Для чего нужны извилины в головном мозге

Собрать мозги в кучку: как появляются извилины

Лишь треть коры нашего головного мозга видна при взгляде снаружи, остальные две трети «спрятаны» в борозды. Indicator. Ru рассказывает, зачем нашему мозгу быть похожим на грецкий орех, как он таким становится и как это связано со старением и болезнью Альцгеймера.

Новое исследование ученых из Университета Ньюкасла (Великобритания) и Университета Рио-де-Жанейро (Бразилия), о котором сообщается в PNAS, описывает процесс формирования складок мозговой коры человека и показывает, как извилины меняются с возрастом.

Без извилин — совсем тупайя

Если взять и распрямить все складки и борозды коры одного полушария мозга среднего взрослого человека, она займет площадь около 100 000 мм², что примерно в полтора раза больше, чем лист бумаги А4.

Складчатость коры полушарий головного мозга — одна из ключевых характеристик нашего мозга. Звучит почти геологически, но именно так эволюция научилась экономить пространство внутри нашей черепной коробки, увеличивая площадь «рабочей поверхности». Ведь именно в коре головного мозга содержится то самое серое вещество — тела нейронов, наших нервных клеток.

В ходе эволюции млекопитающих происходило расширение и усложнение организации их коры головного мозга. Пойти «против мейнстрима» может только тупайя — пушистый представитель одноименного отряда зверьков с Малайского архипелага и окрестностей, у которого кора полушарий абсолютно гладкая. Нельзя сказать, что без извилин им живется тяжело, разве что в раннем детстве, которое длится меньше месяца — детенышей они не воспитывают и даже узнать их без своих пахучих меток не могут, а кормят один раз в 48 часов. Но для компенсации отсутствия извилин тупайям пришлось изменить соотношение массы мозга к массе тела, которое стало больше человеческого, но умнее нас это их вовсе не сделало (о том, имеет ли размер мозга значение и какие преимущества это помогает получить среди представителей нашего вида, Indicator.Ru уже писал).

Стянутые «швы» нервной ткани

Предыдущие исследования показали, что у млекопитающих формирование борозд и извилин подчиняется единому закону в ходе физической самоорганизации, что подтверждало догадки ученых XIX века — немецкого анатома Гиса и англичанина Томпсона. В 1997 году нейробиолог Дэвид Ван Эссен из Университета Вашингтона в Сент-Луисе опубликовал в Nature статью, где предположил, что нейроны не просто обмениваются информацией, но и могут создавать натяжение, что заставляет их притягиваться и отталкиваться. По его мнению, в первые 6 месяцев внутриутробного развития человека нейроны на основе этих взаимодействий формируют кору головного мозга такой, какой мы привыкли ее видеть. Где сигналы интенсивнее, там больше связывающих отростков нейронов, аксонов, а следовательно, натяжение сильнее.

Из-за натяжения между аксонами нервные волокна собирают на себе складки, как продетая сквозь ткань нитка, если за нее потянуть. На основании гипотезы Ван Эссена и доступных науке знаний о физике мембран была выведена формула, позволяющая рассчитать соотношение между толщиной слоя, площадью наружной (находящейся на выпуклой поверхности извилин) областью коры и общей площадью ее поверхности. Эта закономерность была выведена для млекопитающих в целом, но насколько хорошо она соблюдается внутри одного вида, а также как в нее вписываются индивидуальные, гендерные и возрастные различия, оставалось неясным.

«Размягчение мозгов»

Чтобы восполнить этот пробел, английско-бразильская группа исследователей собрала данные магнитно-резонансной томографии мозга тысячи человек.

«Составив карты складчатости коры мозга более 1000 человек, мы показали, что наш мозг формируется согласно простому универсальному закону, — прокомментировала свою работу ведущий автор исследования, доктор Юджианг Ванг из Университета Ньюкасла. — Мы также показали, что параметр этого закона, который называется натяжением внутри коры, снижается с возрастом».

Оказалось, что натяжение связей, из-за которого образуются извилины, с возрастом становится слабее, как это происходит, например, в дряблой коже пожилого человека. Также ослабление связей происходит и при нейродегенеративных заболеваниях.

