Название вакуоли происходит от латинского «vacuus», что значит «пустой». Но не нужно торопиться и относить вакуоли в разряд пустых и ненужных. Это небольшие или крупные полости, которые присутствуют в животных, растительных клетках и многоклеточных организмах.
Что такое вакуоли?
Похожие на мелкие пузырьки или крупные полости, вакуоли образуются на участках эндоплазматической сети и комплекса Гольджи. От цитоплазмы они отделены мембраной, которая сохраняет их внутреннее содержимое: жидкость с растворенными в ней веществами.
Животные клетки содержат небольшие по размеру вакуоли, похожие на маленькие пузырьки. В растительных клетках расположена одна большая, центральная вакуоль, которая занимает значительный объем.
Строение
Вакуоль устроена довольно просто. Ее однослойная мембрана называется тонопластом. Внутри вакуоли находятся растворенные в воде
Тонопласт не изолирует полностью внутреннее содержимое. Он содержит поры, через которые поступает вода и другие вещества. «Плотный пузырек» давит на цитоплазму, придавая клетки тургор, поддерживая ее в упругом состоянии.
На заметку:В молодых клетках содержится несколько небольших вакуолей в виде пузырьков. С возрастом они сливаются, и в клетке остается одна большая вакуоль, которая занимает много места: до 90% от общего объема клетки.
Функции
Вакуоли выполняют разнообразные функции. Это зависит от конкретной клетки, в которой они находятся. Если это одноклеточный организм – роль одна, растительная клетка – роль другая. Если обобщить, то вакуоль выполняет следующие задачи:
На заметку:Вакуоли выводят из клетки токсичные соединения, такие, как тяжелые металлы и гербициды. За счет внутренней, кислой среды эти органоиды расщепляют крупные макромолекулы, которые засоряют цитоплазму.
Основные функции вакуолей представлены в таблице:
Тип вакуоли
Строение, расположение. Функции
Запасающая
В клетках плодов, семян, корневищ многих растений, и некоторых тканей животных, разрастаясь, занимает почти весь объём
Расположена в клетках животных, губок, микроорганизмов. Быстро меняет объём и форму.
В клетках животных и одноклеточных организмов. Отличается формой (у инфузорий — напоминает звёздочку).
Обычна для клеток растений с плавающими на воде листьями, ряски, плавучих микроводорослей наподобие спирулины, некоторых водных животных.
В клетках многих растений, насекомых, рыб (фугу), ядовитых животных. Содержит алкалоиды, полифенолы и прочее (пример: соланин зелёных картофельных клубней).
Вакуоль в животной клетке
Вакуоли – органоиды, типичные для растений и грибов, встречаются они и в животных клетках. Здесь они представлены небольшими пузырьками, «плавающими» в цитоплазме.
В животных клетках вакуоли – это по сути лизосомы, которые содержат ферменты и способны к процессам фагоцитоза и пиноцитоза. Они переваривают питательные частицы и отмершие элементы клетки. Вакуоли запасают вещества, переваривают пищевые частицы и питательные растворы, а также регулируют содержание воды и солей.
Вакуоль в растительной клетке
В клетках растений вакуоль – важный по значению органоид. Она крупных размеров и занимает до80-90% от объема клетки. Растительный органоид:
Клетка нуждается в вакуолиях. Этот органоид важен для пищеварения, водно-солевого обмена, детоксикации (очищения организма от токсинов), роста и развития клеток. Вакуоль – важная составная часть растительной клетки. Важна она и для простейших, грибов, и для многоклеточных организмов. Вакуоль не содержится в вирусах и фагах.
