Для чего нужно pci устройство
PCI устройство — что это?
PCI устройство — оборудование, которое подключается по шине PCI к материнской платы для увеличения аппаратной функциональности ПК.
Важный момент. Вы можете в диспетчере заметить непонятное устройство PCI, что это может быть? Скорее всего было подключено какое-то устройство, но Windows его не смогла определить. Что делать? Нужно посмотреть в свойствах оборудование ИД и по этой информации поискать в интернете что это может быть за устройство.. также проверьте что вы установили драйвера на чипсет.
Разбираемся
PCI это специальная шина для подключения устройств к материнской плате. Раньше была просто PCI, сегодня уже присутствует обновленная версия — PCI-Express.
Я не буду вникать в детали как работает шина, а напишу более простыми словами. PCI это по факту разьемы, они расположены в нижней части материнской платы, внешне длинные, но есть и короткие. Чем короче размер тем меньше пропускная способность (скорость). Максимальная скорость нужна для видеокарты. А например для звуковой карты, сетевой, Wi-Fi адаптера достаточно и низкой скорости. PCI позволяет добавить в ПК новые устройства, тем самым расширив функциональность.
Но что именно можно установить на ПК через PCI, какие именно платы? Давайте посмотрим:
Это только пример того, что можно добавить. Устройств существует много, разные, при помощи PCI можно добавить новые возможности компьютеру.
Важно понимать — устройства PCI и PCI-Express несовместимы. Первый вариант — это устаревшая версия, а вторая — современная.
Старую версию PCI можно встретить на материнках 478, 775 сокета. Также относительно современные материнки тоже могут содержать этот разьем для поддержки старых устройств.
Видеокарт именно на PCI — очень и очень мало (потому что в те времена видеокарты подключались через разьем AGP). А вот на PCI-E — большинство (это современный интерфейс подключения видеокарты).
Примеры устаревших разьемов PCI (они идут одинаковы, нет разделения по скоростям):
Вверху видим AGP — именно в этот слот раньше устанавливалась видеокарты.
Примеры разьемов PCI-E современной материнки:
Зелеными стрелочками — это и есть современные PCI-E (те что синие имеют максимальную пропускную способность). А остальные — это устаревшие PCI. Некоторые модели содержат сразу два вида.
Еще раз — устаревшая версия PCI и современная PCI-E никак не совместима, вообще. Они физически отличаются ключом.
Пример сетевой карты для просто PCI:
А вот пример уже сетевой карты для PCI-E:
Второй пример — плата больше, но размер контактов такой же, потому что для сетевой, как и для звуковой, Wi-Fi адаптеров.. большой пропускной способности не нужно:
А вот для видеокарты (GPU) — пропускная способность важна, именно поэтому она содержит много контактов и устанавливается соответственно с длинный разьем PCI-E:
PS: выше на картинке — современная видеокарта, игровая, стоит недешево, греется тоже прилично и потребляет энергии много, на уровне процессора, а то и больше))
В названии PCI-E может быть цифра, например x1, что она значит? Это просто указывает на скорость. Чем больше цифра, тем больше пропускная способность:
Надеюсь данная информация оказалась полезной. Удачи и добра, до новых встреч друзья!
Шина PCI (Peripheral Component Interconnect bus)
Итак, переходим к самому интересному. Что же находится на сегодняшний день внутри большинства наших компьютеров? Естественно, шина PCI. Другой вопрос, почему именно эта шина. Попробуем разобраться.
Итак, разработка шины PCI началась весной 1991 года как внутренний проект корпорации Intel (Release 0.1). Специалисты компании поставили перед собой цель разработать недорогое решение, которое бы позволило полностью реализовать возможности нового поколения процессоров 486/Pentium/P6 (вот уже половина ответа). Особенно подчеркивалось, что разработка проводилась «с нуля», а не была попыткой установки новых «заплат» на существующие решения. В результате шина PCI появилась в июне 1992 года (R1.0). Разработчики Intel отказались от использования шины процессора и ввели еще одну «антресольную» (mezzanine) шину.
Благодаря такому решению шина получилась, во-первых, процессоро-независимой (в отличие от VLbus), а во-вторых, могла работать параллельно с шиной процессора, не обращаясь к ней за запросами. Например, процессор работает себе с кэшем или системной памятью, а в это время по сети на винчестер пишется информация. Просто здорово! На самом деле идиллии, конечно, не получается, но загрузка шины процессора снижается здорово. Кроме того, стандарт шины был объявлен открытым и передан PCI Special Interest Group, которая продолжила работу по совершенствованию шины (в настоящее время доступен R2.1), и в этом, пожалуй, вторая половина ответа на вопрос «почему PCI?»
