти всегда развиваются инфузории туфельки. Свое название инфузория туфелька получила по форме тела, напоминающей изящную дамскую туфельку (рис. 72). Среди простейших инфузории туфельки — довольно крупные организмы (длина тела около 0,2 мм).
Все цитоплазматическое тело инфузории отчетливо распадается на два слоя: наружный (эктоплазма) — более светлый и внутренний (эндоплазма) — более темный и зернистый. Эктоплазма инфузорий, обладающая сложной структурой, получила название кортекс (рис. 73, 74). Ее периферическая часть, граничащая с наружной средой, представляет собой эластичную двойную мембрану — пелликулу. От эндоплазмы кортекс отделен двойной мембраной.
В эктоплазме тела живой туфельки хорошо видны многочисленные коротенькие палочки, расположенные перпендикулярно к поверхности (рис. 72, 7). Эти образования носят название трихоцисты. Функция их очень интересна и связана с защитой простейшего. При механическом, химическом или каком-либо ином сильном раздражении трихоцисты с силой выбрасываются наружу превращаясь в тонкие длинные нити, которые поражают хищника, нападающего на туфельку.
Трихоцисты представляют собой мощную защиту. Они располагаются между ресничками так, что число трихоцист приблизительно соответствует числу ресничек. На месте использованных («выстреленных») трихоцист в эктоплазме туфельки развиваются новые.
На одной стороне, приблизительно по середине тела (рис. 72, 5), у туфельки имеется довольно глубокая впадина — ротовая, или перистом. По стенкам перистома, так же как и по поверхности тела, расположены реснички. Они развиты здесь гораздо более мощно, чем на всей остальной поверхности тела. Эти тесно расположенные реснички собраны в две группы.
Функция этих особо дифференцированных ресничек связана не с движением, а с питанием (рис. 75). Инфузория туфелька имеет вакуоли, выполняющие очень важные жизненные функции — пищеварительные (о них будет сказано ниже) и сократительные. Сократительных вакуолей у туфельки две, они расположены в передней и задней трети тела. Каждая из вакуолей состоит из центрального резервуара и приводящих каналов (5—7), которые расположены радиально вокруг центрального резервуара.
Цикл работы сократительной вакуоли начинается с того, что приводящие каналы заполняются жидкостью и становятся хорошо видимыми (рис. 72). Затем жидкое содержимое их изливается в центральный резервуар, сами каналы после опорожнения становятся на некоторое время невидимыми. Последний этап цикла работы сократительной вакуоли заключается в том, что жидкость из центрального резервуара изливается через особую пору в пелликуле наружу.
После этого центральный резервуар на короткий срок перестает быть видимым. В это время приводящие каналы вновь начинают заполняться жидкостью и весь цикл начинается сначала. Обычно передняя и задняя сократительные вакуоли работают последовательно, как бы по очереди. Каков темп пульсации вакуолей? Какое количество жидкости выводится ими наружу?
Частота сокращения сократительной вакуоли в большой степени зависит от условий внешней среды, и особенно от температуры и осмотического давления. При комнатной температуре у туфельки сократительная вакуоля проделывает весь цикл пульсации за 10—15 с. У морских и паразитических инфузорий темп пульсации сократительных вакуолей обычно значительно ниже, чем у пресноводных. Подсчеты показывают, что примерно за 30 — 45 мин у туфельки через сократительные вакуоли выводится объем жидкости, равный объему тела инфузории.
Таким образом, благодаря деятельности сократительных вакуолей через тело инфузории осуществляется непрерывный ток воды, поступающей снаружи через ротовое отверстие (вместе с пищеварительными вакуолями), а также осмотически непосредственно через пелликулу. Сократительные вакуоли играют важную роль в регулировании тока воды, проходящего через тело инфузории, в регулировании осмотического давления. Этот процесс здесь протекает в принципе так же, как у амеб, только структура сократительной вакуоли намного сложнее.
В течение долгих лет среди ученых, занимающихся изучением простейших, шел спор по вопросу о том, имеются ля в цитоплазме какие-нибудь структуры, связанные с появлением сократительной вакуоли, или же она образуется всякий раз заново. На живой жнфузории никаких особых структур, которые предшествовали бы ее образованию, наблюдать не удается.
После того как произойдет сокращение вакуоли — систола, в цитоплазме на месте бывшей вакуоли не видно никаких структур. Затем заново появляются прозрачный пузырек или приводящие каналы, которые начинают увеличиваться в размерах. Однако никакой связи вновь возникающей вакуоли с существовавшей ранее не обнаруживается. Создается впечатление, что преемственности между следующими друг за другом циклами сократительной вакуоли нет и всякая новая сократительная вакуоля образуется в цитоплазме заново.
Однако специальные методы исследования показали, что на самом деле это не так. Применение электронной микроскопии убедительно показало, что у инфузории на том участке, где формируются сократительные вакуоли, имеется особо дифференцированная цитоплазма, состоящая из переплетения тончайших трубочек. Таким образом, оказалось, что сократительная вакуоля возникает в цитоплазме не на «пустом месте», а на основе предшествующего особого органоида клетки, функция которого — формирование сократительной вакуоли. Как и у всех простейших, у инфузорий имеется клеточное ядро.
В центре тела инфузории (на уровне перистома) помещается большое массивное ядро яйцевидной или бобовидной формы. Это макронуклеус. В тесном соседстве с ним расположено второе ядро во много раз меньших размеров, обычно довольно тесно прилежащее к макронуклеусу. Это микронуклеус. Различие между этими двумя ядрами не сводится только к раамерам, оно более значительно, глубоко затрагивает их структуру.
Макронуклеус по сравнению с микронуклеусом гораздо богаче хроматином, или, точнее, ДНК, входящей в состав хромосом. Соотношение количества хроматина в макронуклеусе и микроруклеусе у разных видов инфузорий различно и колеблется от нескольких десятков до нескольких тысяч раз.
Исключение составляют некоторые виды низших инфузорий, у которых содержание хроматина в Ма и Ми примерно одинаково. Высокое содержание хроматина в Ма большинства инфузорий, как доказали исследования последних лет, объясняется повторным расщеплением (репликацией) всех, или части хромосом.
При каждом расщеплении происходит удвоение количества ДНК. Богатство Ма хроматином вызывает его высокую функциональную активность. Высокий темп транскрипции и образований: больших количеств PH К, в свою очередь, определяет энергичный синтез белка. это функционально высокоактивное ядро, обусловливающее большую физиологическую активность, в том числе быстрый процесс размножения.
Движение. Инфузория туфелька находится в непрерывном быстром движении. Скорость её (при комнатной температуре) около 2,0 — 2,5 мм в сек. Это большая скорость: за 1 с туфелька пробегает расстояние, превышающее длину ее тела в 10—15 раз.
Траектория движения туфельки довольно сложна. Она движется передним концом прямо вперед и при этом вращается вправо вдоль продольной оси тела. Столь активное движение туфельки зависит от работы большого количества тончайших волосковидных придатков — ресничек, которые покрывают все тело инфузории.
Количества ресничек у одной особи инфузории туфельки равняется 10—15 тыс. Каждая ресничка совершает очень частые веслообразные движения — при комнатной температуре до 30 биений в 1 с. Во время удара назад, ресничка держится в выпрямленном положении. При возвращении ее в исходную позицию (при движении вниз) она движется в 3—5 раз медленнее и описывает полукруг.
При плавании туфельки движения многочисленных покрывающих ее тело ресничек суммируются. Действия отдельных ресничек согласованные, в результате чего получаются правильные волнообразные колебания всех ресничек. Волна колебания начинается у переднего конца тела и распространяется назад.
