Для чего нужно зарядное устройство
Как выбрать сетевое зарядное устройство
Большинство современных мобильных устройств питаются от аккумуляторов, для зарядки которых используются сетевые зарядные устройства. И хотя к большинству гаджетов ЗУ идут в комплекте, необходимость в покупке еще одной зарядки возникает не так уж и редко: штатная зарядка может потеряться или сломаться, а некоторые гаджеты вообще не имеют ЗУ в комплекте. Однако по какой бы причине вам ни понадобилось новое сетевое зарядное устройство, следует иметь в виду, что «подходящего» к гаджету разъема ЗУ недостаточно. Следует убедиться, что остальные характеристики зарядки также соответствуют параметрам заряжаемого устройства.
Характеристики сетевых зарядных устройств
Разъем подключения — первое, что определяет совместимость зарядного устройства с заряжаемым. К счастью, времена, когда каждый производитель снабжал свои гаджеты уникальным разъемом, потихоньку уходят в прошлое, и большинство современных устройств используют разъем USB или его варианты — mini USB, micro USB, USB Type-C. ЗУ для таких гаджетов, как правило, имеют разъем USB и — по необходимости — съемный кабель в комплекте, являющийся переходником на другие разъемы того же стандарта. Хотя встречаются и зарядки с разъемом типа micro USB или USB Type-C на корпусе или на несъемном кабеле — но никакого преимущества это им не дает, наоборот, делает их менее универсальными.
Встречаются зарядные устройства с несколькими разъемами USB — от двух до восьми. Такими можно заряжать несколько устройств одновременно, но имейте в виду, что выходной ток на порт в этом случае может быть меньше суммарного максимального выходного тока. Если подключить к ЗУ с максимальным выходным током в 1000 мА два устройства, заряжающиеся таким током, оба они «получат» только по 500 мА (даже если для него заявлен выходной ток на порт в те же 1000 мА) и будут заряжаться вдвое дольше. Выходной ток на порт может быть равен максимальному, только когда к нему подключено лишь одно устройство, «забирающее» максимальный ток.
Из остальных распространенных разъемов можно отметить разве только 8-pin Lightning, использующийся на мобильных устройствах Apple с 2012 года.
При желании еще можно найти зарядные устройства для старых гаджетов — 20-pin разъемы для смартфонов Samsung, 30-pin разъемы для гаджетов Apple до 2012 года, 18-pin разъемы для смартфонов LG и так далее, но выбор их невелик, и в скором времени следует ожидать их полного исчезновения с полок магазинов.
Также встречаются ЗУ с цилиндрическими разъемами типа DJK или jack, такие разъемы питания используются во множестве различной электроаппаратуры. Особенность подбора такого зарядного устройства в том, что общепринятого стандарта у них нет, каждое устройство, использующее такой разъем, может иметь различные параметры зарядки, которые следует тщательно соблюсти. При покупке ЗУ с таким разъемом следует убедиться, что расположение полюсов, сила тока и напряжение на нем в точности соответствуют указанным в руководстве по эксплуатации заряжаемого устройства (или хотя бы на его корпусе). Несоблюдение этого требования может привести к выходу из строя как зарядки, так и заряжаемого гаджета.
Сила тока у зарядного устройства с разъемом lightning может быть любой — все устройства Apple снабжены контроллером заряда и просто не возьмут ток больший, чем необходимо. Другое дело, что ток меньший, чем может потреблять устройство, увеличит время зарядки. И к примеру, iPad mini 1-го поколения, заряжающийся током 0,15 А, можно заряжать и от ЗУ с выходным током 2,4 А — на процесс зарядки это не повлияет. Обычный iPad от «телефонной» зарядки с выходным током 1 А тоже будет заряжаться — но вдвое дольше обычного. Различные устройства Apple могут заряжаться токами от 0,15 до 2,4 А.
То же относится и к зарядным устройствам с разъемом USB — контроллер заряда смартфона защитит его при подключении к слишком мощному ЗУ. В обратном случае — при подключении к «слабой» зарядке устройства, способного заряжаться высоким током — время зарядки возрастет.
Грубо говоря, и с портом Lightning, и с портом USB зарядное устройство для смартфона лучше брать с током хотя бы от 2 А. Многие современные смартфоны могут заряжаться током в 3 А, а гаджеты покрупнее спокойно «берут» 4-5 А. Большинство прочих устройств, заряжаемых от USB, также имеют контроллер зарядки и «не боятся» высоких токов, однако для полной уверенности лучше все же свериться с руководством по эксплуатации и не заряжать током выше указанного в нём.
Напряжение на круглом разъеме типа DJK или jack может быть разным и должно соответствовать требованиям заряжаемого устройства.
А вот с разъемами Lightning и USB всё сложнее. Стандартное напряжение для этих разъемов — 5 В. Однако в интеллектуальных режимах быстрой зарядки напряжение может подниматься до 20 В. Происходит это автоматически, без участия пользователя: контроллер заряжаемого устройства, используя протокол быстрой зарядки, устанавливает на зарядном устройстве нужный режим. Это позволяет сократить время зарядки в несколько раз и производители утверждают, что такие режимы не приводят к сильному сокращению срока службы аккумуляторов.