При разработке шины в ее архитектуру были заложены передовые технические решения, позволяющие повысить пропускную способность.
Шина поддерживает метод передачи данных, называемый «linear burst» (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) «одним куском», то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов.
Шина PCI является той черепахой, на которой стоят слоны, поддерживающие «Землю» — архитектуру Microsoft/Intel Plug and Play (PnP) PC architecture. Спецификация шины PCI определяет три типа ресурсов: два обычных (диапазон памяти и диапазон ввода/вывода, как их называет компания Microsoft) и configuration space — «конфигурационное пространство».
В заголовке содержится информация о производителе и типе устройства — поле Class Code (сетевой адаптер, контроллер диска, мультимедиа и т.д.) и прочая служебная информация.
Следующий регион содержит регистры диапазонов памяти и ввода/вывода, которые позволяют динамически выделять устройству область системной памяти и адресного пространства. В зависимости от реализации системы конфигурация устройств производится либо BIOS (при выполнении POST — power-on self test), либо программно. Базовый регистр expansion ROM аналогично позволяет отображать ROM устройства в системную память. Поле CIS (Card Information Structure) pointer используется картами cardbus (PCMCIA R3.0). С Subsystem vendor/Subsystem ID все понятно, а последние 4 байта региона используются для определения прерывания и времени запроса/владения.
Для чего нужен слот PCI на материнской плате
PCI — слот расширения, который встречается на материнских платах персональных компьютеров. Он позволяет устанавливать дополнительное оборудование вроде звуковых карт или TV-тюнеров. Полное его наименование — Peripheral Component Interconnect, то есть, грубо говоря, шина ввода-вывода для подключения периферийных устройств.
PCI уже можно считать устаревшим, несмотря на то, что он еще встречается на современных материнских платах. Ему на смену пришел более скоростной и продвинутый формат PCI Express. На сегодняшний день найти в продаже актуальную материнскую плату со слотами PCI не составит труда, но таких предложений все же меньшинство. Это, например, ASUS Prime B350-Plus с поддержкой процессоров AMD Ryzen. Тем не менее если раньше таких слотов на материнской плате могло быть 4-5, то сейчас, как правило, это 2 или даже всего 1 слот.
В большинстве случаев такие системные платы покупают, когда нужно установить уже имеющуюся в наличии плату расширения с устаревшим интерфейсом. Практически все современное оборудование вроде звуковых карт, TV-тюнеров, плат расширения уже продается под PCI Express или USB. Тем не менее устаревший интерфейс еще присутствует на рынке, а комплектующие с его поддержкой производятся и продаются в магазинах.
Что интересно, изначально слот PCI использовался в том числе для подключения видеокарт. Однако затем ему на смену пришел разъем AGP. Полное его название — Accelerated Graphics Port, что можно перевести как ускоренный графический порт. AGP предлагает большую пропускную способность и позволяет подключить более требовательные по питанию видеокарты. Долгое время AGP был стандартом для подключения видеокарт, пока его не заменил использующийся и поныне PCI Express.
Как мы уже писали выше, PCI Express полностью заменил собой и AGP, и PCI. Этот разъем имеет несколько вариантов исполнения и есть практически на любой современной материнской плате. На самом деле это редкий случай, но платы без PCI Express тоже встречаются в продаже, например, GIGABYTE GA-H310TN.
Чаще всего можно встретить два вида слотов PCI Express — х1 и х16, которые в первую очередь различаются по размеру и скоростным показателям. Опознать их очень просто, потому что они имеют разную длину. Порт х1 — 25 мм, х16 — 89 мм.
В PCI Express х16 устанавливают видеокарты или, например, SSD-накопители, а в х1 прочие устройства и платы расширения, которые не требуют высокой пропускной способности: все те же звуковые карты, тюнеры и т.п. Кроме того, в слот x16, можно вставлять и устройства под слот х1, х4 или х8. Если физически разъемы подходят, то все должно работать нормально.
Для чего нужно pci устройство
История
Развитием стандарта PCI занимается организация PCI Special Interest Group. Спецификации официально доступны лишь за плату, хотя на просторах Интернета их можно найти и бесплатно.