«В случае болезни Альцгеймера этот эффект наблюдается в более раннем возрасте и сильнее выражен. Следующим шагом нашей работы станет проверка, можно ли использовать эти изменения мозга в качестве индикатора, чтобы обнаружить заболевание на ранней стадии», — сообщила доктор Ванг.

Что у женщин не сложилось?

Несмотря на то, что формирование борозд и извилин у женщин и мужчин подчиняется одному правилу, у мужчин кора полушарий оказалась немного более складчатой, чем у женщин того же возраста. Также было показано, что у представителей разных полов немного отличается площадь коры.

Однако ведущий автор исследования доктор Ванг рассказала, что эти различия невелики. В целом в течение жизни у здоровых людей вне зависимости от пола складчатость коры изменяется постепенно и однообразно, в то время как при болезни Альцгеймера они проявляются гораздо резче. Так, с возрастом у здоровых людей монотонно меняется изогнутость и наклон извилин, а у больных, страдающих от синдрома Альцгеймера, изогнутость сразу ниже, чем у здоровых людей, и долго остается на таком уровне, зато наклон меняется.

«Нужно больше работать в этой области, но, кажется, это подразумевает, что синдром Альцгеймера, который мы наблюдаем на коре больших полушарий, связан с механизмами старения».

Источник

Как появляются извилины, и почему мы не похожи на Мегамозга

Мозг – то самое место, где складки не просто не страшны, а даже необходимы. Благодаря бороздам площадь коры полушарий у человека становится втрое больше, чем была бы, если бы мозг был гладким. Зачем мыслительному органу быть похожим на грецкий орех, как он таким становится и причем здесь болезнь Альцгеймера? Именно об этом работа коллектива ученых, опубликованная в PNAS.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Зачем нам вообще все эти борозды и извилины? Благодаря пресловутым складкам мы экономим пространство внутри черепной коробки, увеличивая площадь «рабочей поверхности». Ведь именно кора полушарий – это то самое серое вещество, где находятся тела нервных клеток. А если бы складок не было, мозг был бы раза в три больше – эдакий «Мегамозг» в реальной жизни.

Предыдущие исследования показали: формирование борозд и извилин у млекопитающих происходит по одному механизму в ходе физической самоорганизации (мы писали об экспериментальной работе по этой теме: можно даже посмотреть видео появления извилин). В 1997 году нейробиолог Дэвид Ван Эссен из Университета Вашингтона в Сент-Луисе опубликовал в Nature статью, где предположил, что нейроны не просто обмениваются информацией, но и могут создавать натяжение. То есть, клетки могут притягиваться и отталкиваться. Он считал, что в первые полгода внутриутробного развития человека нейроны на основе таких взаимодействий формируют кору головного мозга именно такой, как мы привыкли ее видеть. Где сигналы интенсивнее – там связей между клетками образуется больше. А значит, натяжение сильнее. Из-за этого натяжения между аксонами нейронов как раз формируются складки.

На основании этой теории даже вывели специальную формулу, по которой можно рассчитать соотношение между толщиной слоя, площадью наружной области коры и общей площадью ее поверхности. Вот только эта закономерность выведена для млекопитающих в целом. А как оценить особенности внутри вида и в зависимости от пола, возраста и индивидуальных особенностей?

Над этим и корпели исследователи. Ученые из университета Ньюкасла (Великобритания) и Университета Рио-де-Жанейро (Бразилия) решили разобраться, как именно происходит формирование извилин мозга человека и какие изменения возникают с возрастом. Они собрали данные МРТ мозга 1000 человек. Составив карты складчатости, они показали, что мозг действительно формируется согласно простому универсальному закону, описанному выше. Причем параметр этого закона – натяжение внутри коры – снижается с возрастом. Такое ослабление связей свойственно и при нейродегенеративных заболеваниях. Таких, как болезнь Альцгеймера.

«В случае болезни Альцгеймера этот эффект наблюдается в более раннем возрасте и сильнее выражен. Следующим шагом нашей работы станет проверка, можно ли использовать эти изменения мозга в качестве индикатора, чтобы обнаружить заболевание на ранней стадии», — говорит доктор Юджианг Ванг из Университета Ньюкасла, ведущий автор исследования.