Существует множество стандартов быстрой зарядки, и для их работы необходимо, чтобы и ЗУ, и заряжаемое устройство поддерживали один стандарт. Поэтому, если вы планируете применять приобретаемое зарядное устройство для быстрой зарядки гаджета, убедитесь, что оно поддерживает нужный стандарт:
Варианты выбора сетевых зарядных устройств
Зарядное устройство с разъемом USB — наиболее универсальный вид «зарядок» на сегодняшний день — большинство мобильных устройств либо могут заряжаться от этого разъема, либо имеют переходник на него.
Зарядные устройства с разъемом Lightning предназначены для зарядки гаджетов Apple.
Если вы хотите заряжать одновременно несколько устройств, выбирайте среди ЗУ с несколькими портами.
Чтобы ускорить зарядку гаджета, воспользуйтесь ЗУ с поддержкой быстрой зарядки — только убедитесь, что ваш гаджет поддерживает тот же стандарт и используйте «родной» кабель.
Для зарядки гаджетов с аккумуляторами большой емкости (планшетов, ноутбуков) выбирайте среди ЗУ большой мощности — они способны «давать» большой ток и напряжение.
Зарядное устройство. Виды и работа. Применение и как выбрать
Зарядное устройство – это специальное приспособление, которое предназначено для заряда аккумулятора электроэнергией от внешних источников. В большинстве случаев они используют энергию от сети переменного тока. Подобные устройства могут использоваться для подзарядки планшетов, телефонов, ноутбуков, зубных щеток, автомобилей и других агрегатов, где требуется подзарядка аккумулятора.
Часто устройства для зарядки аккумуляторов идут в комплекте с приобретенным оборудованием, к примеру, это зарядка для сотового телефона. Но в некоторых случаях подобное устройство необходимо приобретать самостоятельно. В продаже сегодня имеется большое количество устройств, которые позволяют произвести подзарядку аккумулятора. Но для правильного выбора требуется знать, как верно оценить подбираемое изделие, на что, прежде всего, следует обратить внимание.
Зарядное устройство по способу своего применения может быть:
Устройства могут классифицироваться по способу зарядки батареи, виду индикации, исполнению, присутствию функции разряда и других. К примеру, в устройствах для сотовых телефонов индикатором выступает экран мобильного, где высвечивается уровень зарядки батареи.
Зарядки также могут быть:
Для разных видов аккумуляторов производятся различные устройства зарядки, к примеру, для NiCd, NiMH, Li-Ion или даже комбинированных аккумуляторов.
По способу заряда устройства могут быть заряжающие постоянным или импульсным током. В зависимости от требуемых функций устройства могут быть профессиональными или бытовыми. По времени зарядки устройства могут быть медленными или быстрыми.
Устройство
Зарядное устройство в большинстве случаев включает следующие элементы:
Зарядное устройство может иметь и иные элементы, к примеру, аккумулятор во внешних агрегатах и другие приспособления. Промышленные устройства дополнительно имеют блоки с электронной аппаратурой, которые контролируют процесс зарядки. Такие устройства используются для одновременной зарядки 3-5 аккумуляторных батарей. Определенные модели могут заряжать одновременно импульсными токами и выполнять длительную зарядку.
Сложные устройства оснащаются микроконтроллерами, позволяющие максимально точно отслеживать целый ряд параметров: температуру, напряжение батареи, заряд и иные показатели. В более продвинутых устройствах даже присутствует датчик наружной температуры, ведь она существенно влияет на процесс зарядки.
Принцип действия
Все устройства, которые используются для подзарядки аккумуляторов, почти всегда действуют по единому принципу. При подключении к электрической сети, на зарядное устройство поступает напряжение 220 В. Элементы девайса корректируют силу и напряжение тока до тех показателей, которые необходимы для зарядки конкретного аккумулятора. К тому же каждый тип аккумуляторной батареи требует своего способа и порядка подзарядки.
Для автомобильных кислотно-свинцовых аккумуляторов рекомендуется подзарядка до момента их полной разрядки. Щелочные батареи следует разряжать полностью, ведь у них имеется эффект памяти. Но в то же время оба вида батарей следует подзаряжать до максимального значения. Поэтому в последнее время выпускаются лишь автоматические устройства для машин, которые не требуют вмешательства человека. Их нужно только подключить к сети и установить зажимы на клеммы батареи.
Автоматическое зарядное устройство управляет всем:
Контролирует уровень заряда, цикл, а также саму процедуру. После зарядки в сто процентов агрегат сам выключается. Если устройство не отсоединить, то оно будет постоянно вести контроль состояния батареи. При падении заряда датчики видят это, вследствие чего батарея начинает вновь заряжаться. В результате уровень зарядки будет находиться на 100 процентном уровне.
Существуют системы беспроводной зарядки, в которых применяется принцип электромагнитной индукции. Это значит, что зарядка происходит на определенном расстоянии благодаря появлению электрического тока в замыкающем контуре при смене магнитного напряжения, который пронизывает данный контур. Система включает первую и вторую катушку. В результате образуется система с индуктивной связью.