В 1992 г. была создана PCI Special Interest Group (PCI SIG) и опубликована первая версия стандарта шины PCI Local Bus. Шина обеспечивала передачу 32- и 64-разрядных данных, использовала 32- и 64-разрядные адреса и поддерживала напряжения питания 5 и 3,3 В, но не была привязана к архитектуре конкретного процессора. Пиковая пропускная способность 32-разрядной шины, работавшей на частоте 33 МГц, достигала 132 Мбайт/с, у 64-разрядной она была вдвое больше.
В следующем году появилась вторая версия стандарта, а ещё через два года, в 1995-м — версия 2.1, важнейшим отличием которой от предыдущих версий стала поддержка частоты 66 МГц. Именно ей удалось полностью вытеснить другие шины аналогичного назначения. Она нашла применение как в ПК на базе процессоров IA-32, так и в компьютерах на процессорах других архитектур — DEC Alpha, IBM PowerPC, Sun SPARC, MIPS и др.
На этом развитие шины PCI не остановилось (например, в 2002 г. вышла сначала версия 2.3, а затем и 3.0), однако вносимые изменения были не слишком существенны. Так, в версии 3.0 упразднили поддержку плат расширения с напряжением питания 5 В.
Основные особенности
Шина PCI предназначена для подключения достаточно большого количества устройств одновременно, однако на практике их число довольно мало — ограничителями являются нагрузочная способность электронных схем и паразитная ёмкость цепей, растущая по мере увеличения количества устройств и длины линий шины. Кроме того, под номер устройства на шине, используемый в процессе конфигурирования, отведено 5 бит, что не позволяет подключить более 32 устройств. Чтобы увеличить их общее число, была предусмотрена организация шины PCI в виде дерева. «Корнем» этого дерева является специальный мост Host–PCI, с помощью которого «ствол» — основная шина PCI — подключается к процессору. «Ветви» — дополнительные шины PCI — подключаются к «стволу» с помощью мостов PCI–PCI. К «ветвям» с помощью таких же мостов могут подключаться следующие «ветви» и так далее. Практическим ограничением «ветвистости» шины являются ограничение на общее число шин PCI (под номер шины отводится один байт) и дополнительная задержка, вносимая в обмен данными каждым новым мостом.
На практике шина PCI не обязательно связана с процессором напрямую. Например, в ПК на базе чипсета Intel P45 процессор посредством шины FSB связан с микросхемой северного моста — собственно кристаллом P45. Внутри последнего имеется мост Host–DMI, связывающий шину FSB с шиной DMI, которая, в свою очередь, является связующим элементом северного и южного мостов (в роли последнего обычно выступает микросхема ICH10). В состав южного моста входит мост DMI–PCI, он и будет реальным «корнем» шины PCI.
К шине PCI с помощью специальных мостов могут подключаться другие шины. Например, в каждом ПК на ранних процессорах Pentium имелся мост PCI–ISA.
Чтобы правильно маршрутизировать трафик, каждая шина PCI имеет свой номер, используемый в процессе конфигурирования мостов и других устройств, подключенных к шине, а также выделенные ей диапазоны адресов памяти и ввода-вывода. Когда некоторый мост «видит» запрос, обращённый к его шине, он транслирует его на эту шину. Естественно, не допускается дублирование номеров мостов (а значит, и шин), а также перекрытие диапазонов адресов. Для программного обеспечения, за исключением конфигурационного, иерархическая организация шины PCI и достаточно сложная цепочка, соединяющая её с процессором и памятью, абсолютно прозрачна.
Каждое устройство PCI включает одну или несколько функций (до 8 — под номер функции, используемый в процессе конфигурирования, отведено 3 бита). Функция — это логически независимая часть устройства. Например, в состав микросхемы южного моста обычно входят контроллеры SATA, Ethernet, USB и другие устройства. Каждый из них с точки зрения шины PCI может быть отдельным устройством или же одной из функций одного и того же устройства. Многофункциональные устройства обязательно должны иметь функцию с номером 0, однофункциональные могут в процессе конфигурирования игнорировать номер функции или же «откликаться» только на обращение к функции 0.