А что там с гендерными различиями? Оказалось, что у мужчин кора полушарий более складчатая, чем у женщин того же возраста, да и ее площадь в зависимости от пола отличается. Но ученые утверждают, что различия невелики. А вот механизмы образования складок и их изменения с возрастом однообразны и для мужчин, и для женщин. Так, с возрастом у здоровых людей меняется изогнутость и наклон извилин. А при болезни Альцгеймера изогнутость сразу ниже, чем у здоровых людей, и долго остается на таком уровне, зато наклон меняется. Это может означать, что болезнь Альцгеймера связана с механизмами старения.

Интересно, что через четыре года после той статьи, которую мы сегодня разбирали, появилась публикация, в которой доказывается важность «сливания» клеток в организации извилин.

Текст: Любовь Пушкарская

Universality in human cortical folding in health and disease by Yujiang Wanga, Joe Necusb, Marcus Kaisera and Bruno Motac in PNAS. Published September 13, 2016.

Источник

Части головного мозга

Как было отмечено выше, структура головного мозга действительно сложна. Чтобы упростить ее изучение, в зависимости от выполняемых функций и особенностей внутриутробного развития, головной мозг подразделяют на следующие части:

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге Вам будет интересно: Венозная и артериальная кровь: особенности, описание и отличия

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Строение мозга на поперечном срезе

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге Вам будет интересно: Ингибиторы ароматазы: назначение и список препаратов

В то время как кора вместе с бороздами и извилинами головного мозга выполняет функции координации высшей нервной деятельности (речи, письма, мышления, памяти, внимания, эмоций), серое вещество экстрапирамидной системы необходимо для осуществления высокоточных координированных движений.

Базальные ганглии включают в себя такие структуры:

Белое вещество, в свою очередь, является скоплением отростков нервных клеток, которые обеспечивают взаимосвязь вышележащих отделов мозга с нижележащими, а также взаимодействие разных нейронов в пределах одной структуры.

Головной мозг: функции

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге Вам будет интересно: «Индапамид»: инструкция по применению и аналоги

На самом деле функций головного мозга человека огромное множество, и о них можно написать не одну статью. В перечне ниже все функции объединены в отдельные группы:

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Строение коры

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Виды борозд

Основные борозды

Существует множество борозд и извилин в головном мозге. Ниже перечислены наиболее важные из них:

Наружная поверхность полушария

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге Вам будет интересно: Основные свойства нервной системы человека и их характеристика

На дне латеральной борозды находится островок, который далее получает свое продолжение в поперечной извилине. Вокруг него находится циркулярная, или круговая, борозда. Островок подразделяется на две доли: переднюю и заднюю, которые отделены друг от друга центральной бороздой.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Лобная часть

Лобная доля разделена на три лобные извилины: верхнюю, среднюю и нижнюю. Они отграничены друг от друга верхней и нижней лобными бороздами. Можно сказать, что именно в лобной доле находятся самый крупные борозды и извилины головного мозга.

Теменная часть

Эту долю головного мозга ограничивают от других структур сразу четыре борозды: центральная, латеральная, теменно-затылочная и поперечная затылочная. Сзади от центральной, по аналогии с лобной долей, находится постцентральная борозда, которую в некоторых учебниках подразделяют еще на две части: верхнюю и нижнюю. Два вышеперечисленных углубления ограничивают постцентральную извилину.

На две дольки (верхнюю и нижнюю) теменную часть головного мозга разделяет межтеменная борозда. Нижняя долька включает в себя надкраевую и угловую извилины.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Височная часть

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Затылочная часть

Наиболее непостоянны образования именно в этой части головного мозга. Строение коры затылочной доли очень индивидуально. Однако практически у всех присутствует задняя затылочная извилина, которая образует переходные извилины по мере приближения к теменной части. Также для строение этой части головного мозга характерно наличие полярных борозд, располагающихся вертикально.

Медиальная поверхность

Наиболее медиально расположена борозда мозолистого тела, которая далее переходит в борозду гиппокампа, ограничивающею собственно гиппокамп. Рядом с мозолистой бороздой расположены подтеменная и мозолисто-краевая борозды. Параллельно гиппокампу проходит ринальная борозда.