Ток переменного значения, который идет в обмотке первичной катушки, образует магнитное поле, образуя индукционное напряжение во второй катушке. Именно это напряжение применяется для зарядки батареи. Но данный принцип действует лишь на некотором небольшом расстоянии. При удалении телефона или иного устройства основная часть магнитного поля рассеивается, в результате вторичная катушка его не получает.
Также бывает и ручное зарядное устройство, которое часто применяется для зарядки сотового телефона где-нибудь в глуши, где нет электрической сети, к примеру, в тайге. Однако принцип работы их совершенной иной, они действуют по принципу ветряных турбин. Главным элементом подобных приспособлений является рукоятка для вращения. Функция данной рукоятки сопоставима функции, которую выполняет винт ветряной турбины.
При кручении рукоятки вращение передается стержню. В результате кинетическая энергия, которая создается человеком, направляется в генератор заряжающего устройства. Именно последний элемент выдает электрический ток с небольшим напряжением порядка 6 вольт. Этого напряжения вполне хватает, чтобы несколько зарядить севшую батарею, сделать необходимый звонок или отправить сообщение.
Как правильно заряжать аккумулятор автомобиля.
Скорее всего, каждый автовладелец со стажем не менее трёх лет сталкивался с ситуацией, когда он не смог завести свою машину по причине того, что аккумулятор полностью разрядился. Вы можете спросить, почему стаж не менее трёх лет? А потому, что средняя продолжительность жизни аккумулятора составляет 3 года. Хотя в отдельных случаях возможна более длительная эксплуатация аккумулятора, но это уже зависит от того, насколько качественно и вовремя он обслуживался.
Правила безопасности при зарядке автомобильного аккумулятора.
Не рекомендуется производить зарядку в жилом помещении по причине того, что из аккумулятора выделяются взрывоопасный газ. Это актуально для обслуживаемых АКБ с пробками.
По этой же причине запрещается курить или производить любые другие работы с открытым огнем или искрообразованием.
Сначала подключается зарядное устройство к клеммам батареи, а потом уже оно включается в сеть. Отключение производится в обратном порядке. Сначала отключаем зарядное устройство (ЗУ) от сети, затем отключаем клеммы. Такой порядок действий позволит избежать образования искры при подключении ЗУ.
В обслуживаемых аккумуляторах обязательно выкручиваем все пробки. Это удобно сделать с помощью обычной монеты номиналом 2 или 5 рублей. После выкручивания пробки нужно положить обратно в отверстия, но не закручивать. Такое положение пробок позволит свободно выходить газам и одновременно защитить батарею от возможного попадания во внутрь неё пыли и грязи. Также это уменьшит потерю электролита при его испарении.
Перед выкручиванием пробок обязательно стираем всю пыль и грязь с рабочей поверхности аккумулятора. Это также позволит избежать попадания грязи во внутрь батареи.
Если же зарядка производиться в квартире, то необходимо это делать на балконе с открытым окном или в помещении, где есть вытяжка, например, туалет.
Как определить заряжен или разряжен аккумулятор
Это можно определить по напряжению на контактах и по плотности электролита.
В полностью заряженном аккумуляторе (100% заряда) напряжение на клеммах должно быть 12.7В. В разряженном соответственно 11.7В (0% заряда). Следовательно, каждые 0.1В — это 10% заряда. Эти значения актуальны для температуры аккумулятора 20-25 градусов.
Например, напряжение на контактах равно 12.2В, следовательно, заряд составляет 50%.
Второй более точный способ определить степень заряда — это определение по плотности электролита. Данный способ подойдет только для обслуживаемых аккумуляторов, в которых есть возможность выкрутить пробки и добраться до электролита.
В качестве электролита в батареях применяют раствор серной кислоты, плотность которого измеряется в г/см3. При разряде плотность электролита снижается. Зная это свойство можно определить степень разряда батареи. Плотность определяется с помощью специального прибора – ареометра.
Плотность полностью заряженной батареи (100%) при 25 °с равна 1.27-1.28 г/см3.
Плотность полностью разряженной батареи (0%) при 25 °с равна примерно 1.1 г/см3.
Зная эти данные, можно вычислить, что примерно каждая сотая единица плотности равна 6% заряда (0.01 г/см3 =6%заряда).
Для примера плотность равна 1,24 г/см3, следовательно, степень заряда составляет 76%.
Перед проверкой плотности электролита обязательно отключаем зарядное устройство и ждем несколько минут. Плотность более точно определяется, когда из электролита не выделяется газ.
Каким током и напряжением следует заряжать аккумулятор
Напряжение заряда у АКБ, изготовленных по разным технологиям, отличается. Но есть общие требования, которые применимы к большинству аккумуляторов.
Самая оптимальная и безопасная зарядка — это выставить ограничение напряжения 14.7В, а силу тока 1/10 от ёмкости АКБ. Допустим ёмкость равна 70 (А*ч), тогда ток, выставляемый при заряде, должен быть 7 ампер.
Качество заряда АКБ и сила тока имеют обратную зависимость, то есть, чем меньше сила тока, тем качественнее будет заряжен аккумулятор и тем медленнее будет происходить его зарядка. Если есть время, то лучше выбрать силу тока еще меньше в размере 1/20 от емкости аккумулятора. Например, для батареи ёмкостью 70 (А*ч) это будет сила тока в 3.5А.