Шина PCI имеет три независимых адресных пространства: памяти, ввода-вывода и конфигурационное. Разрядность адреса памяти и ввода-вывода составляет 32 или 64 бита (причём 64-разрядный адрес может использоваться и на 32-разрядной шине); на практике его разрядность определяется процессором (так, у современных процессоров ПК адреса портов ввода-вывода имеют длину 16 бит, а физические адреса памяти — обычно 36). Пространство ввода-вывода может отсутствовать, если шина применяется в вычислительной системе, процессор которой не имеет отдельного адресного пространства ввода-вывода. По этой причине устройства, не ориентированные на использование с конкретной процессорной архитектурой, должны иметь возможность работать исключительно с адресным пространством памяти. Для нормальной работы каждая функция каждого устройства должна иметь собственный диапазон адресов в необходимых ей адресных пространствах.
Конфигурационное адресное пространство имеется у каждой реализованной функции всех устройств шины PCI, кроме, возможно, моста Host–PCI. Адреса регистров конфигурации состоят из четырёх полей: номера шины (8 бит), номера устройства (5 бит), номера функции (3 бита) и номера регистра (6 бит). Все конфигурационные регистры 32-разрядные. Используя их, программное обеспечение определяет тип, конкретную модель устройства и его требования к диапазонам адресов памяти и ввода-вывода, после чего по возможности выделяет запрашиваемые ресурсы и загружает драйвер, обеспечивающий работу с этим устройством.
Обычно устройства до выполнения конфигурирования не отвечают на любые операции на шине, кроме обращённых к ним конфигурационных транзакций, однако предусмотрена возможность создания «преднастроенных» устройств. Такие устройства после сброса устанавливают определённую стандартную конфигурацию, что позволяет использовать их до проведения общего конфигурирования. Обычно это устройства, необходимые для осуществления начальной загрузки системы. Для ПК эта возможность не является особенно важной, поскольку настройку необходимых устройств до загрузки выполняет BIOS, однако её наличие позволяет применять шину PCI в вычислительных системах, лишённых какого-либо аналога BIOS.
Устройства могут иметь порты ввода-вывода, расположенные по строго определённым адресам. Такие устройства называются унаследованными (legacy). Фиксированные порты применяются для обеспечения совместимости со старым оборудованием, не имевшим возможности программного конфигурирования. Например, современные видеоконтроллеры эмулируют видеоконтроллер VGA, для чего используют несколько стандартных портов ввода-вывода, однако для использования их в современных режимах они должны быть правильно настроены как «настоящие» устройства PCI.
Передача данных обычно ведётся пакетами (burst), что позволяет повысить пропускную способность, поскольку в каждом пакете адрес передаётся лишь один раз независимо от количества передаваемых данных. Тем не менее, поддерживаются устройства, не обладающие способностью пакетной передачи.
Из-за очень большого объёма информации подробные сведения о принципах работы и использовании шины PCI приведены в отдельных статьях:
История PCI — на пути к светлому будущему накопителей
Современная революция систем хранения данных невозможна без развития интерфейсов, с помощью которых диски подключаются к системе. Одним из главных «героев» этого фронта сейчас является шина PCI Express. Скоростные накопители в наше время работают с интерфейсом PCIe Gen2 x4, обеспечивая скорость до 20 Гб/с, но так было далеко не всегда.
Началом современных «шин» в персональных компьютерах стоит считать 1982 год. В недрах IBM был рожден новый компьютер, одной из отличительных особенностей которого была открытость его архитектуры. Компьютер получил название PC, а общался с внешним миром он по совершенно новому интерфейсу, который был назван Industry Standard Architecture или ISA. Данная шина умела работать с 8-битными данными на частоте 4.77 МГц, позже появились 16 и 32 битные варианты, работающие с еще более высокой частотой. Очень простая схема этого интерфейса дала толчок развитию массы внешних плат расширения, и, можно сказать, что именно открытый протокол внешней шины стал одной из главных причин успеха новой на тот момент архитектуры.
Неудивительно, что ISA очень долго сохраняла свою популярность, и даже сейчас, за весьма большие деньги продаются материнские платы с поддержкой этой шины — по ней подключается слишком много незаменимых устройств.
На основании ISA был разработан ряд производных интерфейсов, начиная с PCMCIA и заканчивая ATA (по сути — упрощенное подмножество интерфейса ISA). Разрабатывались ускоренные варианты шины: EISA (32 бита, 8 МГц) и VESA Local Bus (использовалась для подключения видоадаптера).