Перечисленные выше углубления головного мозга ограничивают специфическую систему, которая получила название лимбической. Она, в свою очередь, состоит из поясной и гиппокамповой извилин.

Помимо собственно лимбической системы, на внутренней поверхности мозга находятся также структуры, которые продолжают свой ход с наружной части коры полушарий. Таким образом распространяется теменно-затылочная борозда, позади которой расположено предклинье (извилина, напоминающая трапецию по форме). Рядом с этим углублением также находится шпорная борозда, которая простирается от затылка и вперед аж до мозолистого тела. Между двумя упомянутыми выше углублениями находится клиновидная извилина.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Нижняя поверхность

Нижняя, или базальная, поверхность мозга образована частями лобной, височной и затылочной долей. Однако, помимо этих структур, на базальной поверхности также находится так называемый обонятельный мозг. В его состав входит обонятельная борозда, окруженная прямой извилиной и глазничными бороздами.

В составе височной доли на основе мозга размещены нижняя височная и затылочно-височная борозды, между которыми находится одноименная извилина. Рядом также детализируется язычковая извилина.

Основное значение

Можно выделить такие основные функции борозд и извилин головного мозга:

Источник

Извилины головного мозга и их значение

Головной мозг является самым совершенным и наиболее сложным органом человека. Ученым еще не удалось исследовать его до конца и узнать обо всех его особенностях и способностях. Но уже многое о мозге известно, например, доказано, что кора больших полушарий – самая высокоорганизованная его составляющая. Она состоит из множества извилин, каждая из которых выполняет свою функцию. Давайте посмотрим, из чего состоит головной мозг, и какое значение имеют извилины.

Головной мозг состоит из пяти отделов

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Состав коры больших полушарий

Исследование коры головного мозга имеет важное значение. Ведь именно благодаря ее наличию человек чувствует, понимает, ориентируется в окружающем мире, испытывает эмоции. У каждого человека строение коры головного мозга уникально. Борозды и извилины, из которых она состоит имеют разные формы и размеры. Бороздами называют углубления, благодаря которым образуются доли коры (лобная, теменная, височная и затылочная). Что понимают под термином «извилины головного мозга»? Так называют выпуклые участки, расположенные между бороздами.

Процесс образования коры в эмбриогенезе

Формирование коры начинается примерно на десятой неделе внутриутробного развития плода. Образуются первичные борозды, которые являются самыми глубокими. Именно они формируют доли коры. Затем появляются вторичные борозды, образующие извилины. За индивидуальность рельефа коры головного мозга отвечают третичные, самые поверхностные борозды. Наиболее интенсивно рельеф формируется с 24 по 38 неделю внутриутробного развития.

Борозды и извилины головного мозга

Рельеф коры индивидуален, но состав одинаков. Так, человеческий мозг включает:

Извилины головного мозга имеют разные размеры и формы. Интересный факт: если расправить все извилины, а их достаточно много в мозге человека, то полученная ткань займет до 22 кв. метров площади. Рассмотрим основные извилины и их функции:

Теперь вы знаете о главных извилинах мозга, и за что они отвечают. Это достаточно сложная и многогранная тема. В рамках одной статьи непросто рассмотреть ее полностью. Однако точно можно сказать, что каждая извилина выполняет важную роль, имеет конкретное значение и является необходимой составляющей коры головного мозга.

Борозды и извилины неразрывно связаны. Борозды ограничивают доли, состоящие из группы извилин. Они же разграничивают отдельные извилины. Мозг имеет сложную структуру, что и позволяет ему выполнять множество важнейших функций.

Извилинам головного мозга нужны тренировки

За все наши действия, чувства, ощущения, эмоции и мыслительный процесс отвечают извилины головного мозга. Их можно и нужно тренировать, как и мышцы тела. Что нужно делать:

И еще один совет напоследок: используйте тренажеры Викиум. Интересные упражнения на память, внимательность, скорость реакции, логические и аналитические задачи – всё это развивает мышление и заставляет извилины работать лучше.

Источник

Что особенного в мозге человека?

Что особенного в мозге человека?

Морфологическая реконструкция нейрона коры мозга человека. Внизу показаны подпороговые осцилляции трансмембранного потенциала нейрона в биофизической модели. На фоне показаны человеческие нейроны 2/3 слоя коры, окрашенные с помощью антител.

