Для чего нужно знать свойства металлов и сплавов ответ
Основные механические свойства металлов
Металлы и их сплавы являются одним из самых распространенных материалов для изготовления изделий различных видов. Но так как каждый из типов имеет определенные свойства – перед применением их следует детально изучить.
Зачем нужно знать механические свойства металлов
Металлы относятся к химическим элементам и веществам, которые характеризуются высоким показателем теплопроводности, в большинстве своем имеют жесткость. Под воздействием высоких температур повышается пластичность, обладают ковкостью. Эти характеристики материалов позволяют осуществлять их обработку различными способами.
Металлические материалы и их сплавы характеризуются рядом показателей: химическими, механическими, физическими и эксплуатационными. В совокупности они дают возможность определить фактические характеристики в полном объеме. Выделить наиболее важные из них невозможно. Но для решения определенных задач большее внимание уделяется конкретной группе свойств.
Механические свойства металлов необходимо знать для решения следующих вопросов:
Для определения конкретных механических свойств применяются различные методы. Испытания металлов и сплавов проводятся с помощью специальных приборов. Это делается в лабораторных условиях. Для достижения точных результатов рекомендуется использовать результаты исследований государственных метрологических организаций.
Механические свойства определяют показатель сопротивляемости того или иного материала на внешние силовые воздействия. Для каждого параметра существует определенные числовые показатели.
Твердость
При воздействии внешних факторов на металлические изделия происходит их деформация – пластическая или упругая. Твердость описывает сопротивление этим факторам, характеризует степень сохранения изначальной формы и свойств материала, изделия.
В зависимости от желаемых результатов проверка материала на твердость осуществляется тремя методами:
Измерение твердости зависит от выбранного метода — Бринелля (НВ), Роквелла (шкалы А, В и С) или Виккерса (НV). Все зависит от степени воздействия на материал, с помощью которых можно определить поверхностную, проекционную или объемную твердость.
Шкала Мосса применяется для вычисления показателя твердости редко. Ее суть состоит в вычислении характеристиках объекта методом царапания его поверхности.
Вязкость и хрупкость
Эти характеристики указывают на возможность металла оказывать сопротивление при воздействии ударных нагрузок. Показателем является скорость деформации, т.е. изменение изначальной конфигурации заготовки при внешнем воздействии.
Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. В зависимости от необходимых данных различают следующие методы измерения и виды вязкости металлов:
В зависимости от системы измерения существуют различные показатели вязкости:
Помимо метода испытания необходимо учитывать другие механические свойства металлов – температура на его поверхности и в структуре, влажность в помещении и т.д.
Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.
Напряжение
Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.
Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.
Существуют следующие виды напряжения материалов и их сплавов:
Напряжение является отношением силы воздействия на площадь, на которую она прилагается.
Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.
Выносливость и усталость
При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.
Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация.
В зависимости от точности расчета выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов:
Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.
Для проведения испытаний необходимо руководствоваться принятыми методиками, которые изложены в ГОСТ-1497-84. Особое внимание уделяется отклонению свойств металла от нормы.
Ползучесть
Этот показатель определяет степень непрерывной пластической деформации при постоянном воздействии внешних и внутренних факторов. Вычисление этого параметра необходимы для определения жаропрочности металлов и их сплавов.
Для определения ползучести образец нагревают до определенной температуры. После этого наблюдают степень изменения его конфигурации с учетом приложенного напряжения. В зависимости от термического воздействия различают два вида испытаний на ползучесть:
Для проведения испытаний используют стандартные образцы прямоугольной или цилиндрической формы. При этом степень погрешности измерения не должна превышать 0,002 мм. В результате испытаний формируется кривая, характеризующая процесс ползучести.
В видеоматериале показан пример работы маятникового копера:
Для чего нужно знать свойства металлов и сплавов?