Для необслуживаемых батарей силу тока выбирают не более 1/20 от емкости аккумулятора. Другими словами, если ёмкость равна 60 Ампер*час, то сила тока должна быть 3А. Такая низкая сила тока обусловлена самой конструкцией АКБ. Так как АКБ необслуживаемый, то при кипении электролита выделяемому газу некуда будет выходить и батарею может разорвать давлением газа. Чтобы избежать кипения электролита и выбирают небольшие токи для зарядки.
По мере заряда напряжение будет расти до 14.7 В, а ток будет неизменен пока напряжение не достигнет этого значения. После того как напряжение достигнет значения 14.7В оно перестанет расти так как ограничено настройками ЗУ. При продолжении заряда теперь напряжение ограничено, при этом по мере продолжения заряда будет снижаться сила тока, пока не достигнет значения свидетельствующего об окончании заряда (примерно 1-0.5А). Если в течении двух трех часов сила тока не снижается, то можно считать, что аккумулятор заряжен полностью на данном режиме зарядки.
После окончания зарядки отключаем ЗУ и даем АКБ несколько минут постоять, чтобы электролит перестал выделять газ. Производим замеры плотности.
Если плотность электролита не достигла своих оптимальных значений 1.27-1.28 г/см3, то можно попробовать её поднять с помощью зарядки на более высоком напряжении. Для этого устанавливаем ограничение напряжения в 16.3В, а силу тока не более 1/20 от ёмкости аккумулятора. Силу тока можно выставить ещё меньше до уровня 0.5А. Так АКБ будет медленнее заряжаться, но таким образом снижаем вероятность кипения электролита, а значит риск разрушения пластин батареи. В таком режиме зарядки выдерживаем от одного до четырех часов. Время зависит от того, как быстро плотность электролита придёт в норму.
Если для зарядки используется автоматическое зарядное устройство, то оно само подбирает напряжение и силу тока.
Сколько времени необходимо заряжать аккумулятор
Существует 4 основных фактора влияющих на время зарядки АКБ.
Если для зарядки используется автоматическое зарядное устройство, то оно само определит, когда АКБ заряжена, отключится и сообщит о полном заряде какой-либо индикацией. При зарядке по мере заряда уменьшается разница между ЭДС аккумулятора и зарядным напряжением, вследствие чего снижается ток. При достижении силы тока примерно в 0.5А зарядное устройство прекращает зарядку.
Если заряд производится не в автоматическом режиме, то нужно дождаться момента, когда сила тока опустится до своего минимального значения (примерно 1- 0.5А) и останется на этом уровне около трёх часов не изменяясь. После этого можно отключать ЗУ и замерять плотность электролита.
Понять, что аккумулятор заряжен полностью, можно по двум признакам. Это достижение электролитом плотности 1,27 г/см3 и напряжения на клеммах батареи 12.7В. Замеры плотности и напряжения следует производить после отключения ЗУ и прошествии некоторого времени после зарядки. Нужно, чтобы электролит устоялся и перестал выделять пузырьки газа.
Последствия глубоко разряда АКБ и как его правильно зарядить после этого
При глубоком разряде происходит сульфитация пластин. Крупные кристаллы сульфата свинца (PbSO4) откладываются на положительно заряженных пластинах АКБ, тем самым забивая их. При этом сильно уменьшается площадь поверхности пластин, свободной от кристаллов сульфата свинца. Вследствие чего уменьшается ёмкость аккумулятора. Три, четыре полных разряда и практически все пластины будут забиты, а аккумулятор можно будет выкинуть.
При штатных режимах работы (заряд – разряд) — образуются кристаллы небольших размеров и при заряде они растворяются в электролите. Таким образом очищаются пластины и ёмкость АКБ восстанавливается. Этого не происходит если произошел глубокий разряд, так как при нормальной зарядке крупные кристаллы сульфата свинца практически не растворяются в электролите. В этом случае для их растворения нужно использовать другой режим зарядки.
Глубоко разряженный аккумулятор следует заряжать напряжением 16,2 — 16.3В и малой силой тока — 1-0.5А. В таком режиме зарядки возможно частичное восстановление его ёмкости. За один цикл восстановить ёмкость и поднять плотность электролита до 1,27 г/см3 не получится. Поэтому, когда электролит на малых токах начал кипеть, то заряд необходимо прекратить и дать отстояться 2-3 часа. После этого опять повторяем зарядку. Этот процесс повторяем несколько раз. Таким образом возможно поднять плотность электролита до состояния полностью заряженного аккумулятора.
Но не следует забывать, что напряжение выше 14.5В подходит не для всех АКБ. К таким относятся гелиевые и гибридные.
Как часто нужно подзаряжать аккумулятор?
Его следует заряжать минимум 2 раза в год, с периодичностью полгода (до зимы, после зимы).
Также после длительных простоев автомобиля, когда он долго не подзаряжался от генератора. Во время простоя АКБ сама по себе медленно разряжается, а также этому способствует включенная сигнализация на авто.
После глубокого разряда, когда забыли выключить фары или магнитолу и т.п.