Автор
Редакторы

Нейроны человека и других млекопитающих очень похожи, если смотреть «издалека». Тем не менее есть и важные различия. Недавно ученые из Института Аллена (среди которых и автор этой статьи) опубликовали работу в журнале Neuron, где показали, что возбудимости нейронов мозга человека и мыши заметно различаются. Оказалось, что нейроны коры мозга человека имеют гораздо большее количество HCN-каналов, которые особым образом влияют на возбудимость нейронов. Что это значит с точки зрения эволюции и какой эффект оказывает на поведение отдельных нейронов?

Довольно долго считалось, что базовые элементы нервной системы — нейроны — всех млекопитающих похожи друг на друга. Такую мысль высказывал, например, Сантьяго Рамон-и-Кахаль [1]. Нейрон получает входные сигналы от других нейронов за счет синапсов, которые расположены на дендритах и соме [2]. В результате меняется величина трансмембранного потенциала [3], и если она превышает порог, то нейрон генерирует потенциал действия, или спайк (от англ. spike — шип). После этого спайк распространяется по аксону и активирует другие нейроны, с которыми он связан с помощью синапсов. Несмотря на схожие свойства нейронов животных, ученые получают всё большее количество данных о том, что отдельные детали значительно различаются.

Мозги человека и других млекопитающих очень похожи. Именно это позволяет нам, изучая мозг других животных, узнать что-то о своем собственном. В частности, структура коры мозга, появившейся позже всего в течение эволюции, очень схожа у всех млекопитающих. Именно она отвечает за множество высших психических функций (восприятие, память, речь), которыми мы обладаем.

Но если кора у нас и мышек устроена одинаково, почему же мышки не играют на скрипке и не делают научные открытия, а люди на это способны хотя бы изредка? Иными словами, что делает нас особенными по сравнению с другими млекопитающими?

Довольно давно стало понятно, что это очень сложный вопрос, на который существует много разных ответов. Один из них наша научная группа пытается дать в Институте Аллена (Allen institute for brain science), изучая и сравнивая нейроны человека и мыши. Наша работа была недавно опубликована в международном журнале Neuron [4].

Известно, что объем мозга человека и площадь коры увеличивались в ходе эволюции очень быстро. За последние 75 миллионов лет площадь коры мозга человека стала больше примерно в 1000 раз по сравнению с общим предком мыши и человека. Поэтому нейроны человеческого мозга должны были адаптироваться к эволюционно быстрым изменениям его свойств.

Кора млекопитающих обладает удивительно сложной анатомической организацией. Она состоит из шести слоев клеток, которые связаны между собой. В каждом слое есть возбуждающие и тормозные нейроны разных типов. Типы нейронов отличаются между собой по форме дендритного дерева, по возбудимости мембраны и специальным белкам, которые позволяют «увидеть» эти нейроны с помощью иммуногистохимических методов [5]. Зачастую в коре нейроны определенных типов связаны между собой строго специфическим образом, поэтому, анализируя активность нейронов, важно знать, к какому типу они относятся.

Чтобы не сравнивать яблоки с апельсинами, мы рассмотрели свойства самых часто встречающихся нейронов коры — пирамидальных нейронов 2/3 слоя. Поскольку границу между вторым и третьим слоем анатомически сложно провести, нейроны этих слоев объединяют вместе как нейроны 2/3 слоя. Именно этот слой самый толстый в коре человека по сравнению с корой мыши. Нейроны именно этого слоя коры наиболее сильно изменились у человека по сравнению с другими млекопитающими. Ширина 2/3 слоя около одного миллиметра, и он толще других слоев примерно в 2–3 раза.