Знать их не нужно, нужно знать где их посмотреть, а вот как применить, нужно включить голову, например,
В практических целях достаточно знать, что из чего изготавливается. Ну банально сломался у вас коленвал ДВС и хотите его починить, как коллега написал, например, зная что за металл, можно узнать температура плавление металла и подобрать соответствующий электрод (тот у которого температура плавление ниже), что бы не прожечь коленвал.
P.S. Думаю понятно, что это кустарная починка, но все же, имеющая право на жизнь, как времянка.
Всё очень просто сплав это смесь разных метталов. А металлы нужно знать по свойствам присущими каждому.Металлы нужно разрезать сваривать. Плавить и соединять с другими при чём подходящими друг другом. Удачного варева металлов.
Сопромат изучают, чтоб можно было правильно подобрать материал и его форму для различных механизмов и строений. Чтоб механизмы и строения не разрушились в процессе использования.
Кроме механических свойств для разных приложений могут быть важны другие физико-химические свойства материалов: электропроводность для электротехники, прозрачность для оптики, работа выхода электрона для полупроводников, коррозионная стойкость для многих случаев и т.п.
материалы которые под воздействием электро-магнитного поля изменяют структуру и временно (или постоянно, в случае сильного магнитного поля) становятся магнитами называют феромагнетиками. даже само слово пошло от железа (ферум). феремагнетики легче расстаются с электронами, что вызвано строением атома.
Механические и физические свойства металлов и сплавов
Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.
Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.
Зачем нужно знать механические свойства металлов
Основные виды чистых металлов
Металлы относятся к химическим элементам и веществам, которые характеризуются высоким показателем теплопроводности, в большинстве своем имеют жесткость. Под воздействием высоких температур повышается пластичность, обладают ковкостью. Эти характеристики материалов позволяют осуществлять их обработку различными способами.
Металлические материалы и их сплавы характеризуются рядом показателей: химическими, механическими, физическими и эксплуатационными. В совокупности они дают возможность определить фактические характеристики в полном объеме. Выделить наиболее важные из них невозможно. Но для решения определенных задач большее внимание уделяется конкретной группе свойств.
Механические свойства металлов необходимо знать для решения следующих вопросов:
Для определения конкретных механических свойств применяются различные методы. Испытания металлов и сплавов проводятся с помощью специальных приборов. Это делается в лабораторных условиях. Для достижения точных результатов рекомендуется использовать результаты исследований государственных метрологических организаций.
Механические свойства определяют показатель сопротивляемости того или иного материала на внешние силовые воздействия. Для каждого параметра существует определенные числовые показатели.
Старлит
Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.
В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно лёгок. Его можно применять при строительстве космических аппаратов, самолётов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав своё изобретение и не оставив никаких описаний. Всё, что известно о строении старлита — что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.
Твердость
Методика проверки металлов на твердость
При воздействии внешних факторов на металлические изделия происходит их деформация – пластическая или упругая. Твердость описывает сопротивление этим факторам, характеризует степень сохранения изначальной формы и свойств материала, изделия.
В зависимости от желаемых результатов проверка материала на твердость осуществляется тремя методами:
Измерение твердости зависит от выбранного метода — Бринелля (НВ), Роквелла (шкалы А, В и С) или Виккерса (НV). Все зависит от степени воздействия на материал, с помощью которых можно определить поверхностную, проекционную или объемную твердость.
Шкала Мосса применяется для вычисления показателя твердости редко. Ее суть состоит в вычислении характеристиках объекта методом царапания его поверхности.
Сжатие.
Упругие и пластические свойства при сжатии обычно весьма сходны с тем, что наблюдается при растяжении (рис. 2). Кривая соотношения между условным напряжением и условной деформацией при сжатии проходит выше соответствующей кривой для растяжения только потому, что при сжатии поперечное сечение образца не уменьшается, а увеличивается. Если же по осям графика откладывать истинное напряжение и истинную деформацию, то кривые практически совпадают, хотя при растяжении разрушение происходит раньше.