«Вакуом» – это старинный термин, который был возрожден Де Дювом. В это понятие он включил все участки клетки, окруженные мембраной, кроме митохондрий. Составной часть вакуома является лизосомальная система в состав которой входит вакуолярная система, представляющая собой совокупность одномембранных органелл клетки. Вакуолярная система играет важную роль в жизнедеятельности клеток всех царств живой природы. Она связана с процессами распада и транспорта органических веществ и представляет собой динамичную систему, состоящую из канальцев, цистерн и пузырьков, которые сообщаются между собой путем установления постоянных или временных связей в результате слияния их мембран. Благодаря наличию вакуома вещества способны поступать в клетку, перемещаться внутри нее, выводиться наружу и, не смешиваясь с ее материалом, обмениваться продуктами путем диффузии или активного транспорта. Кроме того. вакуом, как показывают исследования, играет значительную роль в формировании приобретенной локальной устойчивости растительной клетки, инфицированной вирусом.
Научная проблема и ее обоснование
Роль вакуома в функционировании растительной клетки изучена до настоящего времени недостаточно и продолжает интенсивно исследоваться. Известно, что внутри вакуолярной системы, являющейся составной частью вакуома, выделяется два основных метаболических потока – анаболический и катаболический. Анаболический связан с синтезом, транспортом, секрецией белков и с формированием первичных лизосом. Катаболический связан с процессами лизосомального переваривания.
При этом поток вещества может проходить через весь вакуом, начинаясь от эндоплазматического ретикулума, где они синтезируются, до внеклеточного пространства. В противоположном направлении движения соединений имеется блокирующий механизм, который препятствует попаданию веществ экстрацеллюлярного пространства во внутреннюю часть системы. По некоторым данным это обусловлено невозможностью слияния цитомембран эндоплазматического и экзоплазматического типа из-за ключевых отличий в их строении и химическом составе. Например, мембраны, принадлежащие митохондриям, ШЭР и аппарату Гольджи, являются более тонкими, по сравнению с везикулами Гольджи и некоторыми видами лизосомальных мембран. Основной органеллой, осуществляющей дифференциацию и трансформацию мембран в клетках, как растений, так и животных организмов, считается аппарат Гольджи. Было выяснено, что постепенное увеличение толщины клеточных мембран происходит в аппарате Гольджи в направлении от его проксимального полюса (наружная сторона) к дистальному (внутренняя сторона). В связи с этим Де Дювом было предложено подразделить вакуом на две части:
– эндоплазматическое пространство, которое приблизительно соответствует пространству, занятому эндоплазматическим ретикулумом (ЭР) и ядерной оболочкой;
– эктоплазматическое пространство, в которое входят все остальные окруженные мембраной клеточные компоненты.
Функции эндоплазматического пространства, по мнению Де Дюва, не ограничиваются чисто катаболическими процессами. Эта система является также местом хранения эндогенных биосинтетических продуктов, запасаемых в различных секреторных гранулах и первичных лизосомах, а также экзогенных веществ, поступающих в клетку в процессе эндоцитоза. Другая функция системы связана с экзоцитозом (процессом, обратным эндоцитозу), при котором из клетки выводятся секреторные продукты в результате слияния секреторных гранул с плазмаллемой, а также трансклеточный транспорт, или диацитоз, при котором эти вещества, проходя через определенный слой клеток, попадают во внеклеточную среду. В эндоплазматическом пространстве происходит также взаимодействие между веществами, изолированными внутри различных везикул в случае их слияния. Эта функция включает в себя не только переваривание эндоцитозного материала лизосомальными ферментами, но и переваривание вещества секреторных гранул при их слиянии с фагоцитозными вакуолями и с лизосомами. Впервые взаимодействие лизосом с секреторными гранулами было обнаружено Смитом и Даркуа. Этот процесс существенно отличается от обычной клеточной автофагии тем, что вместо предварительной изоляции предназначенных для переваривания структур мембранными элементами или инкорпорации (внедрения) их в первоначально интактном виде внутрь лизосом здесь имеет место истинное слияние мембран.