Изучая ответы отдельных нейронов в этом слое коры, мы обнаружили, что нейроны человека и мыши по-разному отвечают на электрические стимулы (рис. 1). Оказалось, что нейроны одного и того же 2/3 слоя коры у мыши и человека обладают различными резонансными частотами (рис. 1 в и г). Иными словами, при предъявлении стимула (ток, подаваемый в нейрон), нейроны человека и мыши по-разному на него отвечают. Нейроны человека обладают резонансами более высокой частоты, при этом частота этих резонансов зависит от глубины расположения нейронов в коре. Чем глубже эти нейроны в слое 2/3 у человека, тем выше их частота (рис. 1 в и г). При этом частота резонансов у мыши гораздо ниже и увеличивается медленнее при продвижении в глубину в слоя 2/3.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Рисунок 1. Нейроны человека и мыши обладают различными резонансными свойствами. а — Подпороговый ответ нейронов мыши 2/3 слоя коры в ответ на синусоидальный стимул с увеличивающейся амплитудой. Сверху показан ответ нейронов верхней части 2/3 слоя коры, снизу — ответ более глубоких нейронов того же слоя. Справа показан спектр частоты колебаний и электрический импеданс трансмембранного потенциала в ответ на синусоидальный стимул наверху и внизу слоя 2/3. б — То же самое для нейронов человека. вСлева показана резонансная частота нейронов мыши 2/3 слоя в зависимости от глубины внутри этого слоя (резонансная частот соответствует пику в спектре на панели а справа). Справа показано отсечение спектра после трех децибел. г — тоже самое для нейронов человека. Результаты, относящиеся к нейронам мыши, показаны черным; к нейронам человека — красным.

Для того чтобы объяснить эти физиологические свойства нейронов человека, мы проанализировали биофизические свойства нейронов коры человека и мыши. Дело в том, что в генерации спайков, а также в поддержании трансмембранного потенциала участвует большое количество различных белков (преимущественно ионных каналов). Основными являются натриевые и калиевые каналы, но также существует большое количество других белков, которые изменяют свойства потенциала действия и синапсов. Так, одна из наших прежних работ посвящена изучению связи эпилепсии с гомеостазом ионов хлора в нейронах мозга [6].

Одними из таких каналов, тонко настраивающих сигнализацию нейронов, являются HCN-каналы, пропускающие ионы калия при гиперполяризации мембраны. Это явление необычно тем, что «обычные» потенциал-чувствительные каналы открываются при деполяризации (потенциал идет «вверх»), а этот тип каналов — напротив, при гиперполяризации (потенциал идет «вниз») трансмембранного потенциала. Поэтому данный ток получил специальное обозначение — h-ток, напоминающее о его hyper-активации (hyperpolarization activated в названии канала — (англ.) активирующийся благодаря гиперполяризации).

Когда нейрон получает отрицательный синаптический вход от тормозных нейронов, это приводит к активации h-тока. Но после того как стимуляция исчезает, возникает кратковременная деполяризация мембраны нейрона, что часто приводит к генерации спайков. Иными словами, действие h-тока похоже на пружину, которую сначала сжимают (отрицательный вход), а потом резко отпускают (отсутствие стимуляции), после чего она распрямляется еще больше, чем в изначальном состоянии. Эти каналы есть не только в нейронах мозга: их также можно обнаружить в кардиомиоцитах сердца [7], где они помогают синхронизировать активность клеток во время сердечных сокращений.

Мы обнаружили, что в мембране человеческих нейронов 2/3 слоя есть особенно большое количество h-тока, анализируя ответы нейронов в ответ на электрические стимулы (рис. 1). Анализ мРНК из тех же нейронов подтвердил эти результаты и показал, что в клетках 2/3 слоя коры человека имеется гораздо большее количество фрагментов, кодирующих HCN1-каналы (подтип HCN-каналов). В нейронах коры мыши тоже имеется большое количество HCN1-каналов, но их не так много, как в нейронах человека (рис. 2). Более того, оказалось, что HCN1-каналов больше в каждом слое коры человека, а не только в слое 2/3. Чтобы понять, что значат эти данные в отношении отдельных клеток, мы совместно использовали электрофизиологию и математическое моделирование.

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Рисунок 2. Оценка уровня экспрессии генов, кодирующих HCN-каналы, в нейронах человека (а) и мыши (б). Все данные получены на основании анализа мРНК, извлеченной из ядер отдельных нейронов разных слоев коры (L1–6 и тормозных нейронов всех слоев Inh). Результаты приведены в единицах RPKM (англ. Reads Per Kilobase Million — количество прочтений (гена HCN1) на один миллион пар оснований).

Некоторые подробности нейронного моделирования приведены в статье «От живого мозга к искусственному интеллекту» [8].