Одновременно вдоль тела туфельки проходят 2—3 волны сокращения. Таким образом, весь ресничный аппарат инфузории представляет собой как бы единое функциональное физиологическое целое, действия отдельных структурных единиц которого (ресничек) тесно связаны (координированы) между собой. Строение каждой отдельной реснички туфельки, как показали электронномикроскопические исследования, является весьма сложным. Оно ничем не отличается от тонкого строения жгутика, которое подробно рассмотрено выше (рис. 31).
Направление и быстрота движения туфельки не являются величинами постоянными и неизменными. Туфелька, как и все живые организмы (мы видели это уже на примере амебы), реагирует на изменение внешней среды изменением направления движения. Изменение направления движения простейших под влиянием различных раздражителей называют таксисами. У инфузорий легко наблюдать различные таксисы. Если в каплю, где плавают туфельки, поместить неблагоприятно действующее на них вещество (например, кристаллик поваренной соли), то туфельки уплывают (как бы убегают) от этого неблагоприятного для них фактора (рис. 77).
Перед нами пример отрицательного таксиса на химическое воздействие (отрицательный хемотаксис). Можно наблюдать у туфельки и положительный хемотаксис. Если, например, каплю воды, в которой плавают инфузории, прикрыть покровным стеклышком и подпустить под него пузырек углекислого газа, то большая часть инфузорий направится к этому пузырьку и расположится вокруг него кольцом.
Очень наглядно таксис проявляется у туфелек под воздействием электрического тока. Если через жидкость, в которой плавают туфельки пропустить слабый электрический ток, то можно наблюдать следующую картину: все инфузории ориентируют свою продольную ось параллельно линии тока, а затем, как по команде, двинутся в направлении катода, в области которого и образуют густое скопление. Движение инфузорий, определяемое направлением электрического тока, носит название гальванотаксиса.
Различные таксисы у инфузорий могут быть обнаружены под влиянием самых разнообразных факторов внешней среды.
Размножение. Обратимся в качестве примера опять к инфузории туфельке. Если посадить в небольшой сосуд (микроаквариум) один экземпляр туфельки, то уже через сутки там окажется две. а нередко и четыре инфузории. Как это происходит? После некоторого периода активного плавания и питания инфузория несколько вытягивается в длину. Затем точно по середине тела появляется все углубляющаяся поперечная перетяжка (рис. 78).
В конце концов инфузория как бы перешнуровывается пополам и из одной особи получаются две, первоначально несколько меньших размеров, чем материнская особь. Весь процесс деления занимает при комнатной температуре около часа. Изучение внутренних процессов показывает, что еще до того, как появляется поперечная перетяжка, начинается процесс деления ядерного аппарата. Путем митоза первым делится микронуклеус, после него — макронуклеус (с. 97).
Деление напоминает прямое деление ядра — амитоз. Этот бесполый процесс размножения инфузории туфельки, как мы видим, сходен с бесполым размножением амеб (с. 45) и жгутиконосцев (с. 67). В отличие от них инфузории в процессе бесполого размножения делятся всегда поперек тогда как у жгутиконосцев плоскость деления параллельна продольной оси тела.
Во время деления происходит глубокая внутренняя перестройка тела инфузории. Образуется два новых перистома, две глотки и два ротовые отверстия. К этому же времени приурочено деление базальных ядер ресничек, за счет которых образуются новые реснички. Если бы при размножении число ресничек не возрастало, то в результате каждого деления дочерние особи получили бы примерно половину числа ресничек материнской особи, что привело бы к полному облысению инфузорий.
На самом деле этого не происходит. Время от времени у большинства инфузорий, в том числе и у туфельки наблюдается особая и чрезвычайно своеобразная форма полового процесса, которая получила название юнъюгации. Отметим самое главное в этом процессе. Коньюгация протекает следующим образом.