Автофагией называется способность клеток переваривать собственные структурные компоненты или участки цитоплазмы, окруженные изолирующими их клеточными мембранами, с образованием впоследствии автофаговой вакуоли. Автофагия, как показывают исследования, наблюдается в клетках всех эукариот. Она играет важную роль в поддержании внутриклеточного гомеостаза, а также в осуществлении процессов нормального онтогенетического развития (рост, дифференцировка, метаморфоз). В клетках, подвергающихся стрессу, автофагия является наиболее общей субклеточной реакцией.
Единого мнения на происхождение изолирующих клеточных мембран в настоящее время нет. Существует мнение, что их происхождение связано с эндоплазматическим ретикулумом (ЭР). Две мембраны, ранее принадлежащие ЭР и разделенные просветом, после завершения изоляции участка цитоплазмы сливаются в одну более толстую, образуя таким образом цитосегресому. Согласно другой точке зрения, внутренняя мембрана ЭР растворяется, и содержимое образовавшейся цитосегресомы становится доступным для гидролитических ферментов, локализованных ранее в изолирующей цистерне. Механизм описанных процессов в настоящее время до конца не выяснен. Кроме ЭР источником изолирующих мембран может быть и аппарат Гольджи. Предполагается также возможность формирования цитосегресом в результате слияния вакуолей. Изолирующая мембрана в этом случае происходит от плазмалеммы. Автофаговые вакуоли могут быть образованы и в результате слияния мембран цитосегресом с мембранами лизосом. Имеются данные о существовании регуляторных механизмов, управляющих процессами автофагии и способных изменить скорость и частоту этих процессов в различных ситуациях (суточный ритм, стрессовые воздействия, дифференцировка). Мощными индукторами автофагии могут быть некоторые алкалоиды, антибиотики.
В клетках растений и животных имеется еще один механизм деструкции – кринофагия. Она заключается в прямом слиянии первичных лизосом с мембранной оболочкой органелл, что ведет к лизису последней. Первичные лизосомы – это клеточные структуры, содержащие в своем матриксе набор гидролитических ферментов и еще не успевшие принять участие в процессах переваривания.
Автофагия и кренофагия – это один из механизмов образования вакуолей в растительных и животных клетках. Происхождение и статус клеточных вакуолей в настоящее время является дискуссионным. Особенно большой интерес вызывает большая центральная вакуоль растительных клеток. Вопрос о ее происхождении возник еще в ХIХ веке, но до сих пор не имеет однозначного решения. До сих пор ведется дискуссия по поводу того, является ли ее содержимое просто жидкой фазой, окруженной мембраной, или она является самостоятельной органеллой, способной к активному росту и развитию. По мнению некоторых авторов, возникновение центральной вакуоли можно связать со слиянием уже существующих более мелких вакуолей или формированием ее из каких-либо иных вакуолярных элементов, либо с образованием из структур, не имеющих непосредственного отношения к вакуолярной системе. Наиболее распространено мнение о формировании предшественников вакуолей из локальных участков канальцев ЭР, которые постепенно расширяются и затем трансформируются в тонопласт. Ряд исследователей придерживаются мнения, что вакуоли образуются из элементов аппарата Гольджи. Существует также представление о возможности появления в цитоплазме растительных клеток вакуолей эндоцитозного происхождения, окружающая мембрана которых первоначально принадлежала плазмалемме.
Исследования показали, что вакуоли в живых клетках содержат довольно широкий набор ферментов – это кислая фосфатаза, пероксидаза, цитохро-С-редуктаза, вещества фенольной природы, запасные белки, а также различные низко- и высокомолекулярные метаболиты и токсичные соединения. Большинство вакуолярных ферментов связано с вакуолярной мембраной, хотя такие кислые гидролазы, как фосфатаза и карбоксипептитаза, найдены в клеточном соке. Изучение распределения глобул белков в тонопласте позволяет отнести его к числу функционально активных мембран.