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Рисунок 3. Биофизическая модель нейрона человека. а — Стимуляция биологического нейрона и математической модели стимулом с увеличивающейся частотой с помощью электрического тока. б — Спектр колебаний трансмембранного потенциала в ответ на стимуляцию с панели а. Черным показан стимул, зеленым — ответ биологического нейрона 2/3 нейрона коры, красным — ответ модели со включенными h-каналами (Ih(+)), синим — ответ модели с выключенными h-каналами (Ih(−)).

Для чего нужны извилины в головном мозге. Смотреть фото Для чего нужны извилины в головном мозге. Смотреть картинку Для чего нужны извилины в головном мозге. Картинка про Для чего нужны извилины в головном мозге. Фото Для чего нужны извилины в головном мозге

Рисунок 3. Биофизическая модель нейрона человека. в — Трехмерная реконструкция нейрона коры слоя 2/3. Красными кругами показано положение глутаматных синапсов [9]. г — Задержка между активностью синапса на дендритном дереве и ответом на соме нейрона в зависимости от расстояния от синапса до сомы. Красным показан ответ модели в присутствии h-тока (Ih(+)), синим — когда h-ток отсутствует (Ih(−)). д — Спектр колебаний трансмембранного потенциала на соме в модели с h-током и без h-тока в ответ на стимуляцию с помощью 1000 синапсов. Черные линии наверху соответствуют различным диапазонам частот, средние величины которых достоверно отличаются, в частности в тета-диапазоне.

Используя эту модель, мы воспроизвели поведение нейрона, когда он находится в нейронной сети коры. Для этого мы стимулировали модель нейрона с помощью 1000 глутаматных синапсов [9], каждый из которых активировался случайно со средней частотой около 4 Гц (рис. 3д). Поскольку разряды нейронов в большой сети генерируются случайно или хаотически [10], их можно описывать с помощью случайных процессов.

В ответ на синаптическую стимуляцию происходят колебания мембранного потенциала нейрона. Чтобы понять свойства этих колебаний, мы проанализировали их частоту в модели с h-током и без него (рис. 3). Оказалось, что h-ток позволяет нейрону лучше проводить колебания в тета-диапазоне (4–10 Гц) от дендритов к соме. При этом сами колебания мембранного потенциала генерируются синапсами, расположенными на дендритном дереве (рис. 3). Также мы обнаружили, что скорость проведения сигнала от дендритов к соме увеличивается при наличии h-тока (рис. 3д). Это происходит за счет способности HCN-каналов делать мембрану нейронов чуть более возбудимой, что приводит к более быстрому проведению изменений потенциала от дендритов к соме.

Дело в том, что человеческие нейроны гораздо больше нейронов мыши. Объем мозга и размер нейронов быстро увеличивались в ходе эволюции млекопитающих. С одной стороны, большой нейрон может связаться с бóльшим числом других нейронов, что позволяет более эффективно проводить информацию в сети; с другой стороны, скорость обработки информации в больших нейронах меньше, чем в маленьких. Вероятно, большое количество h-тока было одной из эволюционных адаптаций, которые позволили поддерживать прежнюю скорость проведения потенциалов действия, несмотря на бóльший размер нейронов. Этот механизм может быть особенно важен для более глубоких слоев коры (рис. 1), поскольку нейроны 2/3 слоя должны получать информацию от нейронов первого слоя коры с такой же задержкой, как и нейроны верхнего слоя 2/3.

Сравнивая нейроны человека и других животных, мы надеемся постепенно понять, что именно делает мозг человека особенным. Возможно, разница между мозгом человека и мыши такая же, как между игровой приставкой и суперкомпьютером. Оба они построены на микропроцессорах, но суперкомпьютер обладает гораздо большей производительностью за счет более быстрых элементов и большего их количества. В ближайшем будущем мы планируем изучить свойства нейронов коры человека и мыши во всех слоях коры и в разных ее областях. Это поможет нам понять, что делает мозг человека особенным по сравнению с мозгом других млекопитающих [11]. С практической точки зрения это позволит разрабатывать более эффективные лекарства, которые будут лучше работать для нейронов человека за счет особенных свойств наших с вами ионных каналов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *