Для чего нужно использовать искусственный интеллект
Почему искусственный интеллект нужно изучать даже гуманитариям
Рассказываем, с чего начать изучение ИИ
Что такое ИИ и почему это так интересно
Искусственный интеллект – это способность машины имитировать человеческое мышление. Так называют современную технологию, с помощью которой электронные устройства, программы и роботы могут решать различные задачи по заданным алгоритмам.
Тема искусственного интеллекта и машинного мышления интересовала учёных ещё до изобретения компьютеров, а после появления ЭВМ вышла на новый уровень. В 1950-60-х годах вопросы, связанные с созданием и использованием искусственного интеллекта, стали широко обсуждаться в обществе.
Ответ на этот вопрос найти сложно ещё и потому, что нет чётких критериев разумности машины. Если это умение делать логические умозаключения, то компьютер давно превзошёл человека. Если же речь идёт о гибкости и оригинальности мышления, тут человек пока ещё превосходит даже самые современные интеллектуальные устройства.
ИИ активно используется в самых разных областях, список которых с каждым годом расширяется, и найти своё место в этой сфере могут не только технари, но и гуманитарии – специалисты по управлению проектами, рекламе и пиару, психологи, экономисты, лингвисты.
Что могут программы с искусственным интеллектом
Современные технологии искусственного интеллекта позволяют создать устройства и программы, которые:
В каких сферах применяется ИИ
Обработка языка
Машинный перевод активно используется в интернете и социальных сетях, совершенствуясь с каждым годом. Компьютер научился распознавать и устную, и письменную, и печатную речь. По прогнозам, переводчик станет одной из первых профессий, которая исчезнет «по вине» ИИ.
Компьютерные игры
Искусственный интеллект используется для создания игровой Вселенной, он управляет ботами – персонажами, за которых не играют люди. С помощью ИИ создаются игровые стратегии.
Управление финансами
Программы и устройства успешно осуществляют бухгалтерские операции, ведут учёт и контроль, могут создавать прогнозы на основе имеющихся данных. Специальные программы ведут учёт расходов.
Анализ окружающей среды
Технологии искусственного интеллекта применяются для создания «умных домов». Контроль над всем, что происходит в доме – электричеством, отоплением, вентиляцией, работой бытовой техники осуществляет специальная программа. Роботы-пылесосы сканируют окружающее пространство, чтобы определить, нужно ли им приступать к работе.
Мобильные приложения
Программы для мобильных телефонов умеют распознавать лица, отслеживать наше месторасположение, следят за режимом сна и питания.
Транспорт
С помощью интеллектуальных устройств можно выстроить маршрут передвижения с учётом пробок, компьютер в современном автомобиле в определённых режимах отслеживает положение машины на дороге, контролирует скорость и мощность двигателя. Технология ИИ используется в автомобилях, способных передвигаться без участия человека.
Медиа
С помощью специальных программ можно планировать и публиковать материалы в интернете и соцсетях. Технологии ИИ подбирают контент в соответствии с интересами пользователя. В недалёком будущем компьютерные программы, вероятно, научатся создавать тексты на основе уже загруженных в интернет материалов.
ИИ может анализировать резюме соискателей, распределять их на группы в зависимости от навыков и квалификации и даже определять, насколько работник подходит для той или иной должности.
Медицина
Искусственный интеллект анализирует данные пациентов и выявляет связь между методами лечения и состоянием больного. В будущем планируется создать роботов, которые будут ставить диагноз на основе имеющихся симптомов, обращаясь к медицинской базе данных.
Тяжёлая промышленность
Роботы активно применяются в областях, где необходима постоянная концентрация на совершении одних и тех же рутинных действий. Самый высокий уровень внедрения машин с элементами искусственного интеллекта в производство на данный момент отмечен в Японии: на 10 000 сотрудников автомобильной промышленности там приходилось в 2014 году около 1500 роботов.
Зачем изучать технологию ИИ
Искусственный интеллект – технология не только настоящего, но и будущего, и у специалистов в этой сфере не будет проблем с трудоустройством в ближайшие несколько десятков лет. В эту область уже сейчас привлекаются огромные инвестиции, а значит, не будет проблем и с оплатой труда работников, занимающихся разработкой, изготовлением и внедрением технологий ИИ.