Две инфузории сближаются. тесно прикладываются друг к другу брюшными сторонами и в таком виде плавают довольно длительное время вместе (у туфельки примерно в течение 12 ч при комнатной температуре). Затем конъюганты расходятся. Что же происходит в теле инфузории во время конъюгации? Сущность этих процессов сводится к следующему (рис. 79).
Большое ядро (макронуклеус) разрушается и постепенно растворяется в цитоплазме. Микронуклеус, который является диплоидным ядром, сначала дважды делится. Эти деления мейотические. В результате мейоза в каждом из партнеров образуется по четыре гаплоидных ядра. Три из них разрушаются, а одно делится обычным митозом еще один раз. В каждом конъюганте, таким образом, возникает по два гаплоидных ядра.
Одно из них остается на месте, там, где оно образовалось (стационарное ядро), а второе перемещается (мигрирующее ядро) в соседнего конъюганта, где сливается со стационарным ядром. Таким путем в каждом из конъюгантов образуется по одному синкариону — ядру, вновь обладающему диплоидным комплексом хромосом. Процесс слияния мигрирующего и стационарного ядер — это процесс оплодотворения.
И у многоклеточных существенный момент оплодотворения — слияние ядер половых клеток. У инфузорий половые клетки не образуются, имеются лишь половые ядра, которые и сливаются между собой. Таким образом происходит взаимное перекрестное оплодотворение. Вскоре после образования синкариона конъюганты расходятся. По строению ядерного аппарата они на этой стадии еще очень существенно отличаются от обычных так называемых нейтральных (не конъюгирующих) инфузорий, так как у них имеется лишь по одному ядру.
В дальнейшем за счет синкариона происходит восстановление нормального ядерного аппарата. Синкарион делится (один или несколько раз). Часть продукт тов этого деления вследствие сложных преобразований, связанных с увеличением числа хромосом и обогащением хроматином, превращается в макронуклеусы. Во время этих преобразований хромосомы (все или только часть их) многократно умножаются, в результате чего Ма обогащается хроматином.
Далее хроматин активно участвует в синтезе белка, обеспечивая быстрый рост и размножение инфузорий. Ми сохраняет дйплоидный набор хромосом. В синтетических процессах клетки он участвует слабо и является как бы «сейфом», хранящим наследственную информацию вида, которая передается последующим бесполым поколениям в результате митоза.
Таким образом, у инфузорий, обладающих ядерным дуализмом, функция ДНК распределяется между двумя ядрами. Одно из них (Ма) становится вегетативным ядром, активно участвующим в синтетических процессах в клетке, тогда как другое (Ми) сохраняет генеративную функцию и обеспечивает преемственность генетической информации.
В чем заключается биологическоа значение конъюгации, какую роль играет она в жизни инфузорий? Во-первых, конъюгация, как и всякий другой половой процесс, при котором происходит объединение в одном организме двух наследственных начал (отцовского и материнского), ведет к повышению наследственной изменчивости, наследственного многообразия.
Повышение наследственной изменчивости увеличивает приспособительные возможности организма к условиям окружающей среды. Во-вторых, вследствие конъюгации развивается новый макронуклеус за счет продуктов деления синкариона и одновременно с этим разрушается старый.
Экспериментальные данные показывают, что именно макронуклеус играет исключительно важную роль в жизни инфузорий. Им контролируются все основные жизненные процессы и определяется важнейший из них — образование (синтез) белка, составляющего основную часть протоплазмы живой клетки.
При длительном бесполом размножении путем деления происходит как бы своеобразный процесс «старения» макронуклеуса, а вместе с тем и всей клетки: снижается активность процесса обмена веществ, снижается темп деления. После конъюгации (в процессе которой, как мы видели, старый макронуклеус разрушается) происходит восстановление уровня обмена веществ и темпа деления.
