Для чего нужно напряжение короткого замыкания трансформатора
Напряжение короткого замыкания
Как и для чего проводится опыт короткого замыкания трансформатора?
Режимом короткого замыкания трансформатора называется такой режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (ZH = 0). Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.
В лабораторных условиях можно провести испытательное короткое замыкание трансформатора, при котором накоротко замыкают зажимы вторичной обмотки, а к первичной подводят такое напряжение Uк, при котором ток в первичной обмотке не превышает номинального значения (Iк
находят из показаний ваттметра и амперметра. Зная Zк и RК, можно вычислить индуктивное сопротивление обмоток:
Зная Zк, Rк и Хк трансформатора, можно построить основной треугольник напряжений короткого замыкания (треугольник ОАВ на рис. 2), а также определить активную и индуктивную составляющие напряжения короткого замыкания:
5. Как и для чего проводится опыт холостого хода трансформатора.
Для чего проводится опыт холостого хода: Опыты холостого хода и короткого замыкания проводятся для определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения. Холостой ход трансформатора – это один из предельных режимов работы трансформатора.
Опыт холостого хода.Холостым ходом трансформатора называется такой режим его работы, при котором первичная обмотка включена на номинальное напряжение 
![]() |
| Рис. 10.1. Схема опыта холостого хода |
Режим холостого хода позволяет опытным путем установить следующие характерные для трансформатора величины: а) коэффициент трансформации; б) ток холостого хода; в) потери мощности в стали.
Коэффициент трансформации трансформатора