Вклад в науку и культуру
Искусственный интеллект и создание интеллектуальных программ и устройств – та область, в которой постоянно совершаются новые открытия. Занимаясь искусственным интеллектом, учёные и инженеры находятся на переднем крае мировой науки, продвигают человечество вперёд. Кроме того, развитие искусственного интеллекта и внедрение его в нашу жизнь порождает множество этико-философских вопросов, для разрешения которых нужен уже не машинный, а человеческий разум, способный к творческому мышлению.
В сфере создания ИИ очень востребованы не только разработчики программного обеспечения, но и люди с креативным мышлением, способные придумывать и продвигать новые идеи. Чтобы работать в этой сфере, важно уметь нестандартно мыслить. Отдельное перспективное направление, которым может заняться творческий человек – обучение машины созданию произведений искусства. Уже сегодня компьютеры рисуют картины, пишут музыку и стихи. В недалёком будущем, возможно, они возьмут на себя создание книг, кино и мультфильмов.
Освоение новых навыков
Чтобы работать в области искусственного интеллекта, необходимо хорошее знание математики и основ программирования. Для изучения ИИ наиболее важны два раздела математики – линейная алгебра и теория вероятности. Самый востребованный язык программирования в этой сфере – Python, потом идут R и Lua. Пригодится также знание английского языка – самые современные научные данные, статьи, отчёты о достижениях и экспериментах, как правило, публикуются на английском.
Для успешной работы в области ИИ необходимо критическое мышление, умение тщательно проверять любую гипотезу, сопоставлять все данные, анализировать любую задачу с разных сторон. Понадобятся и хорошие коммуникативные навыки – работа над проектами ИИ происходит в большой команде, в сотрудничестве с коллегами и специалистами из смежных областей.
Приступить к изучению технологию искусственного интеллекта на начальном уровне вполне можно самостоятельно, с изучения соответствующей литературы.
Книги, в доступной форме рассказывающие о машинном обучении и технологиях ИИ:
Познакомиться с основами создания алгоритмов для искусственного интеллекта можно на кружках робототехники в школе или центре детского творчества. Кроме того, можно найти бесплатные онлайн-курсы и открытые лекции в интернете о машинном интеллекте.
Технологии машинного обучения и искусственного интеллекта – одна из самых интересных и перспективных областей, изучение которой полезно школьникам не только с математическим, но и с гуманитарным складом ума. Это поможет им приобрести новые навыки, расширит список возможных профессий и позволит внести вклад в развитие научно-технического прогресса.
Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей
Всё, что вам нужно знать об ИИ — за несколько минут
Приветствую читателей Хабра. Вашему вниманию предлагается перевод статьи «Everything you need to know about AI — in under 8 minutes.». Содержание направлено на людей, не знакомых со сферой ИИ и желающих получить о ней общее представление, чтобы затем, возможно, углубиться в какую-либо конкретную его отрасль.
Знать понемногу обо всё иногда (по крайней мере, для новичков, пытающихся сориентироваться в популярных технических направлениях) бывает полезнее, чем знать много о чём-то одном.
Многие люди думают, что немного знакомы с ИИ. Но эта область настолько молода и растёт так быстро, что прорывы совершаются чуть ли не каждый день. В этой научной области предстоит открыть настолько многое, что специалисты из других областей могут быстро влиться в исследования ИИ и достичь значимых результатов.
Эта статья — как раз для них. Я поставил себе целью создать короткий справочный материал, который позволит технически образованным людям быстро разобраться с терминологией и средствами, используемыми для разработки ИИ. Я надеюсь, что этот материал окажется полезным большинству интересующихся ИИ людей, не являющихся специалистами в этой области.
Введение
Искусственный интеллект (ИИ), машинное обучение и нейронные сети — термины, используемые для описания мощных технологий, базирующихся на машинном обучении, способных решить множество задач из реального мира.
В то время, как размышление, принятие решений и т.п. сравнительно со способностями человеческого мозга у машин далеки от идеала (не идеальны они, разумеется, и у людей), в недавнее время было сделано несколько важных открытий в области технологий ИИ и связанных с ними алгоритмов. Важную роль играет увеличивающееся количество доступных для обучения ИИ больших выборок разнообразных данных.
