Для чего нужны галтели на шейках коленвала
В двигателе нет «главных» и «неглавных» деталей — все части мотора одинаково важны, и выход из строя любой из них сразу сказывается на работоспособности силовой установки. Но есть одна деталь, которая делает двигатель двигателем — это коленчатый вал, преобразующий возвратно-поступательное движение поршней и шатунов во вращательное движение. О коленчатом вале, его устройстве и роли в двигателе читайте в этой статье.
Одна из самых серьезных проблем техники — преобразование возвратно-поступательного движения во вращательное, и наоборот. Человек решил эту проблему еще 2,5 тысячи лет назад, и созданное тогда решение практически в неизменном виде используется и по сей день. Это — кривошип.
В современных двигателях внутреннего сгорания также необходимо преобразование возвратно-поступательного движения поршней и шатунов во вращательное движение вала, маховика и, в конечном итоге — колес. С этой задачей справляется все тот же кривошип, а точнее — кривошипно-шатунный механизм, главной деталью которого является коленчатый вал.
Устройство коленчатого вала
Коленвал имеет довольно-таки простое устройство: он состоит из колен, содержащих коренные и шатунные шейки, разделенные щеками. Коренные шейки — это ось коленвала, поэтому они проходят точно по его центру. Шатунные шейки, как понятно из названия, служат для крепления и приема усилий от шатунов. Так как коленчатый вал — это кривошип, то шатунные шейки смещены относительно оси вала и удерживаются с помощью щек.
Количество шатунных шеек равно количеству цилиндров, однако в большинстве V-образных двигателей на одну шейку опираются сразу два цилиндра. С другой стороны, на современных V-образных двигателях можно встретить коленвалы, в которых на каждый шатун приходится одна шейка, но спаренные шейки при этом сдвинуты относительно друг друга на 18 градусов. Коренные шейки имеют больший диаметр, чем шатунные.
Щеки выполняют несколько функций. Они не только соединяют шейки в единую конструкцию, но также играют роль противовесов для уравновешивания шатунных шеек и шатунов. Отсутствие противовесов грозит возникновением значительных вибраций, что в высокооборотных двигателях может привести к разрушению двигателя.
Наибольшие нагрузки в коленвале приходятся на места соединения шеек и щек, поэтому для равномерно распределения нагрузок на эти участки они выполняются галтелью, то есть — переход от шейки к щеке выполнен с радиусом закругления.
В целом, положение шеек и щек в коленчатом валу должно обеспечивать наиболее эффективное преобразование возвратно-поступательного движения во вращательное, предотвращать возникновение вибрации и колебаний, уравновешивать двигатель и, наконец, надежно противостоять изгибающим нагрузкам.
Полноопорные и неполноопорные коленчатые валы
Коренные шейки коленвала служат не только осью, но также и опорой всего кривошипно-шатунного механизма. Нагрузки от коленчатого вала передаются двигателю через коренные шейки, которые опираются на коренные подшипники, заделанные в картер мотора.
Существует два вида коленчатых валов, отличающихся по типу опоры:
— Полноопорные. В таких валах коренных шеек больше, чем шатунных, при этом коренные шейки расположены по обеим сторонам шатунных шеек, чередуясь с ними (и коренных шеек на одну больше, чем шатунных);
— Неполноопорные. В таких коленчатых валах коренных шеек меньше, чем шатунных, при этом с обеих сторон щеки может быть две смещенных на определенный угол шатунных шейки.
Неполноопорные коленвалы имеют более простую конструкцию, однако они из-за меньшего количества точек опоры на картер двигателя должны быть более жесткими и прочными, а значит — и более тяжелыми. Поэтому сегодня большее распространение получили полноопорные коленчатые валы, которые при более сложном производстве получаются более легкими и надежными.
Подшипники
Коленчатый вал опирается на подшипники скольжения (также называемые вкладышами), заделанные в картер двигателя. Также подшипники скольжения предусмотрены для опоры шатунов на коленчатый вал. Эти подшипники выполнены из стальной ленты, покрытой специальным антифрикционным сплавом, снижающим силы трения между подшипником и валом.
Смазка коленвала и деталей КШМ
Особый вопрос — смазка частей коленчатого вала и всего кривошипно-шатунного механизма. Вопрос этот действительно очень важен, так как для опоры коренных шеек на картер и шатунов на шатунные шейки используются подшипники скольжения, которые могут нормально работать только при постоянном наличии смазки.