где 

Мощность 

При холостом ходе 

Как проводится и назначение опыта короткого замыкания трансформатора, методика расчета данных
При эксплуатации трансформаторов возникают различного рода потери, которые негативно сказываются на КПД устройства. Одним из методов проверки эффективности действия является проведение опыта короткого замыкания трансформатора. В результате испытания устанавливаются параметры эквивалентной цепи и потери в ней. Проверка обрыва и короткого замыкания (КЗ) на таких изделиях очень экономична и удобна, потому что выполняется при отсутствии нагрузки.
Назначение опыта короткого замыкания
Испытание на обрыв при отсутствии нагрузки выполняется для определения потерь в сердечнике без нагрузки по току.
Суть испытания заключается в том, что обмотка высокого напряжения остаётся разомкнутой в то время, как выходная обмотка подключается к обычной сети потребителя. Туда же подсоединяются и необходимые измерительные приборы – ваттметр, амперметр и вольтметр. В результате такого соединения, внешнее напряжение, которое прикладывается к устройству, медленно увеличивается от нуля до своего номинального значения.
С этой целью в цепь подключается дополнительный автотрансформатор со скользящими контактами.
Показания всех приборов фиксируются в момент, когда напряжение тестирования достигает необходимого значения в выходной цепи. Физическая сущность результатов замеров такова:
Как проводится
Для высоковольтной обмотки задаётся паспортное значение холостого хода. Оно устанавливается по рекомендуемым величинам угла сдвига фаз (sinΦ0 и cosΦ0; индекс указывает на то, что мощность трансформатора определяется в режиме холостого хода).
Далее согласно показаниям вольтметра выполняется измерение параметров шунтирующих эквивалентных цепей. Они относятся к низковольтной обмотке, поэтому тестирование разомкнутой цепи устанавливает и потери в сердечнике, и параметры шунта эквивалентной цепи.
Правильная схема испытания предполагает, что при низком напряжения трансформатор находится в режиме КЗ. Ваттметр, вольтметр и амперметр подключены с высоковольтной стороны. Сигнал подается в силовую схему и увеличивается от нуля до тех пор, пока показания амперметра не будут равны номинальному току. В этот момент снимаются показания всех приборов, причём на амперметре будет показано значение первичного эквивалента тока полной нагрузки, а на ваттметре – потери мощности в проводниках и сердечнике.
Методика расчёта напряжения, потерь и сопротивления КЗ
Расчёты ведутся в следующей последовательности:
Здесь V1 – показания вольтметра на обмотке низкого напряжения.
Менее точно мощность W может устанавливаться непосредственно по показаниям ваттметра.
Объясняется это тем, что напряжение, приложенное для появления тока полной нагрузки, хоть и мало по сравнению с номинальным, но всё же присутствует на обмотках.
Полученные данные соответствуют тем, которые относятся к стороне высокого напряжения трансформатора. Таким образом, в результате испытания на КЗ определяются потери в проводниках а, а также его приблизительные эквивалентное и реактивное сопротивление.
В результате анализа полученной информации можно определить зависимость потерь от тока холостого хода и напряжения на вторичной обмотке.
Важно также, что общие потери трансформатора зависят от его реактивного сопротивления, и не зависят от значений фазового угла между напряжением и током.
Примеры расчётов
Многообразие ситуаций, при которых целесообразно проводить тест короткого замыкания, рассматривается на страницах журнала Voltland.
Исходными данными для расчётов являются:
Полагаем, что подвод потенциала подводится пошагово, до тех пор, пока на подключенном амперметре не будет достигнуто значение тока полной вторичной нагрузки.
Приведём результаты применительно к трёхфазному трансформатору, рассчитанному на напряжение U = 480 В, с реактивной мощностью 100 КВА и реактивным напряжением 13800 В.
Полный ток короткого замыкания во вторичной цепи:
I = 1000 / 1,732 × U = 1,202 (А).
При показании вольтметра U1 =793,5 В процент потерь значений полного сопротивления будет
Δ Z = 793,5 / 13800 = 0,0575.
Следовательно, процент потерь составляет 5,75%. Это показывает, что в случае неисправности трёхфазного соединения на вторичной обмотке появится максимальный ток короткого замыкания, величина которого:
Максимальный ток повреждения Imax на вторичных клеммах:
По вычисленному значению Imax выбираются характеристики средств защиты агрегата от перегрузки, в частности, главного выключателя, который должен быть установлен в цепи вторичной обмотки.
Заключение
Данные вышеприведенных расчётов применяются преимущественно при оценке значений и динамики поведения токов короткого замыкания. Эти токи создают серьёзную опасность для функционирования систем распределения энергии, а также для разработки и применения средств защиты. При проектировании и изготовлении данного оборудования трёхфазные токи короткого замыкания являются основными эталонными величинами в системе. Устройства, которые прерывают указанные токи, подключаются к электрической цепи, обеспечивая автоматическую защиту трансформатора от повреждения.
При проведении опыта короткого замыкания следует придерживаться правил техники безопасности. Они оговорены Правилами эксплуатации энергоустановок ПУЭ 1.8.16. Тестирование может выполняться только предварительно поверенной техникой, применение которой допустимо по условиям испытания.
Большая Энциклопедия Нефти и Газа
Напряжение короткого замыкания характеризует индуктивное сопротивление обмотки трансформатора. Его нужно знать для определения возможности включения трансформаторов на параллельную работу. [16]
Напряжение короткого замыкания ик является для трансформаторов весьма важной величиной, характеризующей их эксплуатационные свойства. Значения и даются в каталогах. [17]
Напряжение короткого замыкания указывается на щитке трансформатора. [18]
Напряжение короткого замыкания ик характеризует индуктивное сопротивление обмотки и выражается в процентах от номинального. Оно показывает, какое напряжение нужно подать на обмотку ВН, чтобы в короткозамкну-той обмотке НН проходил ток, равный номинальному этой обмотки. Напряжение короткого замыкания характеризует распределение нагрузок между трансформаторами при их параллельной работе. [19]
Напряжение короткого замыкания ик характеризует полное сопротивление обмоток трансформатора и зависит от взаимного расположения обмоток на магнитопроводе. Значение ик определяется из опыта КЗ и численно равно напряжению, при подведении которого к одной из обмоток трансформатора в другой обмотке, замкнутой накоротко, проходит номинальный ток. [20]
Напряжение короткого замыкания для силовых трансформаторов определяется ГОСТ и выбивается на паспортной табличке трансформатора, К) определяет объем меди трансформатора, так как от сечения витков обмотки зависит активное сопротивление гк. [24]
Напряжения короткого замыкания должны быть равны. [27]
Напряжение короткого замыкания определяет установившийся ток корог. [30]
Режим короткого замыкания трансформатора