Область ИИ пересекается со многими другими областями, включая математику, статистику, теорию вероятностей, физику, обработку сигналов, машинное обучение, компьютерное зрение, психологию, лингвистику и науку о мозге. Вопросы, связанные с социальной ответственностью и этикой создания ИИ притягивают интересующихся людей, занимающихся философией.
Мотивация развития технологий ИИ состоит в том, что задачи, зависящие от множества переменных факторов, требуют очень сложных решений, которые трудны к пониманию и сложно алгоритмизируются вручную.
Растут надежды корпораций, исследователей и обычных людей на машинное обучение для получения решений задач, не требующих от человека описания конкретных алгоритмов. Много внимания уделяется подходу «чёрного ящика». Программирование алгоритмов, используемых для моделирования и решения задач, связанных с большими объёмами данных, занимает у разработчиков очень много времени. Даже когда нам удаётся написать код, обрабатывающий большое количество разнообразных данных, он зачастую получается очень громоздким, трудноподдерживаемым и тяжело тестируемым (из-за необходимости даже для тестов использовать большое количество данных).
Современные технологии машинного обучения и ИИ вкупе с правильно подобранными и подготовленными «тренировочными» данными для систем могут позволить нам научить компьютеры «программировать» за нас.
Обзор
Интеллект — способность воспринимать информацию и сохранять её в качестве знания для построения адаптивного поведения в среде или контексте
Это определение интеллекта из (англоязычной) Википедии может быть применено как к органическому мозгу, так и к машине. Наличие интеллекта не предполагает наличие сознания. Это — распространённое заблуждение, принесённое в мир писателями научной фантастики.
Попробуйте поискать в интернете примеры ИИ — и вы наверняка получите хотя бы одну ссылку на IBM Watson, использующий алгоритм машинного обучения, ставший знаменитым после победы на телевикторине под названием «Jeopardy» в 2011 г. С тех пор алгоритм претерпел некоторые изменения и был использован в качестве шаблона для множества различных коммерческих приложений. Apple, Amazon и Google активно работают над созданием аналогичных систем в наших домах и карманах.
Обработка естественного языка и распознавание речи стали первыми примерами коммерческого использования машинного обучения. Вслед за ними появились задачи другие задачи автоматизации распознавания (текст, аудио, изображения, видео, лица и т.д.). Круг приложений этих технологий постоянно растёт и включает в себя беспилотные средства передвижения, медицинскую диагностику, компьютерные игры, поисковые движки, спам-фильтры, борьбу с преступностью, маркетинг, управление роботами, компьютерное зрение, перевозки, распознавание музыки и многое другое.
ИИ настолько плотно вошёл в современные используемые нами технологии, что многие даже не думают о нём как об «ИИ», то есть, не отделяют его от обычных компьютерных технологий. Спросите любого прохожего, есть ли искусственный интеллект в его смартфоне, и он, вероятно, ответит: «Нет». Но алгоритмы ИИ находятся повсюду: от предугадывания введённого текста до автоматического фокуса камеры. Многие считают, что ИИ должен появиться в будущем. Но он появился некоторое время назад и уже находится здесь.
Термин «ИИ» является довольно обобщённым. В фокусе большинства исследований сейчас находится более узкое поле нейронных сетей и глубокого обучения.
Как работает наш мозг
Человеческий мозг представляет собой сложный углеродный компьютер, выполняющий, по приблизительным оценкам, миллиард миллиардов операций в секунду (1000 петафлопс), потребляющий при этом 20 Ватт энергии. Китайский суперкомпьютер под названием «Tianhe-2» (самый быстрый в мире на момент написания статьи) выполняет 33860 триллионов операций в секунду (33.86 петафлопс) и потребляющий при этом 17600000 Ватт (17.6 Мегаватт). Нам предстоит проделать определённое количество работы перед тем, как наши кремниевые компьютеры смогут сравниться со сформировавшимися в результате эволюции углеродными.
Точное описание механизма, применяемого нашим мозгом для того, чтобы «думать» является предметом дискуссий и дальнейших исследований (лично мне нравится теория о том, что работа мозга связана с квантовыми эффектами, но это — тема для отдельной статьи). Однако, механизм работы частей мозга обычно моделируется с помощью концепции нейронов и нейронных сетей. Предполагается, что мозг содержит примерно 100 миллиардов нейронов.