Вязкость и хрупкость
Описание показателя вязкости
Эти характеристики указывают на возможность металла оказывать сопротивление при воздействии ударных нагрузок. Показателем является скорость деформации, т.е. изменение изначальной конфигурации заготовки при внешнем воздействии.
Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. В зависимости от необходимых данных различают следующие методы измерения и виды вязкости металлов:
В зависимости от системы измерения существуют различные показатели вязкости:
Помимо метода испытания необходимо учитывать другие механические свойства металлов – температура на его поверхности и в структуре, влажность в помещении и т.д.
Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.
Диметилсульфоксид (DMSO)
Этот химический растворитель сначала появился, как побочный продукт выработки целлюлозы и никак не применялся до 60-х годов прошлого века, когда раскрыли его медицинский потенциал: доктор Джейкобс обнаружил, что DMSO может легко и безболезненно проникать в ткани тела — это позволяет быстро и без повреждения кожи вводить различные препараты.
Его собственные лечебные свойства снимают боль при растяжении связок или, например, воспалении суставов при артрите, также DMSO может использоваться для борьбы с грибковыми инфекциями.
К сожалению, когда его медицинские свойства были открыты, производство в промышленных масштабах уже давно было налажено, и его широкая доступность не позволяла фармацевтическим компаниям получать прибыль. Кроме того у DMSO есть неожиданный побочный эффект — запах изо рта использовавшего его человека, напоминающий чеснок, поэтому он используется в основном в ветеринарии.
Напряжение
Виды напряжений
Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.
Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.
Существуют следующие виды напряжения материалов и их сплавов:
Напряжение является отношением силы воздействия на площадь, на которую она прилагается.
Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.
КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА
Выше речь шла об общих закономерностях поведения металлов под действием механических нагрузок. Чтобы лучше понять соответствующие явления, нужно рассмотреть атомное строение металлов. Все твердые металлы – кристаллические вещества. Они состоят из кристаллов, или зерен, расположение атомов в которых соответствует правильной трехмерной решетке. Кристаллическую структуру металла можно представить как состоящую из атомных плоскостей, или слоев. Когда прикладывается напряжение сдвига (сила, заставляющая две соседние плоскости металлического образца скользить друг по другу в противоположных направлениях), один слой атомов может сдвинуться на целое межатомное расстояние. Такой сдвиг скажется на форме поверхности, но не на кристаллической структуре. Если один слой сдвинется на много межатомных расстояний, то на поверхности образуется «ступенька». Хотя отдельные атомы слишком малы, чтобы их можно было увидеть под микроскопом, ступеньки, образовавшиеся за счет скольжения, хорошо видны под микроскопом и названы линиями скольжения.
Обычные металлические предметы, встречающиеся нам ежедневно, являются поликристаллическими, т.е. состоят из большого числа кристаллов, в каждом из которых своя ориентация атомных плоскостей. Деформация обычного поликристаллического металла имеет с деформацией монокристалла то общее, что она происходит за счет скольжения по атомным плоскостям в каждом кристалле. Заметное же скольжение целых кристаллов по их границам наблюдается только в условиях ползучести при повышенных температурах. Средний размер одного кристалла, или зерна, может составлять от нескольких тысячных до нескольких десятых долей сантиметра. Желательна более мелкая зернистость, так как механические характеристики мелкозернистого металла лучше, чем у крупнозернистого. Кроме того, мелкозернистые металлы менее хрупки.
Выносливость и усталость
Пример деформации из-за усталости металла
При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.
Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация.
В зависимости от точности расчета выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов:
Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.
Для проведения испытаний необходимо руководствоваться принятыми методиками, которые изложены в ГОСТ-1497-84. Особое внимание уделяется отклонению свойств металла от нормы.
Углеродные нано-трубки
Фактически это листы углерода толщиной в один атом, свёрнутые в цилиндры — их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.
Сами трубки не видны невооружённым взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.
Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.