Вакуоли одной и той же клетки могут отличаться друг от друга по своему химическому содержимому. Это, видимо, с одной, стороны свидетельствует о различном их происхождении, а с другой, о возможном отличии в выполняемой ими функции. Низкомолекулярные соединения могут поступать из вакуолей обратно в цитоплазму, что, по-видимому, объясняет уменьшение объема этих структур на определенных стадиях клеточного цикла. Эти же свойства вакуолей придают им характер буфера между наружной и внутренней средой, контролирующего гомеостаз растительной клетки и ответственного за изменение вязкости цитоплазмы. Клеточные вакуоли выполняют также ряд других важных функций. Наиболее известной из них является осморегуляция и поддержание тургора путем создания в клетках высокого гидростатического давления. В настоящее время наибольший интерес вызывает лизосомальная функция растительных вакуолей, что согласуется с представлением некоторых исследователей о происхождении вакуолей из производных диктиосом аппарата Гольджи.
Впервые растительные лизосомы, как структуры, сходные с лизосомами животных, были обнаружены при цитохимическом изучении меристематических клеток. Лизосомы принято подразделять на первичные и вторичные. Первичные лизосомы – это микротельца, ферменты которых еще не принимали участие в процессе переваривания. Микротельца, являющиеся местом активного литического процесса, называются вторичными лизосомами. Среди вторичных лизосом, в зависимости от того, какой материал подвергается лизису, выделяют гетеролизосомы (переваривают внеклеточные вещества) и автолизосомы (переваривают вещества клетки). На поздних стадиях те и другие получили название телолизосомы (остаточные тельца). Деградирующие телолизосомы, утратившие свою активность, названы постлизосомы. В животных клетках обнаружены образования, названные прелизосомами. Они не имеют собственной гидролитической активности и предназначены для последующего переваривания лизосомами. В зависимости от их происхождения выделяют гетерофагосомы и автофагосомы (цитосегресомы). Французскими исследователями была предложена классификация, позволяющая с помощью ультраструктурных и цитохимических критериев идентифицировать среди различных производных диктиосом органеллы лизосомальной природы. Согласно этой классификации существует 3 вида структур:
– электроннопрозрачные относительно крупные пузырьки, содержащие полисахариды;
– визикулы более мелких размеров электронноплотные, содержащие кислые гидролазы;
– пузырьки, морфологически сходные с первыми, но предположительно выполняющие функцию транспорта полисахаридов от аппарата Гольджи к формирующейся либо растущей клеточной оболочке. В некоторых случаях они участвуют в образовании специализированных вакуолей, богатых полисахаридами.
Функцию транспорта полисахаридов приписывают также и первым структурам, вторые предположительно представляют собой протофитолизосомы, созревающие впоследствии в фитолизосомы.
Существует мнение, что в клетках, как растений, так и животных, помимо формирования первичных лизосом посредством аппарата Гольджи существует и другой значительно более упрощенный путь отпочковывания их непосредственно от канальцев и цистерн ЭР. Предполагают, что этот путь связан со стимуляцией лизосомального аппарата при различных патологических состояниях как естественной природы, так и вызванных экспериментально.
Исходя из исследований (А.В. Реунов 1999.; Нагорская 2000; С.Н. Лега 2002; и др.) можно выделить, как нам представляется, наряду с другими многочисленными функциями, также и защитную функцию вакуолярной системы, которая заключается в способности вакуолей, в результате активации лизосомального компартмента при вирусном патогенезе, участвовать в разрушении вирусных частиц. Подтверждением активации литических процессов в клетках растений при вирусном патогенезе является обнаружение в принекрозных зонах (1–2 см от края ВТМ-индуцированного локально некроза) листьев Datura stramonium L. (С.Н. Лега 2002) процессов автофагии. Об этом свидетельствует наличие электроннопрозрачных участков цитоплазмы, изолированных замкнутыми мембранами ретикулума, которые нередко содержали включения электронноплотного и, вероятно, лизируемого материала. Кроме того, в принекрозных зонах было зафиксированно повышеное содержание, по сравнению со здоровыми клетками, пузырьков Гольджи, набухание элементов ЭПР и превращение их в вакуоли. Свидетельством развития процессов автолиза в клетках листьев растений, инфицированных вирусом, является формирование в их цитоплазме также цитосегресом, цитосом, и образований, в которых нередко обнаруживались подвергшиеся лизису мембранные структуры.
Стимуляция процессов автолиза имеет место и в зараженных ВТМ клетках листьев растений Gomphrena qlobosa L. расположенных вокруг ВТМ-индуцированных хлоротичных зон (С.Н. Лега, 2002). При инфицировании листьев гомфрены ВТМ на них образуются хлоротичные поражения, напоминающие локальные некрозы (что, однако, не сопровождается локализацией инфекции), в которых выявлялись значительные скопления вирусных частиц. За пределами хлоротичных зон вирусные частицы обнаруживались в значительно меньшем количестве и имели, как показали исследования, необычно высокую осмиофильность и способность к слипанию. Иногда вирусные частицы утрачивали присущую им упорядоченность и имели хлопьеобразный вид, что свидетельствует о деградации вируса. Кроме того, в этих участках листа наблюдались существенные морфологические изменения клеточных структур, о чем говорит повышенная осмиофильность тонопласта, посветление матрикса митохондрий и нарушение целостности их крист, наличие электроннопрозрачных зон в участках цитоплазмы на границе с центральной вакуолью, содержащих деградируемые вирусные частицы (С.Н. Лега, 2002).
Активация литического компартмента, о чем свидетельствует активация процесса автофагии, увеличение количества и активности аппарата Гольджи а также деградация вирусных частиц в клетках листьев растений, зараженных вирусом, по-видимому, связана с механизмом формирования в них приобретенной локальной устойчивости.
Выводы и перспективы
Таким образом, вакуом, а именно лизосомальная и в частности вакуолярная система, как показывают исследования, играет весьма важную роль в реализации защитных механизмов при формировании приобретенной локальной устойчивости в инфицированной вирусом растительной клетке.
Рецензенты:
Галкин М.А., д.б.н., профессор, заведующий кафедрой ботаники, Пятигорский медико-фармацевтический институт, филиал, Волгоградский государственный медицинский университет, г. Пятигорск;
Коновалов Д.А., д.фарм.н., профессор, заведующий кафедрой, заместитель директора ПМФИ по научной работе, Пятигорский медико-фармацевтический институт, филиал Волгоградский государственный медицинский университет, г. Пятигорск.
вакуоли являются многофункциональными органеллами, обнаруженными в клетках всех растений и грибов, а также в некоторых клетках протистов, животных и бактерий.
Термин «вакуоль» происходит от латинского «vacuus», что означает «пустой», так как они выглядят как пустой карман при просмотре под микроскопом.
Действительно, вакуоли представляют собой небольшие компартменты в цитоплазме клетки, однако, в отличие от того, что наблюдается человеческим глазом, они не пусты, но содержат химические вещества и ферменты, которые позволяют разлагать вещества (такие как пищевые и токсичные соединения). ).
Характеристика вакуолей
1- Вакуоли состоят в основном из воды и аминокислот. Кроме того, жидкости в вакуолях включают ферменты, сахара, минеральные соли (калий, натрий), кислород, углекислый газ и некоторые пигменты, отвечающие за окраску листьев растений и цветов..
2. Вакуоли окружены слоем липидов, что позволяет не допускать попадания соленой воды в цитоплазму. Этот слой называется «тонопласт».
3. Вакуоли образуются, когда везикулы, выделяемые эндоплазматическим ретикулумом, и пузырьки, выделяемые аппаратом Гольджи, сливаются в одной органелле..
4- Они находятся в основном в клетках растений и грибов. Тем не менее, некоторые животные, бактериальные и протистические клетки имеют вакуоли.
5- Вакуоли не имеют определенного размера или формы. Эти две характеристики будут зависеть от индивидуальных потребностей клетки.
6- Новые клетки содержат серию небольших вакуолей; однако, когда клетка созревает, эти маленькие органеллы сливаются в единую центральную вакуоль.