Для подачи масла к трущимся частям и деталям внутри коленвала во всех его шейках и щеках предусмотрены каналы. А чтобы обеспечить надежное поступление масла к подшипникам, его подача осуществляется под давлением.
Взаимодействие коленчатого вала с другими деталями
Как было сказано, коленвал принимает нагрузки от шатунов, преобразуя их в крутящий момент. Этот момент передается через хвостовик (заднюю выходную часть вала) маховику и далее — трансмиссии. Через другую часть вала — переднюю, или носок — крутящий момент передается на вал газораспределительного механизма и вспомогательные системы двигателя.
Также на носке часто монтируется гаситель крутильных колебаний — несложное устройство из двух дисков, соединенных через пружины, резиновую прокладку, силиконовую жидкость или иной упругий материал. Гаситель сводит к минимуму возникающие во время работы двигателя крутильные колебания вала, снижая риск его повреждения.
Производство коленчатых валов
Коленчатый вал во время работы испытывает большие нагрузки, поэтому данная деталь даже для мощных дизельных двигателей изготавливается цельной. Сборные коленвалы показали свою несостоятельность в высокооборотных двигателях, и в автомобильных моторах сейчас они практически не используются.
Для изготовления валов применяются сталь или чугун. Коленчатые валы из чугуна производятся методом отливки, валы из стали — ковкой или штамповкой. В дальнейшем оба вида коленвалов подвергаются разнообразной механической обработке для достижения необходимых параметров — чистоты поверхности шеек, балансировки и т.д.
Если Вы заметили ошибку, неточность или хотите дополнить материал, напишите об этом в комментариях, и мы исправим статью!
(Продолжение. Начало в № 6/2001)
АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук
В предыдущей статье мы рассмотрели подготовительный этап работы, предшествующий шлифовке коленчатого вала. Он включает в себя проверку станка и вала. Только после этих операций можно приступить к шлифовке.
С чего все-таки начнем?
Исключить подрез можно, если «заправить» на краях шлифловального круга радиусы, соответствующие радиусам галтелей. Такая операция необходима для тех валов, у которых на краях шеек нет канавок для выхода шлифовального круга. Но и там, где такие канавки есть, аккуратность тоже не помешает.
Анализ излома разрушенных коленчатых валов показывает, что трещина обычно начинает развиваться от места перехода шлифованной поверхности к не тронутой шлифовальным кругом. А такое место обычно и приходится на галтель, приобретающую после неквалифицированного ремонта вала неправильную форму. Особенно опасна недооценка получающейся при ремонте формы галтелей для коленчатых валов современных высокофорсированных двигателей.
Осторожно, шатунные шейки!
Если подготовка к работе завершена, можно приступать к шлифованию шатунных шеек. Для этого коленвал устанавливается в патроны станка так, чтобы его ось вращения проходила через одну из шатунных шеек.
Исключить или, по крайней мере, значительно уменьшить дисбаланс вала позволяют специальные грузы, закрепляемые на планшайбах напротив патронов станка. Масса и расположение балансировочных грузов подбирается в зависимости от массы коленвалов и радиуса кривошипа.
Итак, только теперь можем начинать шлифовку. Включаем вращение вала, подачу СОЖ (смазывающе-охлаждающей жидкости), подводим шлифовальный круг до касания шейки. Далее следует сделать подачу в пределах 0,05 мм «на врезание», короткую остановку и снова подачу. И так до заданного размера шейки, разумеется, с промежуточным контролем получающегося размера.
Многолетняя практика шлифования коленчатых валов большого числа различных двигателей позволяет указать оптимальный способ установки коленвала. Но прежде рассмотрим варианты.
Некоторые шлифовщики зажимают вал в патронах точно так же, как и при шлифовке шатунных шеек, только патроны сводят к оси вращения планшайб станка. Считается, что при хорошей выверке положения вала по минимальному биению хвостовика (или й коренной шейки) и поверхности заднего сальника (или последней коренной шейки) шейки можно шлифовать и таким способом.
Правда, описанный способ проще: он не требует демонтажа планшайб с патронами (это не слишком приятная и легкая процедура), но такое «слабое» его преимущество меркнет перед серьезными недостатками.
Очень важно, чтобы усилие сжатия вала центрами было минимальным, в противном случае вал в станке деформируется. Если затем коренные шейки прошлифовать, то после снятия со станка коленчатый вал разогнется и сразу окажется кривым.