Углеродные нано-трубки помогают и при лечении рака груди — их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве лёгких и прочных бронежилетов…
Термомеханическая обработка
Все без исключения пружинные стали повергаются термомеханической обработке. После нее прочность и износостойкость способна увеличиться в 2 раза. Форму изделию придают в отожженном состоянии, когда сталь имеет максимально возможную мягкость, после чего нагревают до 830-870 С и охлаждают в масляной или водной среде (только для марки 60 СА). Полученный мартенсит отпускают при температуре 480 ºC.
Все требования и рекомендации к этому виду стали описаны в ГОСТ 14959-79. На их основании предприятием разрабатываются более детальные технологические листы, которые отвечают узким параметрам.
Для чего нужно знать свойства металлов и сплавов ответ
Классификация свойств металлов и сплавов
Свойства металлов и сплавов делятся на 4 основные группы:
Физические свойства металлов и сплавов.
К физическим свойствам металлов и сплавов относятся цвет, плотность (удельный вес), плавкость, тепловое расширение, теплопроводность, теплоемкость, электропроводность и способность их намагничиваться. Эти свойства называют физическими потому, что обнаруживаются в явлениях, которые не сопровождаются изменением химического состава вещества, т. е. металлы и сплавы остаются неизмененными по составу при нагревании, прохождении через них тока, тепла, а также при их намагничивании и плавлении. Многие из указанных физических свойств имеют установленные единицы измерения, по которым судят о свойствах металла.
Металлы и сплавы не прозрачны. Даже тонкие слои металлов и сплавов не способны пропускать лучи, но они имеют в отраженном свете внешний блеск, причем каждый из металлов и сплавов имеет свой особый оттенок блеска или, как говорят, цвет. Например, медь имеет розово-красный цвет, цинк — серый, олово — блестяще-белый и т. д.
Плавление — способность металлов и сплавов переходить из твердого состояния в жидкое, характеризуется температурой плавления. Металлы, имеющие высокую температуру плавления, называют тугоплавкими (вольфрам, платина, хром и т.д.). Металлы, имеющие низкую температуру плавления, называют легкоплавкими (олово, свинец и т.д.).
5000·0,000012·20 = 1,2 м
5000·0,000017·20= 1,7 м
5000·0,000023·20=2,3 м
(Во всех трех случаях расчета не принимался во внимание коэффициент трения от собственного веса.) На основании приведенных выше расчетов цветные металлы при нагревании расширяются в большей степени, чем сталь, что необходимо учитывать в процессе сварки.
Теплопроводность —способность металлов и сплавов проводить тепло. Чем больше теплопроводность, тем быстрее тепло распространяется по металлу или сплаву при нагревании. При охлаждении металлы и сплавы, обладающие большой теплопроводностью, быстрее отдают тепло. Теплопроводность красной меди в 6 раз выше теплопроводности железа. При сварке металлов и сплавов, имеющих большую теплопроводность, требуется предварительный, а иногда и сопутствующий подогрев.
Электропроводность — способность металлов и сплавов проводить электрический ток. Хорошей электропроводностью обладают медь, алюминий и их сплавы.
Магнитные свойства — способность металлов намагничиваться, которые проявляются в том, что намагниченный металл притягивает к себе металлы, обладающие магнитными свойствами.
Химические свойства металлов и сплавов.
Под химическими свойствами металлов и сплавов понимают их способность вступать в соединения с различными веществами и в первую очередь с кислородом. К химическим свойствам металлов и сплавов относят:
Стойкостью металлов и сплавов на воздухе называют способность последних противостоять разрушающему действию кислорода, находящемуся в воздухе.
Кислотостойкостью называют способность металлов и сплавов противостоять разрушающему действию кислот. Например, соляная кислота разрушает алюминий и цинк, а свинец не разрушает; серная кислота разрушает цинк и железо, но почти не действует на свинец, алюминий и медь.
Щелочестойкостью металлов и сплавов называют способность противостоять разрушающему действию щелочей. Щелочи особенно сильно разрушают алюминий, олово и свинец.