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора, при котором накоротко замыкают зажимы вторичной обмотки, а к первичной подводят такое напряжение Uк, при котором ток в первичной обмотке не превышает номинального значения (Iк
где U1ном — номинальное первичное напряжение.
Напряжение короткого замыкания зависит от высшего напряжения обмоток трансформатора. Так, например, при высшем напряжении 6—10 кВ uK = 5,5%, при 35 кВ uK = 6,5÷7,5%, при 110 кВ uK = 10,5% и т. д. Как видно, с повышением номинального высшего напряжения увеличивается напряжение короткого замыкания трансформатора.
При напряжении Uк составляющем 5—10% от номинального первичного напряжения, намагничивающий ток (ток холостого хода) уменьшается в 10—20 раз или еще более значительно. Поэтому в режиме короткого замыкания считают, что
Основной магнитный поток Ф также уменьшается в 10—20 раз, и потоки рассеяния обмоток становятся соизмеримыми с основным потоком.
Так как при коротком замыкании вторичной обмотки трансформатора напряжение на ее зажимах U2 = 0, уравнение э. д. с. для нее принимает вид
а уравнение напряжения для трансформатора записывается как
Этому уравнению соответствует схема замещения трансформатора, изображенная на рис. 1.
Векторная диаграмма трансформатора при коротком замыкании соответствующая уравнению и схеме рис. 1, показана на рис. 2. Напряжение короткого замыкания имеет активную и реактивную составляющие. Угол φк между векторами этих напряжений и тока зависит от соотношения между активной и реактивной индуктивной составляющими сопротивления трансформатора.
Рис. 1. Схема замещения трансформатора при коротком замыкании
Рис. 2. Векторная диаграмма трансформатора при коротком замыкании
У трансформаторов с номинальной мощностью 5—50 кВА XK/RK = 1 ÷ 2; с номинальной мощностью 6300 кВА и более XK/RK = 10 и более. Поэтому считают, что у трансформаторов большой мощности UK = Uкр, а полное сопротивление ZК = Хк.
Опыт короткого замыкания.
Этот опыт, как и опыт холостого хода, проводят для определения параметров трансформатора. Собирают схему (рис. 3), в которой вторичная обмотка замкнута накоротко металлической перемычкой или проводником с сопротивлением, близким к нулю. К первичной обмотке подводится такое напряжение Uк, при котором ток в ней равен номинальному значению I1ном.
Рис. 3. Схема опыта короткого замыкания трансформатора
По данным измерений определяют следующие параметры трансформатора.
Напряжение короткого замыкания
где UK — измеренное вольтметром напряжение при I1, = I1ном. В режиме короткого замыкания UK очень мало, поэтому потери холостого хода в сотни раз меньше, чем при номинальном напряжении. Таким образом, можно считать, что Рпо = 0 и измеряемая ваттметром мощность — это потери мощности Рпк, обусловленные активным сопротивлением обмоток трансформатора.
Из уравнения напряжения для трансформатора, а также из схемы замещения (см. рис. 1) получаем
где ZK — полное сопротивление трансформатора.
Измерив Uк и I1 можно вычислить полное сопротивление трансформатора
Потери мощности при коротком замыкании можно выразить формулой
поэтому активное сопротивление обмоток трансформатора
находят из показаний ваттметра и амперметра. Зная Zк и RК, можно вычислить индуктивное сопротивление обмоток:
Зная Zк, RК и Хк трансформатора, можно построить основной треугольник напряжений короткого замыкания (треугольник ОАВ на рис. 2), а также определить активную и индуктивную составляющие напряжения короткого замыкания:
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое напряжение короткого замыкания и как рассчитать ток?
Напряжение короткого замыкания представляет собой напряжение, которое нужно подать на одну из обмоток трансформатора, для того чтобы в цепи возник электрический ток. При этом остальные обмотки необходимо закоротить. Данное значение приведено в паспорте на сам агрегат в процентном соотношении. Опираясь на его величину, можно определить, способен ли трансформатор работать параллельно.
Понятие напряжения КЗ
Для того чтобы определить потоки рассеивания в трансформаторе, необходимо учитывать разнообразные пути, по которым замыкаются силовые магнитные линии. Это очень сложно. В связи с этим на практике проводят оценку влияния данных потоков, которое они оказывают на ток и напряжение в самих обмотках трансформатора.
Напряжение короткого замыкания – это, таким образом, одна из основополагающих характеристик данных агрегатов.
Напряжение КЗ трансформатора должно быть минимальным. Это позволит избежать сильного ограничения тока короткого замыкания.
Стоит помнить и о том, что испытание трансформаторов напряжения позволит проверить соответствие их параметров нормативным значениям, установленным ПУЭ. А также проверить состояние изоляционного покрытия проводов.
Расчёт тока короткого замыкания;
Данный ток представляет собой соединение фазных точек электрических установок между собой либо же с землёй. При этом токи в их ветвях резко увеличиваются, превышая номинальное значение.
Для того чтобы уменьшить последствия от аварийных ситуаций, стоит правильно выбирать оборудование. Но для этого ещё необходимо и произвести расчёты тока. Как рассчитать ток короткого замыкания?
Во время такого эффекта, как короткое замыкание, в электрической цепи начинают возникать переходные процессы, которые напрямую связаны с наличием в ней индуктивности, не дающей току резко изменять своё значение. Следовательно, ток КЗ подразделяется на такие составляющие, как:
Расчёт тока короткого замыкания основан на двух этапах:






