7- Центральная вакуоль занимает 90% объема ячейки и может занимать 95%, когда она расширяется за счет поглощения воды.
8- Вакуоли в растениях выполняют функции, подобные лизосомам в клетках животных, поскольку оба являются мешочками, которые содержат пищеварительные ферменты.
Функции вакуолей
Вакуоли выполняют широкий спектр функций внутри клетки. Среди основных функций следующие:
1- регулировать осмотические свойства клетки
Следует отметить, что вакуоли регулируют прохождение этих веществ, сохраняя те, которые они считают вредными, и метаболизируя другие вещества..
2- Хранить вещества
Вакуоли позволяют хранить различные вещества, необходимые для клеток, такие как пища, вода, ионы, минералы, питательные вещества, ферменты, растительные пигменты и полезные бактерии для клетки..
Таким же образом, вакуоли позволяют хранить отработанные ячейки, а также изолировать материалы, которые могут быть вредными..
3- Помогите сохранить давление внутри клетки (тургор)
Это явление создает избыточное давление на клеточную стенку. Вакуоли сбрасывают часть этого давления, используя воду (гидростатическое давление), которая помогает поддерживать жесткость ячейки и растения.
4- Поддерживать баланс рН внутри клетки
Вакуоль поглощает кислотность цитоплазмы клетки.
5- Экспорт продуктов из клетки
В отличие от животных, растения не имеют самой системы выведения, поэтому она зависит от других методов удаления отходов и токсичных веществ..
Клетка использует вакуоль, чтобы избавиться от молекул, которые ей не нужны. Для достижения этого вакуоль поглощает нежелательный элемент и, следовательно, движется к клеточной стенке.
Оказавшись в клеточной стенке, вакуоль сливается с ней, «мусор» открывается и удаляется. Затем эта органелла закрывается и отделяется от клеточной стенки,
6- Разложение молекул
Кислая среда внутри вакуолей, а также ферменты, присутствующие в этой органелле, помогают разрушать большие молекулы, которые отправляются в вакуоли..
Тонопласт вмешивается в перенос ионов водорода из цитоплазмы в вакуоль, что повышает кислотность окружающей среды. В этом смысле вакуоли напоминают лизосомы в клетках животных.
7- Детоксикация
Вакуоли защищают цитозоль от токсичных веществ, таких как тяжелые металлы и гербициды.
8- Защита
Некоторые вакуоли хранят и выделяют химические соединения, которые являются ядовитыми или имеют плохой вкус. Эти химические вещества удерживают хищников от тела.
9- Прорастание семян
Вакуоли являются источником питательных веществ, которые требуются семенам для прорастания, так как эти органеллы хранят углеводы, белки и липиды, необходимые для роста..
10- Автолиз
Тонопласт, который окружает вакуоль, разрушается, высвобождая вещества, которые он хранит; Позже пищеварительные ферменты вакуоли разлагают клетки.
Вакуоли также вмешиваются в другие клеточные действия, такие как:
Вакуоли называются резервуарами для хранения клеток.
Это органеллы, которые могут хранить как воду, так и пищу, и они имеют решающее значение для поддержания прочности клеточной стенки.
У всех растений есть вакуоли, но не у всех животных они есть. Когда вы видите растение, которое выглядит сильным и здоровым, это потому, что его вакуоли заполнены водой.
Во время засухи растения начинают увядать и выглядят вялыми, и это происходит из-за низкого запаса воды в вакуолях.
Размер вакуоли является еще одним приоритетом для функции клетки, потому что с увеличением размера вакуоли увеличивается и размер клетки.
Вакуоли у растений больше, чем у животных, и поэтому количество вакуолей в растении меньше, чем у животных.
Дополнительная информация о вакуолях
Определение вакуоли состоит в том, что это закрытое отделение или полость, которая связана мембраной и существует в цитоплазме клетки для хранения воды, отходов и питательных веществ.