Жаростойкостью называют способность металлов и сплавов противостоять разрушению кислородом при нагреве. Для повышения жаростойкости вводят специальные примеси в металл, как, например, хром, ванадий, вольфрам и т. д.
Старение металлов — изменение свойств металлов во времени вследствие внутренних процессов, обычно протекающее замедленно при комнатной температуре и более интенсивно при повышенной температуре. Старение стали обусловлено выделением по границам зерен карбидов и нитридов, что приводит к повышению прочности и снижению пластичности стали. К элементам, уменьшающим склонность к старению стали, относятся алюминий и кремний, а способствующим старению — азот и углерод.
Механические свойства металлов и сплавов.
К основным механическим свойствам металлов и сплавов относятся
Прочностью называют сопротивление металла или сплава деформации и разрушению под действием механических нагрузок. Нагрузки могут быть сжимающими, растягивающими, скручивающими, срезающими и изгибающими ( рис. 1 ).
Твердостью называют способность металла или сплава оказывать сопротивление прониканию в него другого более твердого тела.
В технике наибольшее применение получили следующие способы испытания твердости металлов и сплавов:
Упругостью называют способность металла или сплава изменять свою первоначальную форму под действием внешней нагрузки и восстанавливать ее после прекращения действия нагрузки ( рис. 3 ).
Пластичностью называют способность металла или сплава, не разрушаясь, изменять форму под действием нагрузки и сохранять эту форму после ее снятия. Пластичность характеризуется относительным удлинением и относительным сужением.
где Δl = l1-l0 — абсолютное удлинение образца при разрыве;
δ — относительное удлинение;
l1 —длина образца в момент разрыва;
l0 —первоначальная длина образца;
где Ψ —относительное сужение при разрыве;
F0 — первоначальная площадь поперечного сечения образца;
F — площадь образца после разрыва
А = Р (Н — h) кгс • м
где Н — высота подъема маятника до удара в м
h —высота подъема маятника после удара в м
Р — ударная сила.
Затем определяют ударную вязкость
где ан —ударная вязкость в кГс·м/см 2
Ползучестью называют свойство металла или сплава медленно и непрерывно пластически деформироваться под действием постоянной нагрузки (особенно при повышенных температурах).
Усталостью называют постепенное разрушение металла или сплава при большом числе повторно-переменных нагрузок, а свойство выдерживать эти нагрузки называют выносливостью.
Рассмотрим участки диаграммы:
Предел прочности при растяжении (временное сопротивление) σв — напряжение, отвечающее наибольшей нагрузке, предшествовавшей разрушению образца:
где F0 — площадь поперечного сечения образца перед испытанием в мм 2
Предел текучести (физический) σт —наименьшее напряжение, при котором происходит деформация испытуемого образца без увеличения нагрузки (нагрузка не увеличивается, а образец удлиняется),
Предел текучести условный (технический) σо,2 — напряжение, при котором остаточная деформация образца достигает 0,2% :
Предел пропорциональности σпц — условное напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями достигает определенной степени, устанавливаемой техническими условиями:
Истинное сопротивление разрыву Sк —напряжение в шейке растягиваемого образца, определяемое как отношение растягивающей силы, действующей на образец непосредственно перед его разрывом, к площади поперечного сечения образна в шейке ( F ):
Технологические свойства металлов и сплавов.
К технологическим свойствам металлов и сплавов относятся:
Обрабатываемостью резанием называют способность металлов и сплавов поддаваться механической обработке режущим инструментом.
Ковкостью называют способность металлов и сплавов принимать необходимую форму под действием внешних сил как в холодном, так и в горячем состоянии.
Жидкотекучестью называют способность металлов и сплавов заполнять литейные формы. Высокой жидкотекучестью обладает фосфористый чугун.
Усадкой называют способность металлов и сплавов при остывании уменьшать свой объем при затвердевании из жидкого состояния, охлаждении, спекании спрессованных порошков или сушке.