Зарядка смартфонов: история, факты, мифы
Сегодня рядовой смартфон щеголяет фантастическими возможностями. Расстраивает лишь одно — аккумулятор, которого едва хватает на день активной работы! В этом посте мы расскажем о том, как и почему эволюционировали источники питания в мобильных телефонах и что представляют собой технологии быстрой зарядки аккумуляторов. А заодно развеем несколько застарелых мифах о «правильном» обращении с батареями.
Привет, Хабр! Мы Anker, и это наш первый, но далеко не последний пост в хабраблоге. Если кто-то ещё не знает, Anker — крупнейший в мире производитель зарядных устройств для мобильной техники для продажи в ритейле, основанный бывшим инженером Google Стивеном Янгом. Однако одними зарядками наше портфолио не ограничивается. Под маркой Anker выпускаются разнообразные USB-кабели и пауэрбанки, наушники и портативные колонки, USB-хабы, док-станции и даже роботы-пылесосы! Причем всё это наши собственные разработки. Мы не занимаемся перемаркировкой чужих продуктов. В штате Anker состоят сотни инженеров, занятых реальными исследованиями, разработкой и испытаниями новых продуктов.
В этом блоге мы будем рассказывать о технологиях через призму нашей специализации, поделимся знаниями и инсайдами от международной команды Anker. Гарантируем, что никакой навязчивой рекламы и маркетинговых заявлений вы здесь не встретите. А прямо сейчас мы совершим маленький экскурс в историю зарядки мобильных телефонов (наша любимая тема). Как заряжались первые мобильники, как работают технологии быстрой зарядки и почему мифы об аккумуляторах давно пора забыть — рассказываем здесь и сейчас.
Батареи в телефонах позавчера, вчера и сегодня
История батарей для телефонов начинается в далеких 1940-х годах, когда в автомобилях полиции города Сент-Луис, шт. Миссури, появились радиотелефоны. Они питались от автомобильного аккумулятора, одного полного заряда которого хватало примерно на шесть коротких звонков. Заряжался автомобильный аккумулятор от включенного мотора автомобиля. Несколько десятилетий мобильные телефоны оставались дорогим аксессуаром премиальных автомобилей бизнес-класса — электроника той эпохи была настолько требовательна к силе тока, что ни один из компактных аккумуляторов не мог её запитать.
Первый автомобильный радиотелефон 1946 года выпуска. С одной стороны, прогрессивные беспроводные технологии. С другой, дисковой набор номера. Источник: Daderot / Wikipedia
Так продолжалось до 1973 года, когда появился первый по-настоящему портативный сотовый телефон Motorola, получивший впоследствии имя DynaTAC 8000X (вышел в продажу только в 1983 году). Телефон довольствовался никель-кадмиевым аккумулятором из шести ячеек общей ёмкостью 500 мА·ч. Одного заряда хватало на 30-40 минут разговора (в зависимости от силы сигнала с базовой станции).
Зарядное устройство для DynaTAC 8000X имело функцию капельной подзарядки — это питание уже заряженной батареи низкими токами для компенсации её саморазряда, чем очень грешат никель-кадмиевые батареи. На восстановление заряда телефона с нуля требовалось 10 часов. Для самых торопливых бизнесменов Motorola предлагала особую быструю зарядку — док-станцию массой 2 кг, которая могла зарядить аккумулятор DynaTAC 8000X всего за час! При этом телефон почти не нагревался, а батарея не деградировала. Фактически быстрая зарядка телефонов появилась не «вчера», а 37 лет назад.
Первый портативный телефон Motorola DynaTAC 8000X и опциональная 2-килограммовая быстрая зарядка для него. Источник: Redrum0486 / Wikipedia, Redfield-1982 / DeviantArt
Пока в первой половине 1990-х мобильники осваивали новые компактные никель-металлогидридные батареи, на рынке аккумуляторов незаметно произошла настоящая революция: в 1991 году Sony выпустила первую литий-ионную батарею, шедшую в комплекте с пленочной видеокамерой CCD-TR1. Литий-ионные аккумуляторы превосходили предшественников по сроку жизни и энергетической плотности. Помимо этого, в них отсутствовал «эффект памяти», что наконец дало покупателям портативной электроники возможность по-новому заряжать свою технику — не дожидаясь полной разрядки батареи и не заряжая её до конца.
С приходом литий-ионных аккумуляторов время работы телефонов в режиме ожидания возросло до дней и даже недель против одного-двух дней ранее. Эпоха «прожорливых» карманных персональных компьютеров (КПК) и тем более смартфонов ещё не пришла, поэтому подзарядка телефона раз в неделю была обычным делом — необходимости в «быстрой» зарядке просто не было. Но прогресс не стоял на месте, и в конце 1990-х годов в продажу поступили литий-полимерные аккумуляторы. Первым телефоном с литий-полимерной батареей стал легендарный Ericsson T28 1999 года выпуска.