Разумеется, при установке вала в центрах необходимо контролировать биение различных поверхностей (хвостовик, шейки, задний сальник). Повышенное биение может свидетельствовать не только о необходимости правки центровых фасок, но и о повреждении или износе посадочной поверхности центров в станке (см. № 6/2001).
Балансировочные грузы подбираются для каждого коленввала
Чтобы точно попасть в заданный размер, каждую шейку приходится контролировать несколько раз
Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Для получения подробной информации пожалуйста, обращайтесь по телефону 812-3880855 или другими способами указанными вконтактах.
Коленвал: технология упрочнения галтелей
С точки зрения механики поведение коленчатого вала при внешних воздействиях трудно предсказуемо, особенно если вал имеет пространственную форму. Если он близок к идеальному, то исправно принимает возвратно-поступательное движение поршня, чтобы передать вращение сцеплению и коробке. Но стоит возникнуть несоосности, кривизне, биению, вообще любой остаточной деформации — жди беды. Тут он капризен, как женщина.
О коленчатом вале говорят, что это не деталь, а целая система. И то правда — вроде прост, а на самом деле сложен и многообразен. Бывает тяжелым и легким, коротким и длинным, жестким и не слишком, «плоским» или пространственным с кривошипами под 120° или 90° — словом, любым.
По первичной технологии изготовления это одна из самых консервативных деталей. На многих заводах коленчатый вал до сих пор куют на молотах, меняя ручьи, либо изготавливают на мощных прессах методом горячей объемной штамповки.
Такая технология не стареет веками, поскольку именно горячая пластическая деформация металла обеспечивает правильную структуру будущей детали — оптимальный размер зерна, его ориентацию при воздействии кузнечного инструмента, отсутствие внутренних раковин. То есть прочность и выносливость закладываются в «колено» уже с рождения.
Потом коленчатый вал проходит множество операций термической, механической и финишной обработки — и все они направлены на повышение его точности, надежности и долговечности. Но жизнь есть жизнь — иногда коленчатые валы ломаются, разрушаются физически прямо в моторе. Причина звучит совершенно по-человечески — усталость… Давайте, не особо углубляясь в физику, сопромат и металловедение, вспомним, почему происходит усталостный излом детали.
Рассмотрим, например, показанный на рис. 1 нагруженный вал. Не коленчатый, а обычный цилиндрический. При изгибе верхняя часть его поверхности (слой А), обозначенная зеленым цветом, находится под действием сжимающих напряжений, а нижняя часть поверхности (слой Б), обозначенная красным, — под действием растягивающих напряжений.
Чтобы было уж совсем понятно, приведем простейший бытовой пример. Согнем обычный прут дерева.
Снаружи изгиба кора натянется — там возникнут растягивающие напряжения; изнутри изгиба она соберется складками, сморщится — там возникнут сжимающие напряжения.
Согнем сильнее — кора вообще лопнет, а на противоположной стороне только сильнее сморщится.
А теперь вернемся к нашему цилиндрическому валу. Вот он провернулся на 180°, и картина изменилась: слой А получил растягивающие напряжения, а слой Б — сжимающие. Потом вал опять повернулся. и т. д. Словом, поверхностный слой все время получает знакопеременные напряжения: сжался-растянулся, сжался-растянулся.
Борьба с разрухой
Первая любовь
В свое время автор этих строк профессионально занимался технологией коленчатого вала – пусть не слишком долго, зато обстоятельно. Часто ездил в командировки на Минский моторный и Алтайский моторный заводы, на Челябинский тракторный… Именно тогда у автора родилось трепетное уважение к этому изделию – родилось, чтобы с годами расти и укрепляться.
О коленчатом вале говорят, что это не деталь, а целая система. И то правда – вроде прост, а на самом деле сложен и многообразен. Бывает тяжелым и легким, коротким и длинным, жестким и не слишком, «плоским» или пространственным с кривошипами под 120 или 90° – словом, любым.
С точки зрения механики коленчатый вал труднопредсказуем, особенно если имеет пространственную форму. Если он близок к идеальному, то исправно принимает возвратно-поступательное движение поршня, чтобы передать вращение сцеплению и коробке. Но стоит возникнуть несоосности, кривизне, биению, вообще любой остаточной деформации – жди беды. Тут он капризен, как женщина.
Упал… и не отжался
По первичной технологии изготовления это одна из самых консервативных деталей. На многих заводах коленчатый вал до сих пор куют на молотах, меняя ручьи, либо изготавливают на мощных прессах методом горячей объемной штамповки.