Нейроны взаимодействуют друг с другом с помощью специальных каналов, позволяющих им обмениваться информацией. Сигналы отдельных нейронов взвешиваются и комбинируются друг с другом перед тем, как активировать другие нейроны. Эта обработка передаваемых сообщений, комбинирование и активация других нейронов повторяется в различных слоях мозга. Учитывая то, что в нашем мозгу находится 100 миллиардов нейронов, совокупность взвешенных комбинаций этих сигналов устроена довольно сложно. И это ещё мягко сказано.
Но на этом всё не заканчивается. Каждый нейрон применяет функцию, или преобразование, к взвешенным входным сигналам перед тем, как проверить, достигнут ли порог его активации. Преобразование входного сигнала может быть линейным или нелинейным.
Изначально входные сигналы приходят из разнообразных источников: наших органов чувств, средств внутреннего отслеживания функционирования организма (уровня кислорода в крови, содержимого желудка и т.д.) и других. Один нейрон может получать сотни тысяч входных сигналов перед принятием решения о том, как следует реагировать.
Мышление (или обработка информации) и полученные в результате его инструкции, передаваемые нашим мышцам и другим органам являются результатом преобразования и передачи входных сигналов между нейронами из различных слоёв нейронной сети. Но нейронные сети в мозгу могут меняться и обновляться, включая изменения алгоритма взвешивания сигналов, передаваемых между нейронами. Это связано с обучением и накоплением опыта.
Эта модель человеческого мозга использовалась в качестве шаблона для воспроизведения возможностей мозга в компьютерной симуляции — искуственной нейронной сети.
Искусственные Нейронные Сети (ИНС)
Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами. Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки.
Для улучшения работы ИНС применяются различные техники оптимизации. Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче).
ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели. Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше.
В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода. Каждый слой содержит не менее одного нейрона.
С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).
Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.
Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.
ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.
Глубокое обучение
Термин глубокое обучение используется для описания нейронных сетей и используемых в них алгоритмах, принимающих «сырые» данные (из которых требуется извлечь некоторую полезную информацию). Эти данные обрабатываются, проходя через слои нейросети, для получения нужных выходных данных.
Обучение без учителя (unsupervised learning) — область, в которой методики глубокого обучения отлично себя показывают. Правильно настроенная ИНС способна автоматически определить основные черты входных данных (будь то текст, изображения или другие данные) и получить полезный результат их обработки. Без глубокого обучения поиск важной информации зачастую ложится на плечи программиста, разрабатывающего систему их обработки. Модель глубокого обучения же самостоятельно способна найти способ обработки данных, позволяющий извлекать из них полезную информацию. Когда система проходит обучение (то есть, находит тот самый способ извлекать из входных данных полезную информацию), требования к вычислительной мощности, памяти и энергии для поддержания работы модели сокращаются.
Проще говоря, алгоритмы обучения позволяют с помощью специально подготовленных данных «натренировать» программу выполнять конкретную задачу.
Глубокое обучение применяется для решения широкого круга задач и считается одной из инновационных ИИ-технологий. Существуют также другие виды обучения, такие как обучение с учителем (supervised learning) и обучение с частичным привлечением учителя(semi-supervised learning), которые отличаются введением дополнительного контроля человека за промежуточными результатами обучения нейронной сети обработке данных (помогающего определить, в правильном ли направлении движется система).
Теневое обучение (shadow learning) — термин, используемый для описания упрощённой формы глубокого обучения, при которой поиск ключевых особенностей данных предваряется их обработкой человеком и внесением в систему специфических для сферы, к которой относятся эти данные, сведений. Такие модели бывают более «прозрачными» (в смысле получения результатов) и высокопроизводительными за счёт увеличения времени, вложенного в проектирование системы.
5 применений ИИ, в которых он конкурирует с человеком
С момента появления искусственного интеллекта прошло почти 70 лет. За эти годы он превратился в доступный рабочий инструмент, которым могут воспользоваться для своих целей даже школьники. Мы сталкиваемся с ИИ буквально на каждом шагу, произнося «окей, гугл» или «слушай, Алиса!», общаясь с чат-ботами банков и получая «письма счастья» со штрафами за нарушение ПДД. И всё чаще раздаются голоса, говорящие, что в скором времени более быстрый и сообразительный, чем человек, ИИ заменит людей, которые останутся без работы и без средств к существованию. Не заменит. Но вот пять сфер, в которых ИИ может серьёзно потеснить людей, — разберёмся, стоит ли нам опасаться конкуренции с «бездушной железякой».