Ericsson T28 впечатлял своей «худобой» — всего 15,2 мм в толщину, что по тем временам было очень мало. Благодарить за это стоило новый литий-полимерный аккумулятор. Источник: Holger.Ellgaard / Wikipedia
Это был не новый тип батарей, а лишь небольшой апгрейд литий-ионных ячеек: жидкий электролит в них заменили на твёрдый или гелеобразный, что увеличило энергетическую плотность. Но повышенная энергоплотность дала возможность делать более тонкие аккумуляторы с прежней ёмкостью. Или более ёмкие в прежних размерах. Ёмкость батарей заметно увеличилась, а вот скорость их зарядки не изменилась. В комплекте со смартфонами чаще всего шли максимально дешёвые ЗУ с выходной мощностью около 5 Вт, которым требовалось до трёх часов на восполнение заряда ёмкого аккумулятора. Даже если пользователи покупали адаптеры с мощностью 10 Вт, контроллер питания смартфонов не всегда соглашался подавать на батарею такую мощность, оставаясь верным безопасному профилю 5 В / 1 А. Необходимость заряжать смартфон в течение мучительно долгих нескольких часов заставила шестерёнки прогресса шевелиться — в начале 2010-х годов производители мобильных устройств активно искали способы быстрой подзарядки аккумуляторов. И таки нашли.
Быстрая зарядка: будущее, которое наступило
В конце ХХ века на зарядку телефона в среднем уходило полтора-два часа, но мобильные телефоны работали на одном заряде по несколько дней. Смартфон с огромной для начала 2010-х годов ёмкостью батареи 2000 мА·ч мог быть посажен «в ноль» меньше чем за день — спасибо требовательным играм, потоковому видео и быстрому мобильному интернету.
Так называемая «медленная» зарядка через USB по стандарту USB Battery Charging допускает повышение силы тока зарядного устройства до 2 А при напряжении 5 В, но даже два часа на подзарядку большого смартфона — это слишком долго.
Пожалуй, самый знаменитый блок питания для смартфонов — 5-ваттный зарядник из комплекта iPhone. Из-за малой мощности и проистекающей из этого бесполезности ЗУ со временем перешло в разряд «электронного мусора». В итоге Apple убрала его из комплекта iPhone и Apple Watch. Источник: Apple
В 2012 году был принят стандарт USB Power Delivery, который регламентировал передачу через интерфейс USB напряжения до 20 В и токов до 5 А. Правда, для высоких мощностей требуются высококачественные сертифицированные кабели. На основе спецификаций Power Delivery производители чипов принялись разрабатывать собственные решения для быстрой зарядки смартфонов. Раньше всех это удалось сделать телекоммуникационному гиганту Qualcomm, чей протокол Quick Charge 2.0 стал усовершенствованной версией Power Delivery — в отличие от родительского стандарта, Quick Charge 2.0 работал с любыми кабелями и разъемами Micro-USB 2.0.
Принцип работы Quick Charge 2.0 заключался в поэтапной подаче на аккумулятор повышенного вплоть до 12 В напряжения при постоянном токе до тех пор, пока не зарядится примерно половина батареи. После этого напряжение спадает и скорость зарядки уменьшается, что снижает перегрев смартфона и аккумулятора вместе с ним.
Сейчас актуальна уже пятая версия Quick Charge: Qualcomm обещает зарядить смартфон до 50% за 5 минут и до 100% за 15 минут. Всё потому, что Quick Charge 5.0 предусматривает передачу мощности на смартфон вплоть до 100 Вт. Причём без перегрева аккумулятора — смартфон будет разогреваться не выше чем до 40 °C.
Qualcomm Quick Charge — закрытый лицензируемый стандарт. Он поддерживается только системами-на-чипе Qualcomm Snapdragon, на которых, впрочем, построено порядка 40% современных Android-смартфонов. Также Quick Charge должен поддерживаться зарядным устройством. Добавление Quick Charge в блок питания сказывается на его цене совсем незначительно. Блоки питания с этой технологией обязательно помечаются логотипом с молнией, а сам зарядный порт выделяется цветом.
В Anker PowerPort Speed 5 два разъёма поддерживают Qualcomm Quick Charge — они выделены синим цветом и сопровождаются логотипом технологии (на другом боку ЗУ). Источник: Anker
На основе Quick Charge другими компаниями были разработаны как бы собственные, но полностью совместимые технологии быстрой зарядки: Motorola TurboPower, Xiaomi Mi Fast Charging, Samsung Adaptive Fast Charging, Asus BoostMaster и Vivo Dual-Engine Fast Charging. По сути, они ничем не отличаются от Quick Charge кроме имён, и потому прекрасно работают в паре с блоками питания с поддержкой Quick Charge.
В противовес зарядке повышенным напряжением право на жизнь заслужил и другой подход — зарядка аккумуляторов повышенными токами при обычном напряжении в 5 В. По этому пути, например, пошла китайская BBK Electronics, которой принадлежит бренд OPPO. Технология VOOC (Voltage Open Loop Multi-step Constant-Current Charging) подаёт на смартфон стандартное для USB напряжение 5 В, но с током не менее 4,0 А. Третья версия VOOC принесла поддержку токов до 5,0 А, а четвёртая версия — до 6,0 А. VOOC под другими именами пришла в смартфоны других брендов BBK Electronics: OnePlus Dash Charge, Vivo Super FlashCharge и Realme Dart Charge.
Маленькие зарядные устройства на 5 Вт из комплекта iPhone за ненадобностью часто даже не вынимают из коробки. Anker PowerPort III Nano при схожих размерах заряжает iPhone с максимальной для него мощностью 18 Вт. Источник: Anker
VOOC и её аналоги работают в паре со специальными аккумуляторами, поделенными на секторы. Батарея с поддержкой этой технологии несёт восемь контактных площадок, через которые параллельно ведётся зарядка нескольких секторов одной батареи.
Так как напряжение заряда через VOOC стандартное, телефону нет нужды снижать его для подачи на аккумулятор, а значит контроллер не будет заниматься понижением, выделяя вредное для батареи тепло. То есть с точки зрения здоровья аккумулятора VOOC более безопасна, чем Quick Charge. Ещё одним преимуществом оказалось то, что при использовании смартфона во время зарядки по VOOC он не перегревается. А вот аппараты с Quick Charge до версии 5.0 лучше не использовать во время подзарядки, иначе смартфоны начинают греться и контроллер питания в целях безопасности снижает напряжение и замедляет зарядку.
VOOC выглядел слишком хорошо до тех пор, пока пользователь не узнавал, что для работы технологии необходим специальный кабель с более толстыми жилами для передачи высоких токов и дополнительным сигнальным контактом на коннекторе.
Для работы технологии быстрой зарядки OPPO VOOC и её аналогов необходим вот такой нестандартный кабель. Кабели со штекером USB-C вместо Micro-USB 2.0 тоже несут дополнительный пин. Источник: AliExpress
Anker PowerIQ — один стандарт, чтоб править всеми
Как вы понимаете, комплектные зарядные устройства к смартфонам всегда поддерживают одну технологию быстрой зарядки (ну, и её «копии»). Если вы являетесь счастливым обладателем гаджетов от разных компаний, например, Apple iPad Pro с Power Delivery, Samsung GALAXY S9 с Adaptive Fast Charging, то зарядка от одного гаджета будет заряжать другой гаджет в медленном режиме.
Для «зоопарка» устройств от разных брендов полезно купить один универсальный адаптер с несколькими выходами для одновременной зарядки всех гаджетов — такой, чтобы зарядное устройство понимало, с каким стандартом быстрой зарядки работает подключенный гаджет, и начинало зарядку согласно этому стандарту.
А вот вам памятка. В этой таблице собраны спецификации самых популярных технологий быстрой зарядки смартфонов в сравнении со всеми версиями USB. Источник: Anker
Во всех зарядках Anker за это отвечает технология Anker PowerIQ. Например, Anker PowerPort Atom III имеет выходы USB-C и USB-A, каждый из которых отмечен значком PowerIQ 3.0 и PowerIQ 2.0 соответственно. К этим выходам можно подключать смартфоны, планшеты и даже ноутбуки с поддержкой USB Power Delivery, Qualcomm Quick Charge и их аналогами — во всех случаях адаптер выберет максимально допустимый режим питания, будь то 5 В / 2,4 А, 9 В / 2 А или даже 12 В / 1,5 А.
Незаменимым помощником в таком случае может стать Anker Powerport III Nano 20W. Это самое тонкое и лёгкое зарядное устройство в линейке Anker. Новинка подойдёт практически к любому устройству Apple и Android и избавит от необходимости иметь персональное ЗУ для каждого гаджета. Оно оснащено одним единственным портом USB-C, способным выдавать до 20 Вт энергии с использованием стандарта Power Delivery. Инженеры Anker Innovations уместили 20Вт в адаптер размером 2,74 х 3,00 см, что сопоставимо с размером 5 рублевой монеты.
В каждом зарядном устройстве Anker с технологией PowerIQ есть чип, который связывается с подключенным гаджетом и выбирает наиболее эффективный для него протокол питания. Например, PowerIQ 3.0 работает с Power Delivery, Quick Charge и Apple Fast Charging. При подключении смартфона чип PowerIQ отправляет команды, которыми предлагает смартфону по очереди поддерживаемые протоколы питания. Если смартфон отвечаёт, что может работать с Power Delivery или Quick Charge, зарядное устройство Anker передаёт данные о поддерживаемом выходном напряжении и токе. Смартфон выберет из предложенных оптимальный для себя режим питания и отправит команду об этом в зарядное устройство. После этого ЗУ Anker будет регулировать напряжение в соответствии с выбранным профилем, а смартфон — потреблять ток в соответствии с протоколом.
Anker PowerPort Atom III может зарядить хоть смартфон, хоть ноутбук, причём с максимально возможной для них скоростью. На выход USB-C подаётся 45 Вт, а на USB-A 15 Вт, причём одновременно. Источник: Anker
Несколько мифов о зарядке аккумуляторов
Пользователи смартфонов до сих пор спорят в интернете о вреде быстрой зарядки для аккумуляторов. Одни упирают на то, что любое отклонение от годами проверенного сочетания 5 В / 2 А (10 Вт) вредит батарее, другие приводят результаты исследований, доказывающих, что подача на телефон мощности даже в 30 Вт если и влияет на здоровье аккумулятора, то крайне незначительно. Этот и ещё несколько мифов о зарядке аккумуляторов мы сейчас безжалостно разгромим.