Со временем, IBM утратили лидирующую роль в разработке PC, поэтому над следующим поколением интерфейсов уже работали инженеры компании Intel. В самом начале 90-х гг… был разработан новый стандарт, получивший название Peripheral Component Interconnect или PCI. В 1992 году свет увидел первый стандарт PCI, тогда же была создана PCI Special Interest Group — организация, занимающаяся разработкой и продвижением данного стандарта. Стандарт был объявлен открытым, поэтому любой желающий мог разрабатывать PCI-устройства без выплаты отчислений.
Первая версия шины поддерживала 32 и 64 бита, работала на частоте 33 мегагерца и в теории обеспечивала скорость до 133 Мб/с (на практике около 80 Мб/с).
Начав свое победное шествие с рынка серверов, новый стандарт не сразу завоевал настольные ПК. Одним из пионеров его использования была компания Apple, отказавшаяся от интерфейса NuBus в своих продуктах 95-96 годах.
Максимальная популярность к новому интерфейсу пришла в 1995 году с появлением версии 2.1 (так же названной «параллельная шина PCI»). Данная ревизия подразумевала работу с частотой 66 МГц и максимальную скорость передачи в 533 Мбайт/с (для 64-битного варианта). Появились реализации PCI для платформ с процессорами Alpha, MIPS, PowerPC, SPARC и т.д.
Кстати, одним из главных нововведений PCI стала возможность автоматического конфигурирования параметров устройства, эту технологию в Intel назвали Plug-n-Play, а благодаря «стабильной» реализации ее программной поддержки в продуктах Microsoft, эта технология стала объектом множества шуток и анекдотов.
Попыткой экстенсивного развития технологии можно считать шину PCI-X, в основном использовавшуюся в серверах. Первая версия данного стандарта работала с частотой 100 и 133 МГц, а также вводила механизм раздельных транзакций для оптимизации работы нескольких карт. Сейчас иногда используется шина PCI-X 2.0, обеспечивающая работу на частотах в 266 и 533 МГц.
В 2004 году свет увидел новый стандарт, в котором были учтены все проблемы PCI. Новая шина получила название PCI Express или просто PCIe (главное — не путать ее с PCI-X). Новая технология предложила массу интересных решений.
— для передаваемых данных осуществляется контроль целостности
— QoS обеспечивает для подключенных устройств гарантированную полосу пропускания
— есть управление питанием подключенных устройств и возможность их горячей замены
Главное же отличие состоит в том, что PCIe использует не «шинную» топологию а «звезду», то есть каждое устройство связанно с коммутатором отдельной линией.
Пропускная способность односвязной PCIe первой версии составляла 4 Гбит/с в обе стороны. Максимальная скорость в стандарте PCIe 4 версии (находится в разработке и планируется к выходу в 2015 году) достигает 1024 Гбит/с. Как видите, по этому параметру PCIe обладает хорошим запасом, хотя расслабляться не приходится, конкуренты не дремлют.
Недавно Джереми Вернер (Jeremy Werner), один из старших директоров подразделения флэш-технологий (SandForce) в LSI дал очень интересное интервью, касающееся PCIe и SSD. В полном виде вы можете ознакомиться с ним на английском, я же вкратце перескажу одну мысль, которая мне показалась особенно интересной:
Максимальная скорость современного интерфейса SATA составляет 6 Гбит/с, при этом SATA является полудуплексным, то есть не умеет одновременно передавать и принимать данные. Не так редко встречающийся PCIe 2 поколения с 4 линиями передачи данных обеспечивает скорость до 20 ГБит/с в полнодуплексном режиме. Фактически, PCIe получается где-то в 7 раз быстрее. Но традиционные жесткие диски просто не нуждаются в таких скоростях передачи данных. Только SSD сейчас могут обеспечивать скорость, достаточную для полноценного использования высокоскоростных интерфейсов.
Сочетание интерфейсов типа M.2 и высокоскоростных флэш-накопителей, похоже, приближает будущее, в котором дисковая подсистема перестанет быть самым узким местом в ПК. Ярким примером могут послужить компьютеры Apple — компания как игрок премиум сегмента может себе позволить эксперименты с новыми решениями, и они оказываются очень удачны с точки зрения производительности. Но в силу дешевизны, традиционные жесткие диски и SATA-интерфейс еще не думают сдаваться так просто, поэтому тотального наступления светлого будущего придется немного подождать.