Такая технология не стареет веками, поскольку именно горячая пластическая деформация металла обеспечивает правильную структуру будущей детали – оптимальный размер зерна, его ориентацию при воздействии кузнечного инструмента, отсутствие внутренних раковин. То есть прочность и выносливость закладываются в «колено» уже с рождения.
Потом коленчатый вал проходит множество операций термической, механической и финишной обработки – и все они направлены на повышение его точности, надежности и долговечности. Но жизнь есть жизнь – иногда коленчатые валы ломаются, разрушаются физически прямо в моторе. Причина звучит совершенно по-человечески – усталость…
Давайте, не особо углубляясь в физику, сопромат и металловедение, вспомним – почему происходит усталостный излом детали?
На многих заводах коленчатые валы получат многоручьевой ковкой или горячей объемной штамповкой на молотах или мощных прессах.
Такая технология обеспечивает измельчение зерна и его «правильную» ориентацию в теле заготовки
Рассмотрим, например, показанный на рис. 1 нагруженный вал. Не коленчатый, а обычный цилиндрический. При изгибе верхняя часть его поверхности (слой А), обозначенная зеленым цветом, находится под действием сжимающих напряжений, а нижняя часть поверхности (слой Б), обозначенная красным, – под действием растягивающих напряжений.
Чтобы было уж совсем понятно, приведем простейший бытовой пример. Согнем обычный прут дерева. Снаружи изгиба кора натянется – там возникнут растягивающие напряжения; изнутри изгиба она соберется складками, сморщится – там возникнут сжимающие напряжения. Согнем сильнее – кора вообще лопнет, а на противоположной стороне только сильнее сморщится.
А теперь вернемся к нашему цилиндрическому валу. Вот он провернулся на 180°, и картина изменилась: слой А получил растягивающие напряжения, а слой Б – сжимающие. Потом вал опять повернулся… и т.д. Словом, поверхностный слой все время получает знакопеременные напряжения: сжался-растянулся, сжался-растянулся…
То же происходит с другим валом – коленчатым (рис. 2). Но только у него есть заведомо слабые места – галтели коренных и шатунных шеек, зоны перехода от шейки вала к щеке. В технике такие участки называют концентраторами напряжений.
При работе в двигателе коленчатый вал под нагрузкой стремится изогнуться. Поэтому в галтелях попеременно возникают то растягивающие, то сжимающие напряжения, уже знакомые нам по примеру с простым цилиндрическим собратом. При работе вала в двигателе так происходит миллионы раз подряд: сжимающие – растягивающие, сжимающие – растягивающие…
А теперь вспомним, что на поверхности галтели есть микроскопические дефекты – шероховатости, трещины, раковины. А они есть обязательно, даже после шлифования – весь вопрос только в их размерах, т.е. в классе чистоте поверхности.
Напряжения сжатия этим дефектам не страшны, а вот напряжения растяжения как раз наоборот… В каждом цикле они буквально атакуют микродефекты, будто вбивая клин в трещинки (рис. 3). Дефект растет, растет! растет. и в один далеко не прекрасный момент происходит разрушение детали. И тогда механики скорбно вздыхают, закуривают и говорят, что вал «устал». Еще раз подчеркнем: такие изломы особенно характерны для участков с концентраторами напряжений – канавками, галтелями и т. д.
Предупреждать усталость можно специальной термообработкой, высокоточными фи-нишными операциями – и все это (как и многое другое) успешно делается, но есть способ и поинтереснее.
Сделайте ему пластику
Прежде чем раскрыть его, зададимся вопросом: если уж цикличные растягивающие напряжения играют такую роковую роль, нельзя ли их нейтрализовать – например, заложить в деталь напряжения сжатия?
Что же, логично. Напряжения сжатия будут складываться с опасными напряжениями растяжения, давая в результате ноль (или величину, близкую к нему), и трещина расти не будет! Ай да Пушкин, ай да сукин сын! Да, но заложенные нами напряжения будут складываться не только с циклическим растяжением, но и с циклическим сжатием! А вот это как раз не страшно – как уже говорилось, поверхностное сжатие, даже усиленное остаточными напряжениями, на рост трещин никак не влияет.
Рис. 1. Простейшая модель, демонстрирующая возникновение растягивающих и сжимающих напряжений при изгибе вала
Рис. 2. При циклическом изгибе коленчатого вала самые опасные растягивающие напряжения возникают в галтелях
А как создать в поверхностном слое сжимающие напряжения? Вот тут и придет на помощь метод поверхностного пластического деформирования – сокращенно ППД.