Конечно, высокие токи заряда и разряда не идут батареям на пользу. Но стоит ли опасаться заряжать гаджет таким образом или негативный эффект от этого если и проявится, то ближе к концу жизни самого смартфона? Ежедневная зарядка в самом щадящем режиме (5 В / 1 А) уменьшит ёмкость литий-полимерной батареи примерно на 10-15% за 400 циклов, что соответствует одному-полутора годам использования устройства. По достижению 500 циклов батарею телефона рекомендуется менять, так как по мере старения ёмкость элемента питания падает не линейно, а по экспоненте.
Влияние быстрой зарядки на износ аккумулятора было проверено специалистами SLAC National Accelerator Laboratory (лаборатория при Стэнфордском университете) еще в 2014 году. Результаты исследования показали, что состояние анода и катода не меняется в зависимости от скорости зарядки аккумулятора. В 2020 году сотрудники сайта DDay.it устроили стресс-тест для смартфона OPPO Find X2 Pro с технологией VOOC. В течение полутора месяцев телефон заряжали адаптером мощностью 65 Вт, за время испытания аккумулятор пережил 248 циклов. Для быстрой разрядки в телефоне создавали искусственную предельную нагрузку, от которой устройство нагревалось до вредных 44 °C. В конце эксперимента батарея потеряла порядка 15% ёмкости, хотя изначально предполагалось, что деградация составит до 35%. Если бы не высокие нагрузки и опасная для аккумулятора температура, падение ёмкости было бы ещё меньше.
Удивительно, что даже в 2020 году среди неопытных пользователей смартфонов гуляют застарелые мифы о «правильной» зарядке. Например, некоторые до сих пор после покупки телефона проводят «раскачку» батареи, несколько раз заряжая устройство до конца и разряжая его до нуля, как это рекомендовалось в начале 1990-х для никель-металлогидридных ячеек. Это якобы помогает задействовать всю ёмкость нового аккумулятора, и если этого не сделать, то смартфон, мол, будет разряжаться раньше, чем должен. Кто-то также называет этот процесс «калибровкой контроллера питания».
На самом деле литий-ионным батареям не нужна никакая «тренировка» перед началом использования устройства, несколько циклов полной зарядки и разрядки вообще никак не повлияют на ёмкость батареи и ни на минуту не увеличат возможное время автономной работы. Контроллер прекрасно знает, с какой ёмкостью ему предстоит работать, да к тому же иногда сам, без участия пользователя, проводит калибровку по мере деградации батареи.
Вырезка из инструкции к Motorola StarTAC. В ней ясно прописано, что никель-металлогидридную батарею перед началом использования надо «раскачать». Телефон также комплектовался литий-ионными батареями, но об их «раскачке» в инструкции ни слова
Легенда о важности «раскачки» аккумуляторов до сих пор питает миф об эффекте памяти. Сам по себе эффект памяти, когда ёмкость элемента теряется из-за частых подзарядок не до конца разряженной батареи, действительно существует. Вот только и ранние литий-ионные, и современные литий-полимерные элементы питания этим эффектом практически не обладают (его проявление ничтожно мало). Эффекту памяти подвержены устаревшие никель-кадмиевые и в меньшей степени никель-металлогидридные аккумуляторы, которые не используются в гаджетах с конца 1990-х годов.
Эффект памяти проявляется из-за укрупнения кристаллов рабочего вещества никель-кадмиевого аккумулятора. Чем крупнее кристаллы, тем меньше общая площадь поверхности. Чем меньше площадь, тем меньше ёмкость батареи. В литий-ионных аккумуляторах укрупнения кристаллов не происходит. На схематичном изображении показаны слева здоровый электрод, а справа электрод с выросшими кристаллами. Источник: Anker
Третий миф гласит, что смартфоны нельзя оставлять подключенными к зарядному устройству надолго, например, на ночь — будто бы батарея перезаряжается сверх меры, отчего теряет ёмкость и даже может загореться. В принципе, в начале 1990-х такое мнение ещё имело право на жизнь, но сейчас, в эпоху литий-ионных батарей с контроллерами нет вообще никакой разницы, как долго вы держите смартфон подключенным к розетке. Затем и придуман контроллер питания, чтобы не допускать перезаряда. Когда аккумулятор заряжен, контроллер видит это и переходит в режим сбережения заряда, снижая потребляемый ток до околонулевых значений.
Ёмкость аккумуляторов мобильных телефонов за четверть века выросла в прямом смысле на порядок, как выросли и «аппетиты» гаджетов. Прогресс в области элементов питания движется не так быстро, как в области графических процессоров или памяти, однако нынешние литий-полимерные аккумуляторы — это настоящее чудо, требующее лишь качественного питания.
Чтобы раскрыть потенциал батареи полностью, наслаждаться безопасной и быстрой зарядкой, следует подобрать хорошее зарядное устройство — комплектные адаптеры смартфонов из экономии чаще всего отвечают только минимальным требованиям для зарядки. Вдвойне разумно завести дома многопортовый универсальный зарядный блок, работающий с несколькими протоколами быстрой зарядки и имеющий выходы USB-A и USB-C для самой современной и устаревающей техники.