Работа с изображениями
Распознавание образов было одной из самых популярных задач, которую пытались решить с помощью ИИ. Создание компьютерного зрения, как и систем распознавания речи и понимания смысла текстов являются ключевыми направлениями, в которых развиваются связанные с ИИ.
Современные генеративно-состязательные нейросети научились не только распознавать человека на фото. Они вполне успешно делают это на видеороликах, причём даже если человек замотал лицо шарфом или надел медицинскую маску.
Изображения, на которых тренировалась нейросеть DFI. Источник: A. Singh, D. Patil, G Meghana Reddy, SN Omkar (2017). Face Identification (DFI) with Facial Key Points using Spatial Fusion Convolutional Network / arXiv.org
Однако работа над узнаванием людей по фрагментам их лиц началась значительно раньше, чем пандемия. Например, опубликованная в 2017 году работа Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network («Идентификация маскированных лиц по ключевым точкам с использованием пространственной свёрточной сети») рассказывает о результатах работы нейросети, натренированной на распознавание лиц, скрытых очками, шарфом, накладными усами или бородой.
Для распознавания лиц нейросеть DFI использовала всего 14 ключевых точек на лице, поэтому точность «узнавания» замаскированных лиц была невелика. Современные коммерческие нейросети используют несколько сотен ключевых точек на лице человека, поэтому могут обнаружить соответствие, используя лишь те части лица, которые присутствуют на изображении.
Например, китайская компания SenseTime считывает 240 ключевых точек, расположенных вокруг носа, глаз, рта. Это обеспечивает распознавание частично скрытых лиц с точностью до 90%.
Minvision, ещё один китайский разработчик систем распознавания лиц, с началом пандемии срочно дообучил свою нейросеть на распознавание людей в масках. Источником ключевых точек для опознания были глаза и области вокруг них.
Современные ИИ успешно справляются не только с работой «Большого Брата», но и выступают в роли творцов, создавая, например, фотографии несуществующих людей, котиков, аниме-персонажей или абстрактную живопись.
Изображения, сгенерированные нейросетью StyleGAN. Источник: thispersondoesnotexist.com, thiscatdoesnotexist.com, thiswaifudoesnotexist.net, thisartworkdoesnotexist.com
Свежий известный пример коммерческого использования ИИ в дизайне — нейросеть Николай Иронов, которая создавала фирменный стиль и логотипы по программе «Экспресс-дизайн» в Cтудии Артемия Лебедева.
Логотипы, разработанные нейросетью студии Артемия Лебедева. Источник: https://www.artlebedev.ru/express-design
Несмотря на фантастические возможности, которые демонстрируют нейросети, живым дизайнерам нечего опасаться: ИИ может создать бесконечное количество вариантов логотипа или картины, но выбрать среди них удачные и наиболее соответствующие поставленной задаче может только человек. Да и взаимодействовать заказчики всё-таки предпочитают с живым человеком. Более того, ИИ может повысить продуктивность дизайнера, ведь тому уже не придётся перебирать варианты вручную.
Что касается задач, связанных с распознаванием образов на видео и фото, тут с нейросетями тягаться сложно, да и вряд ли имеет смысл. Эта работа относится к разряду той, которую с радостью перепоручат роботам.
Работа с текстами
Работа с текстами — ещё одна область, в которой ИИ уверенно занимают сильные позиции. Разработанный некоммерческой компанией OpenAI алгоритм генерации текста GPT (Generative Pretrained Transformer) позволяет научить нейросети продолжать начатые человеком фразы, а также писать самостоятельные тексты.
Для обучения первой версии алгоритма использовали 117 млн параметров. Вторую версию алгоритма — GPT-2 —обучали уже на 1,5 млрд параметров, а GPT-3, самая современная версия, обучена на 175 млрд параметров. Это огромный массив данных, содержащий книги, новостные сайты, рецепты, технические руководства, религиозную литературу, путеводители и всю англоязычную Википедию. Не обошлось без довольно спорных материалов, посвящённых НЛО, пришельцам и теориям заговоров.