Мы находим вакуоли во всех клетках растений, грибковых клетках, нескольких типах бактерий, протистах и у некоторых животных. Вакуоли называются “заполненными жидкостью отсеками”, однако в них также есть твердые частицы, которые изолированы.
В растительных клетках жидкое вещество в вакуолях называется “клеточным соком”.
Как работает вакуоль?
Мембрана вакуоли работает так же, как мембрана клетки животного. Мембрана позволяет белкам и материалам легко проходить через нее.
Большая часть отходов из клетки попадает в “центральную вакуоль”, а затем транспортируется с завода в процессе, который называется “транспортировкой».
Вакуоль имеет три специфических способа перемещения материалов и воды в свое тело и из него:
● Такие элементы, как кислород и вода, состоят из небольших молекул, через которые он легко проходит.
● Он использует транспортные белки для перемещения материалов, и белки разрывают части мембраны, чтобы через них могли проходить более крупные молекулы.
● Вакуоль принимает решение о том, нужна ли ей молекула (или нет), и ее мембрана будет прокачивать молекулы либо внутрь, либо наружу.
Вглядываюсь в вакуоль
Найти вакуоль может быть сложно, потому что они не имеют какого-либо определенного размера или формы.
Их легче обнаружить в здоровых растительных клетках, потому что они могут занимать до 80% его объема (около 30% у растений, которым нужна вода).
Большинство материалов внутри вакуоли-это отходы, которые осаждаются клеткой и водой.
Во время фотосинтеза растение будет выделять кислород, и это своего рода отходы, которые будут осаждаться в вакуоли.
Другие виды отходов, которые вы найдете внутри вакуоли, могут включать азот, РНК, фосфор и желеобразное вещество, которое она получает из цитоплазмы.
Процесс перемещения материалов и веществ в клетку и из нее называется “экзоцитоз”.
Этот процесс довольно прохладный, так как вакуоль обволакивает часть своей собственной мембраны вокруг отходов и отправляет ее за пределы клетки, где она транспортируется к корням или листьям растения.
Ученые, изучающие вакуоли, должны использовать мощный микроскоп, чтобы увидеть их. Они полагают, что небольшие мембранозные пузырьки сливаются вместе, образуя вакуоли.
Существует мембрана, называемая “тонопластовой или вакуолярной мембраной”, которая отделяет вакуоль от других частей клетки, и мембрана может растягиваться в зависимости от потребностей клетки.
Интересные факты о Вакуолях
● Вакуоли выполняют другую работу на заводах, кроме хранения воды. Они также играют определенную роль в прорастании семян и дают инструкции по структуре цветков и листьев, а также в регулировании внутреннего рН.
● Вакуоли в одноклеточном организме, такие как амеба, отвечают за переваривание пищи, которую они поглощают.
● Существуют вакуоли, которые существуют у пресноводных рыб и других подобных организмов, и они называются “сократительными вакуолями”. Эти типы вакуолей сокращаются и расширяются, освобождая избыточную воду, которая поступает в организм во время кормления.
● Мембрана вакуоли в основном состоит из фосфолипидов.
● В клетках животных основная работа вакуоли заключается в избавлении от отходов.
Когда мертвые вещества или яды попадают в область клетки, именно вакуоли выделяют их для обеспечения безопасности и здоровья растения или животного.
Интересные факты о биологии
● Углеводы играют важную роль в обеспечении того, чтобы наши клетки получали необходимую энергию.
● Возможно, мы знакомы с терминами РНК и ДНК, но существует особый вид РНК, который отвечает за перемещение аминокислот в рибосому, называемый “тРНК”. Буква “т” означает перевод.
● Со временем люди могут потерять иммунитет к определенным заболеваниям, которые у них были в раннем возрасте.
● Антибиотики-это препараты, которые были созданы для уничтожения бактерий.
● Вирусы имеют два типа циклов размножения: литический цикл и лизогенный цикл.
● Болезни, вызванные вирусами с лизогенным циклом, проявляют симптомы гораздо медленнее, чем те, которые вызваны литическим циклом.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.