Рис. 3. Причины возникновения и развития усталостной трещины – дефекты поверхности и циклические растягивающие напряжения
Упрочнение деталей методом ППД применяется практически во всех отраслях машиностроения уже давно. Для различных деталей созданы довольно хитроумные приспособления и станки. Мы же, следуя уговору, продолжим рассмотрение процесса в упрощенном варианте.
Как это работает? Представим, что на токарном станке только что выточили галтель на простеньком цилиндрическом вале. Просто галтель на ступеньке от одного диаметра к другому.
Рис. 4. Устраним оба фактора накаткой роликом (метод ППД). Повысим чистоту поверхности, уничтожив дефекты, а главное – заложим в поверхностный слой полезные остаточные сжимающие напряжения
А теперь следите за руками. Вместо резца устанавливаем в суппорт специальную оправку с твердосплавным роликом на конце, который может вращаться. Запускаем станок, подводим к детали оправку с роликом, но не просто касаемся вращающейся поверхности галтели, а вдавливаем ролик на определенное число делений лимба поперечной подачи. На поверхности галтели возникает блестящая, будто из олова, кольцевая полоска. Красивая такая, зеркальная полоска…
Что при этом происходит с поверхностью галтели в пределах полоски? Изначально она имеет шероховатости. Изобразим их на рис. 5 условно в виде волны. Обозначим площадь этой поверхности S. И вот ролик с усилием прокатал эту поверхность. Что же произошло с волнами? Они не завалились, не завальцевались, как можно было бы предположить – все гораздо интереснее! Поверхностный слой пластически деформировался следующим образом: он как бы «ожил», впадинки приподнялись, волны опустились, поверхность галтели разгладилась.
Как изменилась площадь полоски? Естественно, она уменьшилась. Если обозначить новую площадь S1, то можно написать, что S1 А вот и печальный итог роста усталостной трещины
Шейки мастер-вала соединены со специальными «клешнями» – гидравлическими зажимами, в головках которых смонтированы накаточные ролики.
Обрабатываемый вал подается в зев станка, автоматически укладывается в постели «клешней», после чего «клешни» смыкаются на коренных и шатунных шейках, а ролики оказываются на галтелях. После укладки «клешни» смыкаются и поджимаются гидравликой, позволяющей регулировать усилие.
Рис. 5. При обработке галтели методом ППД поверхность разглаживается, ее площадь уменьшается, появляются остаточные сжимающие напряжения
Загрузка коленчатого вала в станок для накатки галтелей. Каждая шейка попадает строго в свою «клешню»
Обработка галтелей всех шеек производится одновременно
Галтели после обработки приобретают характерный зеркальный блеск
После зажима «клешней» мастер-вал начинает вращаться, «клешни» на коренных шейках, естественно, стоят на месте, а на шатунных – копируют движения шеек мастер-вала. Таким образом, галтели всех шеек накатываются и упрочняются одновременно. Весь процесс занимает менее одной минуты. Затем происходит выгрузка вала, загрузка очередного и т. д.
А теперь посмотрим на фото обработанной галтели. Да, она зеркальная, как мы и обещали. Но главное, теперь в ней заложены остаточные напряжения сжатия. И при знакопеременных нагрузках на вал, напряжения теперь будут чередоваться не как раньше «сжимающие-растягивающие, сжимающие-растягивающие», а более благоприятным образом: «сжимающие-нулевые, сжимающие-нулевые». Благодаря этому усталостная прочность коленчатого вала возрастет многократно. И еще: класс чистоты галтелей повышается, им не потребуется финишная обработка.
Специалистами давно установлена связь между упрочняющим усилием, геометрией и материалом инструмента и величиной остаточных напряжений. Для упрочнения различных деталей созданы хитроумные приспособления и оснастка. Упрочняюще станки могут развивать пульсирующее давление, повышающее эффективность обработки. Существует оборудование с микропроцессорным управлением – оно не только упрочняет, но и позволяет закладывать остаточные напряжения и деформации, исправляющие кривизну, устраняющие биения.
Много есть интересного – хватит на десятки, а то и сотни публикаций о коленчатом вале. Мы же просто рассказали о старой, доброй, надежной, работающей технологи упрочнения галтелей. Рассказали в нарочито популярной форме. Если вы знали об этой технологии – извините; не знали – значит, теперь будете знать. Как принято говорить в таких случаях, спасибо за внимание и до новых встреч.
Автор благодарит ОАО «Автодизель» и лично начальника Управления инженерного проектирования Николая Черняева за помощь в подготовке материала