Поскольку при конъюгации происходит процесс оплодотворения, который у большинства других организмов связан с размножением и появлением нового поколения, у инфузорий особь, образовавшуюся после конъюгации, тоже можно рассматривать как новое половое поколение, которое возникает здесь как бы за счет «омолаживания» старого.
Способ питания и пищеварения. Туфельки относятся к числу инфузорий, основную пищу которых-составляют бактерии. Наряду с бактериями они могут заглатывать любые другие взвешенные в воде частицы независимо от их питательности.
Околоротовые реснички создают непрерывный ток воды со взвешенными в ней частицами в направлении ротового отверстия, которое расположено в глубине перистома. Мелкие пищевые частицы (чаще всего бактерии) проникают через рот в небольшую трубковидную глотку и скапливаются да дне ее, на границе с эндоплазмой.
Ротовое отверстие всегда открыто. Пожалуй, не будет ошибкой сказать, что инфузория туфелька — одно из самых прожорливых животных: она непрерывно питается. Этот процесс прерывается только в определенные моменты жизни, связанные с размножением и половым процессом. Скопившийся на дне глотки пищевой комочек в дальнейшем отрывается от дна глотки и вместе с небольшим количеством жидкости поступает в эндоплазму, образуя пищеварительную вакуолю.
Последняя не остается на месте своего образования, а, попадая в токи эндоплазмы, проделывает в теле туфельки довольно сложный и закономерный путь, называемый циклозом пищеварительной вакуоли (рис. 80). Во время этого довольно длительного (при комнатном температуре занимающего около часа) путешествия пищеварительной вакуоли внутри ее происходит ряд изменений, связанных с перевариванием находящейся в ней пищи.
Из окружающей пищеварительную вакуолю эндоплазмы в нее поступают пищеварительные ферменты, которые воздействуют на пищевые частицы. Продукты переваривания пищи всасываются через стенку пищеварительном вакуоли в эндоплазму. По ходу циклоза пищеварительной вакуоли в ней сменяется несколько фаз пищеварения. В первые моменты после образования вакуоли заполняющая ее жидкость мало отличается от жидкости окружающей среды.
Вскоре начинается поступление из эндоплазмы в вакуолю пищеварительных ферментов и реакция среды внутри нее становится резко кислой. Это легко обнаружить, добавляя к пище какой-либо индикатор, цвет которого меняется в зависимости от реакции (кислой, нейтральной или щелочной) среды. В этой кислой среде проходят первые фазы пищеварения. Затем картина меняется и реакция внутри пищеварительных вакуолей становится слабощелочной. В этих условиях и протекают дальнейшие этапы внутриклеточного пищеварения.
Кислая фаза обычно более короткая, чем щелочная; она длится примерно 1/6—1/4 часть всего срока пребывания пищеварительной вакуоли в теле инфузории. Однако соотношение кислой и щелочной фаз может варьироваться в довольно широких пределах в зависимости от характера пищи.
Путь пищеварительной вакуоли в эндоплазме заканчивается тем, что она приближается к поверхности тела и через пелликулу содержимое ее, состоящее из жидкости и непереваренных остатков пищи, выбрасывается наружу — происходит дефекация. Этот процесс, в отличие от амеб, у которых дефекация может происходить в любом месте, у туфелек, как и у других инфузорий, строго приурочен к определенному участку тела, расположенному на брюшной стороне (брюшной условно называют ту поверхность животного, на которой помещается околоротовое углубление), примерно посередине между перистомом и задним концом тела.
Таким образом, внутриклеточное пищеварение представляет собой сложный процесс, слагающийся из нескольких последовательно сменяющих друг друга фаз. На примере инфузории туфельки мы познакомились с типичным представителем обширного типа инфузорий. Однако этот тип характеризуется чрезвычайным разнообразием видов как по строению, так и по образу жизни. Познакомимся ближе с некоторыми наиболее характерными и интересными формами.
Жизнь животных. Том первый. Простейшие. Кишечнополостные. Черви. Москва «просвещение» 1981