В результате GPT-3 умеет значительно больше, чем её ранние версии. Например, с её помощью можно пообщаться с историческими личностями или попросить её сочинить диалог между Ньютоном и Эйнштейном, стилизованный под Властелина Колец. GPT-3 также может сделать макет сайта по его описанию.
Успехи GPT в основном связаны с английским языком, однако имеются адаптации нейросети для русского, например, сайт «Порфирьевич», построенный на базе обученной на русской художественной литературе GPT-2, довольно успешно продолжает фразы, написанные человеком.
Результат работы нейросети «Порфирьевич»
Свою нейросеть для генерации заголовков новостей представила компания «ВКонтакте». Чтобы создать нейросеть, разработчики использовали архитектуру Universal Transformer и технику компрессии данных BPE (Byte Pair Encoding). Такой подход обычно применяется в машинном переводе и позволяет ограничиться небольшим словарём для генерации заголовков. Сотрудники «ВКонтакт»е стали первыми, кто использовал BPE для модели суммаризации текста, а также первые, кто обучил такую модель на русскоязычных новостных материалах.
Заголовок новостей, сгенерированный нейросетью «ВКонтакте»
Любопытный эксперимент компании «Яндекс» сочиняет стихи, используя заголовки из «Яндекс.Новостей». Сервис, получивший название «Яндекс.Автопоэт» автоматически определяет стихотворный размер по чередованию ударных и безударных слогов, а затем составляет рифмованные строчки.
Результат работы поэтической нейросети Яндекса
Нейросети на базе GPT-3 научились вести довольно осмысленный диалог на разные темы, но с генерацией полноценного текста дела пока обстоят не лучшим образом. И хотя лучшие образцы всё ещё выглядят довольно странно, но не менее странно выглядят SEO-тексты, написанные копирайтерами-массовиками.
Поэтому редакторам и авторам уже сейчас стоит задуматься над тем, как и для кого они пишут, развиваться профессионально, переходя от написания слов и предложений к решению задач заказчиков, управлению вниманием читателей и донесением пользы. А нейросети помогут не тратить время на бессмысленный улучшайзинг.
Персональные ассистенты
Ещё одна область, в которой применение ИИ обеспечило успех — это персональные ассистенты. Сири, Кортана, Алиса, Алекса, а также голосовой помощник Google стали привычными и уже не вызывают удивления. Они могут проверить почту, заказать такси, прочитать новости, назначить встречу и сделать много другое. И самое приятное: не нужно нажимать кнопки, достаточно обратиться к ним голосом.
Благодаря системе распознавания речи на базе нейросети помощники «понимают» обращённую к ним просьбу и выполняют её. Конечно, на сегодняшний день взаимопонимание далеко от идеала, но прогресс неумолим. Совсем недавно китайские специалисты разработали технологию, с помощью которой ИИ будет распознавать в человеческой речи сарказм — одну из самых нетривиальных форм проявления особенностей характера.
Способность распознавать сарказм считается одним из показателей уровня ИИ. Считается даже, что именно эта функция отражает движение по пути к развитию самостоятельности мышления.
Цифровые персональные ассистенты быстро развиваются. Они уже обзавелись множеством функций, которые раньше выполняли секретари и личные помощники. Учитывая тенденцию, вполне закономерным предположением будет полное вытеснение людей в массовом сегменте и замена их на нейросетевые аналоги. Однако есть вероятность, что, как и в случае с текстами и графикой, цифровизация профессии секретаря приведёт к тому, что процессами по-прежнему будет управлять живой человек, в то время как рутина останется на долю ИИ.
Безопасность
Практически безграничные аналитические возможности ИИ просто не могли не задействовать в сфере обеспечения кибербезопасности. Поручить нейросети разбираться с уведомлениями SIEM-систем, предварительно обучив её распознавать кибератаки — мечта практически любого SOC-аналитика.
Разработчики систем защиты также используют машинное обучение. Они собирают озёра данных об инцидентах и обучают на них нейросети. Благодаря глобальной системе сбора информации такие решения постепенно учатся обнаруживать и блокировать не только старые, но и новые угрозы, выявляя совокупности признаков, которые с большой вероятностью остались бы незамеченными. Нейросети могут даже распознавать атаки, традиционно остающиеся за пределами внимания антивирусных сенсоров — мошеннические письма с элементами социальной инженерии, не содержащие никаких вредоносных компонентов.
Уже сейчас очевидно, что даже лучшие SOC-аналитики не могут напрямую конкурировать с нейросетями, однако это и не требуется. Вместо изучения бесконечных журналов и уведомлений о сработавших алёртах ИБ-эксперты могут сосредоточиться на глубоком обучении нейросетей и формировании стратегии выявления инцидентов безопасности.
Медицина
Ещё одна сфера, в которой обрабатываются гигантские массивы данных — медицина. Анализы крови, МРТ, рентгеновские снимки, наследственные заболевания, мониторинг артериального давления, пульса и множества других параметров, с одной стороны, позволяют достаточно точно производить диагностику, а с другой стороны, порождают врачебные ошибки. Обработка большого количества информации силами одного человеческого мозга создаёт ненулевой риск упустить что-то важное.
Есть и ещё один важный момент: люди редко обращаются к врачам, если у них не случится что-то серьёзное. А ведь многие заболевания проще предупредить на ранних стадиях, чем лечить, когда они уже проявляют себя.
Понимая это, в компании Toshiba решили создать ИИ, который позволил бы врачам анализировать данные медицинских осмотров сотрудников компаний, назначения лекарств и всю сопутствующую информацию. Обработка этой информации с помощью обученной нейросети позволяет выдавать предупреждения до момента, когда у людей начинают развиваться заболевания, связанные с образом жизни.
Для прогнозирования риска заболеваний, связанных с образом жизни, ИИ считывает базовые характеристики пациента — артериальное давление, состав крови, окружность живота, частота употребления алкоголя и многое другое. Используя эти сведения, он выдаёт прогноз, через сколько лет состояние здоровья человека достигнет опасного порога, и он получит в качестве диагноза одно из шести заболеваний: диабет, болезни почек, печени, гипертонию, гиперлипидемию или метаболический синдром.
Схема работы медицинского ИИ Toshiba. Источник: Toshiba
Вместе с прогнозом развития заболеваний пациенты получают рекомендации по изменению образа жизни, например, по ежедневному выполнению физических упражнений или снижению количества алкоголя. В рекомендации также указано, как изменения в поведении отразятся на риске развития опасных заболеваний.
В настоящее время точность прогнозов медицинского ИИ, разработанного Toshiba, составляет 96%. Добавление в анализ большего количества данных, таких как информация о ДНК пациента и семейная история болезни, позволит ещё больше повысит точность прогнозирования. Использование информации о ДНК и учёт семейного анамнеза позволяют всерьёз говорить об индивидуальном медицинском обслуживании.
Медицина — ещё одна отрасль, в которой применение ИИ даёт огромные преимущества. Однако, как и в других сферах, «роботы» не отнимут работу у человека, а будут делать то, что у них получается значительно лучше — анализировать и сопоставлять данные, выдавая варианты живому врачу предупреждения о возможности заболевания на самых ранних стадиях, варианты диагноза и стандартные рекомендации по лечению в соответствии с протоколами. А врач, которому уже не нужно вручную вести журнал приёма и выписывать рекомендации, может сосредоточиться на пациенте, чтобы удостовериться, что ИИ-коллега не ошибся.
Оправданы ли опасения
Успех ИИ во многих сферах человеческой деятельности вызывает опасения, связанные с тем, что машины заменят людей, но в действительности бояться нечего. Несмотря на все преимущества искусственного интеллекта нельзя забывать, что это всё ещё компьютерная программа, которая может ошибаться по разным причинам от ошибок в коде до некорректных данных, использованных для обучения. Ценой такой ошибки может стать человеческая жизнь, как едва не произошло при использовании ИИ-решения на базе суперкомпьютера IBM Watson Health в онкологическом центре Memorial Sloan Kettering: лечение, которое назначала нейросеть, было, по словам врачей, смертельно опасно для некоторых больных.
Таким образом, несмотря на все опасения, внедрении любой новой технологии скорее меняет характер работы людей, а не вытесняет их из профессии. Взяв на себя рутину, ИИ обеспечит людям условия для профессионального роста и развития.